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ABSTRACT Weather forecasting primarily uses numerical weather prediction models that use weather
observation data, including temperature and humidity, to predict future weather. The Korea Meteorological
Administration (KMA) has adopted the GloSea6 numerical weather prediction model from the UK for
weather forecasting. Besides utilizing these models for real-time weather forecasts, supercomputers are
essential for running them for research purposes. However, owing to the limited supercomputer resources,
many researchers have faced difficulties running the models. To address this issue, the KMA has developed a
low-resolution model called Low GloSea6, which can be run on small and medium-sized servers in research
institutions, but LowGloSea6 still uses numerous computer resources, especially in the I/O load. As I/O load
can cause performance degradation for models with high data I/O, model I/O optimization is essential, but
trial-and-error optimization by users is inefficient. Therefore, this study presents a machine learning-based
approach to optimize the hardware and software parameters of the Low GloSea6 research environment.
The proposed method comprised two steps. First, performance data were collected using profiling tools to
obtain hardware platform parameters and Low GloSea6 internal parameters under various settings. Second,
a machine learning model was trained using the collected data to determine the optimal hardware platform
parameters and Low GloSea6 internal parameters for new research environments. The machine-learning
model successfully predicted the optimal parameter combinations in different research environments,
exhibiting a high degree of accuracy compared to the actual parameter combinations. In particular, the
predicted model execution time based on the parameter combination showed a significant outcome with
an error rate of only 16% compared to the actual execution time. Overall, this optimization method holds the
potential to improve the performance of other high-performance computing scientific applications.

INDEX TERMS Scientific application, GloSea6, machine learning, I/O optimization, profiling.

I. INTRODUCTION
Significant advancements in computing performance have
facilitated the emergence of numerical weather predic-
tion (NWP) [1] models that use large-scale numerical
computations for weather forecasting. Since 1999, the Korea
Meteorological Administration (KMA) has been using a
global data assimilation and prediction system based on the
global spectral model, which is based on the global spectrum
model from the Japan Meteorological Agency. The KMA
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introduced the global NWP model GloSea6 [2] from the
UK Met Office in 2022 and has since used it for weather
forecasting.

GloSea6 comprises two main models: ATMOS and
OCEAN. The ATMOS model comprises atmospheric (UM)
and land surface (JULES) models, while the OCEAN model
comprises ocean (NEMO) and sea ice (CICE) models. Model
execution begins after a preprocessing stage, duringwhich the
Earth is divided into grids, and initial and auxiliary data called
analysis fields are collected for each grid. Subsequently, the
analysis fields are used to prepare input fields for the forecast
model, after which numerical model calculation begins.
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FIGURE 1. Combined model implementation process.

Owing to its high demand for computing resources,
the KMA provides a low-resolution version of GloSea6
called Low GloSea6 for researchers who lack access to
supercomputers. However, even Low GloSea6 requires
significant computing resources, and as the model has
a high data input/output (I/O) nature, I/O optimization
is essential. Notably, general users, who are atmospheric
science researchers and not computer scientists, may find
conducting performance optimization through trial-and-error
inefficient. This paper presents a machine learning-based
approach to optimize the hardware and software parameters
of the Low GloSea6 research environment.

This study proposes a new cross-inference optimization
method for the NWP model Low GloSea6 using machine
learning and benchmark tools. Specifically, the following are
detailed:

• We defined the entire workflow for performance
cross-validation and validated it through experiments.

• Necessary data for cross-inference were categorized
into two types: execution hardware platform parameters
and internal software parameters of Low GloSea6,
and important parameters among them were extracted
through model/data validation.

• We used Darshan to collect detailed data on I/O charac-
teristics and verified the final results using runtime data
to perform I/O performance cross-validation.

• This study demonstrates the applicability of various
machine-learning techniques to explain the complex
interactions between the execution hardware platform
parameters and the Low GloSea6 internal software
parameters, thereby making it feasible to cross-infer
performance on a new execution hardware platform.

• The proposed method has been generalized throughout
the workflow, demonstrating that it is a general method-
ology that is not limited to Low GloSea6, which is the
subject of this paper.

This paper is structured as follows: Section II describes
related research, while Section III provides a detailed
description of GloSea6, a numerical model for weather
prediction, and the profiling tool used for performance
data collection. Section IV explains the hardware/software
optimization methodology in the research environment,
including the dataset and model used. In Section V, the
experiments conducted using the optimization methodology
after the model and data verification are described and

analyzed. Section VI presents the conclusion and future
plans.

II. RELATED RESEARCH
Optimization studies for applications running in real-world
or research environments have been conducted in various
fields. One such approach is the modification of I/O
library codes to achieve I/O optimization of applications.
Howison et al. [3] demonstrated performance improvements
for high-performance computing (HPC) applications through
code modifications and optimizations of HDF5 and MPI-IO
libraries, considering the file system characteristics.

Another research method is to achieve I/O optimization
by deriving optimal file systems and I/O library parameters.
In addition, Behzad et al. [4], [5] used a genetic algorithm to
optimize the I/O performance of an application. They created
a set of parameters by exploring the file system and I/O
library parameter space, measured the I/O performance of
the benchmark tool using the parameter set, and iteratively
optimized the parameter set based on the measurements
until the best I/O performance was achieved. Robert et al. [6]
optimized an I/O accelerator using black-box optimization
techniques that find input parameters with maximum and
minimum performance metrics without considering internal
mechanisms. They optimized three input parameters (I/O
throughput, I/O latency, and I/O memory usage) of the
Atos Flash Accelerator, an I/O accelerator that accelerates
I/O operations of various HPC applications using NAND
flash memory technology, and used basic metrics, such as
I/O operation processing time, as performance indicators.
Finally, they validated that the I/O accelerator performance
can be improved by applying black-box optimization.
Bağbaba et al. [7] implemented an automated tuning solution
for the optimal parameters of Lustre parallel file system and
MPI-IO ROMIO library, a high-performance implementation
ofMPI-IO, using I/Omonitoring and performance prediction.
The solution employed a random forest-based machine-
learning algorithm and was validated using two bench-
marking tools (IOR-IO and MPI-Tile-IO) and a molecular
dynamics model (ls1 Mardyn.’’).

Our research differs from previous studies in two ways.
First, our study enables easy optimization, even without
prior I/O optimization knowledge. While Howison et al. [3]
achieved I/O performance optimization by modifying the I/O
library code, this approach requires a developer’s expertise
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and is not easily accessible to general users. In contrast,
our research focuses on machine learning-based performance
optimization that is easily modifiable and accessible by
considering the hardware and software parameters of the
research environment. Second, our study simultaneously
considers hardware platform parameters and internal soft-
ware parameters. Behzad et al. [4], [5] optimized I/O using
adjustable parameters in the parallel I/O stack, specifically
related to file systems, HDF5, and MPI-IO libraries. How-
ever, the research did not consider benchmark tool parameter
optimization. Robert et al. [6] used the parameters of I/O
throughput, I/O latency, and I/O memory usage of the Atos
Flash Accelerator I/O accelerator for its optimization. These
parameters are internal software parameters mentioned in
this paper, and hardware platform parameters were not
considered.

Our research has broad applicability. Bağbaba et al. [7]
study focused on the MPI-IO ROMIO library and Lustre
parallel file system in a single research environment,
which limits its generalizability. In contrast, we collected
data in two different research environments and conducted
validation on different hardware platform environments using
Low GloSea6. In addition, we used MPICH, an MPI-
IO implementation with high accessibility that can be
applied regardless of the specific implementation version of
MPICH. To verify this, we conducted experiments in research
environments using different versions of MPICH.

III. BACKGROUND
A. NUMERICAL WEATHER FORECASTING: GLOSEA
The ATMOS and OCEAN models are coupled using the
Ocean Atmosphere Sea Ice Soil 3-Model Coupling Toolkit
(OASIS3-MCT) Coupler [8] to share their results. Figure 1
illustrates the collaboration structure of the two models. The
Glosea6 model performs simulations in 15-day increments,
saving the results to a file and proceeding to the next step. The
saved file is used as the initial data for the simulation in the
following step. Therefore, the numerical model calculations
restart at each step. As shown in Fig. 1, the ATMOS
model produces Fieldsfile (ff) [9] data, while the OCEAN
model produces data in NetCDF (nc) [10] file format.
Forecast (FCST) and Hindcast (HCST) data are generated
to predict future and reproduce past situations, respectively.
Ensemble probability predictions are generated by comparing
the FCST and HCST data using the average of multiple
models. The generated ensemble prediction data is verified by
comparing it with observation data using various verification
metrics. Deterministic verification techniques such as Bias,
RMSE, and Correlation are used for data comparison, and
probabilistic verification techniques such as Brier Skill Score
and Reliability Diagram are used.

The operating system of GloSea6 is based on special
software implemented with Jinja2 called ROSE and CYLC.
ROSE is a tool used to easily create, edit, and execute
suites, which are units that manage one or more consecutive
tasks or processes. ROSE can set compile options and

FIGURE 2. ROSE graphical user interface. (Used image sources [11].)

FIGURE 3. CYLC graphical user interface.

computer resources, etc., through the suite configuration files
‘‘rose-app.conf’’ and ‘‘rose-suite.conf.’’ Figure 2 shows the
configuration screen using the ROSE graphical user interface,
which allows for easy configuration. CYLC is a workflow
engine used to execute suites. The task sequence is set
through the ‘‘suite.rc’’ file, and as shown in Fig. 3, workflow
visualization and control are possible.

Table 1 shows the sequence and content of GloSea6’s suite
operations, where ‘‘gsfc’’ represents the process of producing
Forecast data and ‘‘gshc’’ represents the process of producing
Hindcast data. Relevant source codes are obtained through
FCM, a scientific application wrapper for SubVersion (SVN),
during the ‘Compilation step’.

Complex models like GloSea6 require the use of super-
computers not only for actual weather forecasting but also
for research purposes. However, considering the limited
resources of supercomputers, many researchers have faced
challenges in running the model. To address this issue,
the KMA developed a low-resolution model called Low
GloSea6, which can be run on small- to medium-sized servers
in research institutions.

Low GloSea6 is a low-resolution coupled model similar to
GloSea6 but with a grid size of 60 km extended up to 170 km.
Unlike GloSea6, which runs both ROSE and CYLC on a
single supercomputer platform, Low GloSea6 uses multiple
platforms such as client local PC and computer cluster,
as shown in Fig. 4. The suite’s working environment and
operational settings are configured through ROSE/CYLC,
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TABLE 1. Glosea6/low glosea6 suite work order.

FIGURE 4. The overall composition of low GloSea6. (Used image sources [11].)

and the suite is then transmitted to the computer cluster using
secure shell (SSH).

The computer cluster refers to the assigned values in
ROSE to proceed with compilation and resource allocation
of the received suite, and performs all tasks sequentially or
in parallel through CYLC. In addition, the order and content
of the suite in Low GloSea6 differ from those in GloSea6.
While GloSea6 performs the ‘‘Model run step’’ after the
‘‘Compilation step,’’ according to Table 1, LowGloSea6 does
not perform ‘‘gshc’’ and ‘‘gsfc_redate_cice’’ tasks because
the initial fields are already set.

B. PROFILING TOOL
The ATMOS and OCEAN models of Low GloSea6, which
are the performance measurement targets, are HPC applica-
tions based on the message passing interface (MPI). We used
Darshan [12], [13], an HPC I/O profiling tool that can
measure and analyze the performance of the MPI I/O and
POSIX I/O of HPC applications.

FIGURE 5. Darshan source tree.

Darshan is an open-source I/O profiling tool used to
understand the I/O characteristics of HPC applications.
As shown in Fig. 5, Darshan comprises two components:
Darshan-runtime, which generates I/O activity logs for HPC
applications, and Darshan-util, which analyzes log contents.

Figure 6 shows a summary of Darshan’s operation.
To explain the operation of Darshan using MPI-IO as an
example, existing MPI API calls are intercepted and replaced
with equivalent calls implemented by Darshan using the
dynamic library preload mechanism provided by Linux.
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FIGURE 6. Darshan-core process.

FIGURE 7. Darshan PDF log.

When Darshan intercepts the MPI library start function,
‘‘MPI_Init(),’’ it initializes itself and stores statistics to
a file in the first come first served (FCFS) order while
the MPI application runs. When the MPI application calls
‘‘MPI_Finalize()’’ to terminate the MPI library environment,
Darshan intercepts it and records the saved I/O log of the
Darshan core library into a consolidated log file.

Figure 7 shows the partial Darshan log analysis files for the
ATMOS and OCEAN models.

For item 1, the filename of the profiled HPC application
and the measurement date are recorded. When ATMOS
and OCEAN models are executed simultaneously, the
measurement is performed concurrently, but the filename is
written based on the application name that appears first in the
execution command, which is ‘‘atmos.exe’’ in this case. For
item 2, ‘‘nprocs’’ represents the number of processes used in
the application, and runtime indicates the execution time. The
ATMOS and OCEAN models recorded in the PDF file were
assigned four processes each, and nprocs is recorded as 8,
which is the sum of the process allocation values for both
models. The model ran for 1732 seconds, and the amount of
data transferred (in MiB) and bandwidth (in MiB/s) through
MPI-IO, POSIX, and STDIO I/O functions can be checked
in the ’I/O performance estimate. Notably, even though the

HPC application is based on MPI, MPI-IO is not observed.
For item 3, the X-axis represents the libraries used, and the
Y-axis represents the percentage of time spent on reading,
writing, metadata I/O, and computation. Most time is spent
on computation, and I/O can be seen at the bottom of each
chart. The X-axis of item 4 represents specific I/O operations,
and the Y-axis shows the number of operations. Notably,
POSIX (in red) dominates the I/Oworkload.We aim to obtain
the optimization benefits and I/O performance metrics of the
ATMOS and OCEAN models through Darshan logs.

We reviewed the values from the Darshan results, which
can be used as performance metrics. The fourth graph
indicates no MPI I/O operations during the model execution
but shows over 180,000 read operations in POSIX, while
the third graph reveals that I/O operations account for
approximately 6% of the runtime. This study employed ‘‘I/O
performance estimate’’ metrics such as POSIX bandwidth
and STDIO bandwidth as I/O performance optimization indi-
cators and used runtime as a metric for overall performance
optimization, not just for I/O.

IV. PROPOSED OPTIMIZATION METHOD
To optimize I/O in HPC scientific applications, two
approaches can generally be used.

The first involves direct modification of the program’s
implementation method, while the second focuses on
identifying performance-boosting parameters by changing
the hardware platform parameters and software internal
parameters of the HPC scientific application. Both methods
have limitations. The first method of directly modifying the
implementation of HPC scientific applications may not be
feasible for many users who are not developers. The second
method involves finding optimal performance parameters
by changing the hardware platform and internal software
parameters of HPC scientific applications, which may not
always be possible due to hardware and software constraints.
This may be impractical if the number of parameters is large
or if it takes a long time to complete multiple runs of the
program to find the optimal parameters.

In this paper, we propose a new cross-inference optimiza-
tion method that considers both the hardware platform and
internal parameters of the application program using machine
learning and benchmark tools to improve the performance
of Low GloSea6. Further details on this approach will be
discussed in the following section.

A. HARDWARE/SOFTWARE PARAMETER OPTIMIZATION
The proposed method comprises four steps (Fig. 8). First,
we used Darshan to collect performance data of LowGloSea6
and the benchmark tool based on the internal parameters
and hardware platform parameter settings. Second, we used
machine-learning techniques to find the benchmark parame-
ter set B with the closest relationship between the parameters
of Low GloSea6 and the benchmark tools. Third, we used a
machine-learning model trained on the relationship between
the benchmark parameter set B/hardware platform parameter
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FIGURE 8. Schematic for future research: Optimizing parameters using benchmarking tools.

FIGURE 9. Schematic methods for optimizing software parameters. (Used
image sources [11].)

settings and performance to determine the optimal settings of
the benchmark parameter set B using the hardware platform
parameters of the production or research environment.
Fourth, we used machine-learning techniques to convert the
optimal settings of benchmark parameter set B into the
optimal internal parameters of Low GloSea6.

However, this study employed a simple method for
performance optimization in the 2nd and 3rd steps without
using a benchmark tool. Further exploration of utilizing all
steps is reserved for future research. Benchmark tools are
typically used to extract hardware information for a specific
platform quickly, particularly for HPC applications such
as GloSea6, which require many computing resources and
have long execution times. However, because performance
prediction accuracy can decrease, this study proposes a 3-step
approach.

Figure 9 shows the new hardware/software parameter
optimization process, which comprises three steps. The first
step involves collecting performance data using Darshan
for different hardware platforms and Low GloSea6 internal
parameter settings. The second step involves training and
validating a machine-learning model using the collected
performance data. The third step involves identifying opti-
mal hardware platform parameters and corresponding Low
GloSea6 internal parameters for a new research environment.

TABLE 2. Low GloSea6 parameter.

This study utilized performance data that include the
internal parameters of Low GloSea6 and hardware platform
parameters, as well as I/O performance estimates and runtime
as performance metrics for both parameter sets. Table 2
summarizes the internal parameters of Low GloSea6.

The ‘‘ATMOS_NPROCX’’ and ‘‘TMOS_NPROCY’’ rep-
resent the number of CPU cores allocated to the X
and Y axes of the ATMOS model, respectively, while
‘‘NEMO_NPROCX’’ and ‘‘NEMO_NPROCY’’ represent
the number of CPU cores allocated to the X and Y axes
of the OCEAN model. Low GloSea6 assigns CPU cores to
each grid point of the Earth, divided into ‘‘X x Y’’ grid
units, as global numerical models like Low GloSea6 are
designed to perform calculations for predictions at each grid
point (Fig. 10). ‘‘XIOS_NPROC’’ represents the number
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TABLE 3. Low GloSea6 performance data.

of CPU cores assigned to the XML IO SERVER (XIOS)
created to manage the NetCDF output of the OCEAN model.
If ‘‘XIOS_NPROC’’ is set to 0, XIOS operates within the
OCEAN model without additional CPU core allocation. The
CPU cores used in Low GloSea6 must be less than or equal
to the CPU cores on the hardware platform, and this can be
calculated as in Equation (1).

CPUcore = ATMOS_NPROCX × ATMOS_NPROCY

+ NEMO_NPROCX × NEMO_NPROCY

+XIOS_NPROC (1)

‘‘GSFC_PP_REINIT_DAYS’’ and ‘‘GSFC_RESUB_DAYS’’
are dump files for restart, which means the number of days
for the production cycle of weather forecasting data, and these
two parameters should be set to the same number of days.

Owing to diverse hardware platform parameters, consid-
ering all of them is challenging. Therefore, we selected
parameters that are closely related to computing and I/O
performance. This study focused on the hardware platform
parameters of node number, file system block size, switch
network speed, and disk I/O speed, which have been consid-
ered in several studies [14], [15], aimed at improving system
software to enhance I/O performance in HPC environments.
These parameters were named ‘‘Node’’ and ‘‘Block size,’’
‘‘Switch data transfer speed,’’ and ‘‘Disk IO speed.’’

Table 3 summarizes the descriptions and limitations for all
parameters and I/O performance metrics. First, we describe
the internal parameters of Low GloSea6. The global data

FIGURE 10. Relationship between low GloSea6 and internal para-meters.

used in Low GloSea6 are divided into even grids (Fig. 10),
and to efficiently use CPU cores without leaving any idle,
the number of CPU cores on the X and Y axes must
be divided into even numbers. As the initial field has a
larger X-axis than the Y-axis, more CPU cores should be
used for X-axis calculations of the ATMOS and OCEAN
models. If no spare CPU core exists on the hardware
platform, XIOS operates inside the OCEAN model by
allocating 0. Conversely, if a surplus exists, it allocates to
the ATMOS and OCEAN models and assigns the remaining
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FIGURE 11. Ensemble.

FIGURE 12. Bagging.

FIGURE 13. Bagging vs gradient boosting.

CPU cores to XIOS. Given that Low GloSea6 currently does
not support model restart, ‘‘GSFC_PP_REINIT_DAYS’’
and ‘‘GSFC_RESUB_DAYS’’ produce prediction data once
according to the set cycle and then terminate. Therefore, the
two parameters in Low GloSea6 are utilized to set the desired
weather forecast days, and in this study, we will refer to these
two parameters collectively as ‘‘Days.’’

The hardware platform parameter ‘‘Node’’ refers to the
total number of nodes in the hardware platform. ‘‘Block
size’’ is the ‘‘wsize/rsize’’ value set through the network file
system (NFS), and ‘‘Switch data transfer speed’’ refers to the
network switch speed. ‘‘Disk IO speed_write’’ and ‘‘Disk IO
speed_read’’ are the write and read speeds of the hardware
platform memory, respectively.

This study used several I/O performancemetrics, including
POSIX Bandwidth (MiB/s) and STDIO Bandwidth (MiB/s)
measured with Darshan, as well as runtime (sec). The

performance data comprised three datasets, each containing
10 parameters, based on three I/O performance metrics. Each
dataset contained 549 data points.

The software/hardware parameters in Table 3 are adjusted
to collect performance data on the testbed, which is used
to train a machine-learning model. Subsequently, the trained
model can predict software/hardware parameter configura-
tions outside the collected performance data.

B. MACHINE LEARNING MODEL
In this section, we describe the machine-learning techniques
and models to be used for optimization. We aim to predict
the I/O performance metrics of Low GloSea6 operating in
a production or research environment using the collected
performance data for I/O optimization. This study utilized
the R package [16] to build multiple linear regression (MLR)
models, as well as decision tree-based random forest and
gradient boosting models.

MLR is a method for predicting the dependent variable
through independent variables, assuming a linear relationship
between them. Random forest and gradient boosting are
ensemble models based on decision trees. The ensemble is
a technique used to compensate for the instability of decision
trees by combining weak models to create a strong model
(Fig. 11).
Bagging is a model that uses bootstrap samples of the

data (Fig. 12) to create weak models, combines them using
the average of the predicted values, and performs the final
prediction. Random forest is similar to bagging in that it uses
bootstrap samples but randomly selects split variables during
the formation of weak models.

The gradient boosting model combines weak models
into strong models using weights and adds a sequential
characteristic to the traditional bagging method. As shown
in Fig. 13, the first model makes a prediction, and based on
that prediction, weights are assigned to the data, which then
influence the next model.

The hyperparameter settings for each model used in this
study are as follows: TheMLRmodel lacks hyperparameters,
as it is a characteristic of linear regression estimation. The
random forest model has a hyperparameter called ‘‘mtry,’’
which determines the number of features used for each tree.
Following Genuer et al. [17], setting the ‘‘mtry’’ hyperpa-
rameter to the value of ‘‘the number of independent variables
divided by 3’’ is expected to result in superior performance
regarding RMSE for low-dimensional regression prediction.
Therefore, we set the ‘‘mtry’’ value to 3. This value was
obtained by dividing the number of the independent variables
we used, which is 10, by 3 and rounding the first decimal
place. The ‘‘interaction.depth’’ of the gradient boosting
model is a hyperparameter that controls the depth of each tree.
According to Hastie et al. [18], values of ‘‘interaction.depth’’
exceeding 3 are not recommended due to the risk of
overfitting. However, if complex relationship modeling is
needed, 6 is expected to yield better results. Hence, we tested
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TABLE 4. Computer cluster and client local PC SPEC.

FIGURE 14. The overall composition of the low GloSea6 testbed. (Used image sources [11].)

the range of 1, 2, 3, and 6 for ‘‘interaction.depth.’’ Default
values [19], [20] were used for the random forest and
gradient boosting models for hyperparameters that were not
mentioned.

V. EXPERIMENTAL EVALUATION
Setting up a client local PC for the ROSE/CYLC primary
role and computer cluster system for the ROSE/CYLC
secondary role is necessary for the community version of Low
GloSea6, which is not for supercomputers. We designated
Clusters 1, 2, and 3 for the experimental computer cluster.

Clusters 1 and 2 were clusters installed at Hongik Univer-
sity, while Cluster 3 was installed at Changwon National
University. Table 4 lists the detailed hardware specifications
of Hongik University. Fig. 14 shows the configured exper-
imental environment, and Cluster 3 will be introduced in
detail in the next section.We established SVNwithin Clusters
1 and 2 to minimize the time required in the compilation
phase.

The experimental plan involved collecting performance
data by varying the hardware platform parameters of
Clusters 1 and 2 and the internal parameters of Low
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FIGURE 15. 5-round measurement cumulative bar graph before and after
darshan application.

TABLE 5. 5-round low GloSea6 runtime measurements and average
values.

GloSea6. Subsequently, the collected performance data and
machine-learning techniques were utilized to predict the
optimal internal parameter values of Low GloSea6 for the
hardware platform parameters of Cluster 3. Finally, the pre-
dicted internal parameter values were applied to Low
GloSea6 in Cluster 3 to complete the optimization and
analyze the results.

With this rough outline of the overall experimental plan,
we will now describe the experiment’s details.

A. EXPERIMENTAL ENVIRONMENT VALIDATION
First, we verified the reliability of the experiment by
measuring the overhead of the profiling tool (Darshan)
to ensure that it did not significantly affect the exper-
iment. We ran five Low GloSea6 instances with the
same parameters before and after applying Darshan and
measured the runtime of the ‘‘gsfc_model_m1_s01’’ step,
where the ATMOS and OCEAN models are executed.
Figure 15 shows the cumulative bar graph for the five
measurements, and Table 5 presents the individual runtimes
and their averages. While a significant difference in the
cumulative bar graphwas unobserved, an overhead of approx-
imately four seconds was observed in the runtime average.
Considering that the average runtime was approximately
870 seconds, we confirmed that Darshan’s overhead was
negligible.

B. OPTIMIZING GloSea6/HARDWARE PLATFORM
PARAMETERS
The proposed research environment hardware/Low GloSea6
optimization process in this study comprises three steps,
which are explained below.

1) STEP1: DATA COLLECTION
Run themodel by changing the hardware platform parameters
and LowGloSea6 internal parameters on Clusters 1 and 2 and
collect performance data using Darshan.

Table 6 summarizes all the parameter settings. As the
runtime and I/O amount are linearly proportional to the
prediction criterion ‘‘Days,’’ we fixed the prediction criterion
to 1 day for quick data collection. With 32 cores in the
experimental testbed, the X-axis CPU core for ATMOS and
OCEAN models can be 2, 4, or 6, while the Y-axis can
be 2 or 4, so we varied the number of cores within these
ranges for performance data collection. XIOS_NPROC was
set from 0, 1, 2, 3, and 4, considering CPU core resource
usage during model execution.

The hardware platform parameter ‘‘Node’’ was configured
with a maximum of 2, and the ‘‘Block size’’ was configured
with values of 32768 and 65536 bytes, which are typical
settings for NFS, as well as the default value of 524288 bytes
in our experimental environment. The ‘‘Switch data transfer
speed’’ has settings of 100 Mbps, 1 Gbps, and 10 Gbps due
to the configuration limit of the Cisco Nexus 3000 series
switch used in our experiment. The ‘‘Disk IO speed’’ was
configured using Linux control groups (Cgroups) based on
TEKIE’s September 2022 survey [21]. The parameter values
are the average read/write speed of Data Description (dd)
commands measured 100 times on each of the Clusters 1 and
2 hardware platforms, as well as the average read/write speed
of TEKIE’s SSD and HDD. The write speed of the SSD was
set to the speed in the experimental environment because it
exceeded the average speed in our research environment.

2) STEP2: VALIDATION AND MODEL LEARNING
The collected performance data were then subjected to
validation, followed by model training and validation.

A primary concern during data validation is multicollinear-
ity, which is a common problem that arises due to a
high correlation between independent variables (parameters),
leading to distorted analysis results. Referring to Fig. 16,
summarizing previous research by Rea and Parker [22], a cor-
relation coefficient of 0.6 or higher indicates a correlation
between each parameter. Therefore, we selected four param-
eters suspected of multicollinearity from the performance
data. However, a correlation does not necessarily imply
multicollinearity, as it simply means that each parameter
tends to move together.

Therefore, we calculated the variance inflation factor
(VIF) among four parameters. VIF measures the extent
to which the variance or standard error of the estimated
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FIGURE 16. Describing correlation coefficients.

TABLE 6. Low GloSea6 performance data.

FIGURE 17. Best subset selection result of runtime data.

TABLE 7. VIF for each parameter.

regression coefficient is distorted by multicollinearity and is
calculated using Equation (2). R2 represents the coefficient

FIGURE 18. Best subset selection result of POSIX bandwidth data.

of determination and can be calculated as the reciprocal of
tolerance.

VIFi =
1

1 − R2i
=

1
tolerance

(2)

If the VIF exceeds 10, it is considered multicollinearity [23].
For ease of analysis, we summarized the VIF values of
the parameters suspected of multicollinearity in Table 7.
As all parameter VIF values are less than 10, we confirmed
that the performance data of Low GloSea6 did not exhibit
multicollinearity.
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TABLE 8. Measuring RMSE of machine learning models according to hyperparameter settings.

FIGURE 19. Best subset selection result of STDIO bandwidth data.

TABLE 9. Changwon national university parameter.

We then used best subset selection, a technique that
fits a regression model for each subset of the parameters

FIGURE 20. Applying to leave one out cross validation. (Used image
sources [11].)

and identifies the optimal subset, to identify significant
parameters in the performance data. Figures 17–19 show
the results for each performance data. The black portion of
the graph indicates that the corresponding variable on the
X-axis was included in the regression model, and the Y-axis
represents the model’s goodness of fit based on the included
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FIGURE 21. Overall composition of Changwon national university Low GloSea6 testbed. (Used image sources [11].)

variables. The higher the position on the Y-axis, the better
the goodness of fit, and the goodness of fit evaluation metric,
‘‘adjr2,’’ is calculated using Equation (3).

adjr2 = 1 −
n− 1

n− p− 1
×

(
1 − R2

)
(3)

where n represents the sample size, p denotes the number of
parameters, and R2 is the coefficient of determination.
Figures 17–19 show the best subset selection results when

the dependent variables are runtime, POSIX bandwidth,
and STDIO bandwidth, respectively. When runtime was the
dependent variable, using all parameters produced the best-fit
model, while excluding three parameters (Node, Blocksize,
and atmosX [ATMOS_NPROCX]) yielded the best-fit model
when POSIX bandwidth was the dependent variable. Exclud-
ing three parameters (Disk IO speed_write/read, Blocksize)
resulted in the best-fit model when STDIO bandwidth was
the dependent variable. Based on these results, we trained
the model using the most suitable parameter combinations.
With this, we completed the validation and adjustment of the
data and proceeded with the validation and adjustment of the
model.

As the number of performance data used for Low GloSea6
in this study is insufficient for model training, validating the
model’s effectiveness is imperative. To address this issue,
we used leave-one-out cross-validation (LOOCV). LOOCV
is a method that sets one of the n data as the test data and the
other n−1 data as the training data, repeating the process n
times and estimating the error by averaging the mean square
error (MSE) of each model. In this study, we used RMSE
instead of MSE for ease of analysis, and the LOOCV results
of each model are shown in Fig. 20. In particular, the gradient
boosting and random forest models used hyperparameter
settings, with the smallest RMSE measured in Table 8.

We calculated the variability by dividing the RMSE of
each model by the mean value of the dependent variable,

multiplying it by 100, and using this as an evaluation
metric. The average performance data value with runtime
as the dependent variable was 2289 sec. When comparing
the RMSE of the average value with those of the MLR,
random forest, and gradient boosting models, they showed
fluctuations of 22%, 10%, and 7%, respectively.

The average value of the performance data with the
dependent variable of the POSIX bandwidth was 1631MiB/s.
When compared to the average value, the RMSE values
of the MLR, random forest, and gradient boosting mod-
els showed high variability of 141%, 129%, and 97%,
respectively.

The average value of the performance data with the
dependent variable of the STDIO bandwidthwas 3060MiB/s.
When compared to the average value, the RMSE values of the
MLR, random forest, and gradient boosting models showed
variability of 46%, 35%, and 23%, respectively.

Finally, we excluded the MLR model with the highest
RMSE across all dependent variables in LOOCV and
proceeded to the next step using the random forest and
gradient boosting models with simple parameter tuning.

3) STEP3: PARAMETER PREDICTION AND OPTIMIZATION
In the final step, we optimized Low GloSea6, which operates
in new industrial and research environments. Specifically,
we optimized Low GloSea6 operating on Cluster 3 at
Changwon National University. The university’s research
environment comprised three nodes with 16 cores and
an InfiniBand speed of 100 Gbps, as shown in Fig. 21.
To optimize the system, we set the hardware platform
parameters to the values in Table 9 and input them into the
machine-learning model.

The optimization system implemented in this study con-
siders a 1-day prediction and takes into account the hardware
platform parameters, CPU cores, and XIOS_NPROC values
to limit the predicted values. Regarding the number of CPU
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FIGURE 22. Runtime’s predicted value versus actual value.

TABLE 10. Real/prediction runtime value according to parameter combination.

FIGURE 23. The I/O count of the model is set to the parameter value predicted by the gradient boosting.

cores, predictions are made for up to 48 cores based on
the Cluster 3 hardware platform. Considering the grid size
of the ATMOS and OCEAN models, the X-axis CPU core of
the model can be 2, 4, 6, or 8, and the Y-axis can be 2, 4, or 6.
Thus, parameter combination prediction is performed within
this range. XIOS_NPROC is a parameter whose support
is determined depending on the Low GloSea6 construction
option. Therefore, we also set the XIOS_NPROC parameter
value as input. In the case of Changwon University, the
XIOS_NPROC prediction value in this study only covers
0 because the university does not support this parameter.

Using the input Cluster 3 hardware platform param-
eters, we predicted the optimal internal parameters of
Low GloSea6 based on the dependent variables of run-
time, POSIX bandwidth, and STDIO bandwidth. First,
the prediction results when the dependent variable is
runtime are shown in Fig. 22 and Table 10. The graph’s
Y-axis represents the runtime of Low GloSea6 in sec-
onds, and the X-axis represents the internal parame-
ter settings of Low GloSea6. For example, ‘‘12_34’’
means ‘‘ATMOS_NPROCX = 1, ATMOS_NPROCY = 2,
NEMO_NPROCX = 3, NEMO_NPROCY = 4.’’ The blue
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FIGURE 24. Analysis of predictive results of parameter combination models.

line represents the actual runtime of Changwon National
University, while the gray and orange lines represent
the predicted runtime using random forest and gradient
boosting, respectively, sorted from slowest to fastest on
the left side of the graph. In particular, the parameter
combination with the fastest/slowest predicted runtime by
the random forest model is ‘‘64_42’/’22_22,’’ which is
highlighted in bold in Table 10, and ‘‘64_62’/’22_46’’ are
the parameter combinations with the fastest/slowest predicted
runtime by the gradient boosting model. The other parameter
combinations were randomly selected from the predicted
values.

The results were analyzed from two perspectives: error
rate, prediction application results, and research environment.
We calculated the percentage error between the predicted
model runtime using Equation (4) and the actual model
runtime to analyze the error rate.

percentage error =
|real − predict|

real
× 100 (4)

Figure 22 shows a similar trend between the actual and pre-
dicted values. On average, the random forest model’s predic-
tions outperformed the other models. However, as the number
of CPU cores used increased, the error rate of the gradient
boosting model decreased significantly, and for the optimal
parameter combinations predicted by eachmodel, the random

forest model showed an error rate of 76%, while the gradient
boosting model showed an error rate of 16%. While the
average error is important, this study primarily aims to obtain
the optimal parameter combination; thus, we adopted the
gradient boosting model as a suitable model for parameter
optimization.

The analysis of the application of predictions is as
follows: with reference to Fig. 22 graph, we directly applied
the parameter combinations with the slowest and fastest
runtime predicted by the gradient boosting model, ‘‘22_46’’
and ‘‘64_62,’’ respectively, to the research environment
at Changwon National University. We then compared the
Darshan profile data, as shown in Fig. 23. The graph
summarizes the total I/O operation count of the ATMOS
and OCEAN models for each parameter combination. The
Y-axis represents the number of I/O operations, while
the X-axis represents the type of I/O operation. A little
difference was confirmed in STDIO, but the number of
reads, writes, and seek operations in POSIX decreased
significantly, indicating that parameter optimization can
improve the model’s performance and reduce the system I/O
load. Additionally, we compared the prediction results of two
models using different parameter combinations. Using the
same input data, we conducted a 1-day forecast and compared
the final prediction outputs. The size of the final prediction
output files was identical for both models. To verify the
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TABLE 11. Real/prediction posix bandwidth value according to parameter combination.

TABLE 12. Real/prediction stdio bandwidth value according to parameter combination.

integrity of the data, we utilized NASA’s netCDF viewer,
Panoply5. The left side of Fig. 24 shows the prediction results
and partial data for the ‘‘22_46’’ parameter combination,
while the right side shows the prediction results and partial
data for the ‘‘64_62’’ parameter combination. Upon visual
inspection, no discernible difference was observed, and the
output data were identical, validating that our optimization
method does not compromise prediction accuracy.

The analysis from the research environment perspective
is as follows: the performance of the Changwon National
University research environment is generally better than
Cluster 1 and lower than Cluster 2. Therefore, Low GloSea6
can be effectively optimized for other research environments
with hardware platform parameter values that have not been
collected through the collection and learning of performance
data collected from both extreme ends.

Figure 25 and Table 11 present the prediction results
for the dependent variable of the POSIX bandwidth. The
Y-axis in Fig. 25 represents I/O bandwidth (MiB/s), while
the X-axis represents the internal parameter settings of Low
GloSea6. The values in Table 11 overlap considerably as
the ATMOS_NPROCX parameter was excluded through best
subset selection for models using POSIX bandwidth as the
dependent variable. For example, the ‘‘24_42’’ and ‘‘64_42’’
parameter combinations are treated identically in predicting
POSIX bandwidth. Due to the significant margin of error
and different trends observed in the predicted values for

FIGURE 25. POSIX bandwidth’s predicted value vs actual value.

POSIX bandwidth compared to the actual values, extracting
information from the graph alonewas challenging. Therefore,
we present a heatmap in Fig. 26 to identify the correlation
between Low GloSea6 internal parameters and POSIX
bandwidth. The predicted value heatmap shows that the cor-
relation coefficient between NEMO_NPROCX and POSIX
bandwidth is above 0.8, indicating a strong correlation.
Therefore, to improve POSIX bandwidth, we could predict
that the NEMO_NPROCX parameter must be increased,
which was validated by confirming the strong correlation
between NEMO_NPROCX and POSIX bandwidth in the
actual value heatmap. In summary, unlike the runtime pre-
diction results, predicting the optimal parameter combination
for the POSIX bandwidth may be challenging. However,
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FIGURE 26. POSIX bandwidth and Low GloSea6 internal parameter
correlation heatmap.

FIGURE 27. STDIO bandwidth’s predicted value vs actual value.

FIGURE 28. STDIO bandwidth and Low GloSea6 internal parameter
correlation heatmap.

the results can provide useful reference data for determining
which parameters to prioritize during optimization.

Furthermore, we present the prediction results for the
dependent variable of STDIO bandwidth in Fig. 27 and
Table 12. The Y-axis represents the I/O bandwidth (MiB/s),
and the X-axis represents the internal parameter settings of
Low GloSea6. Unlike the POSIX bandwidth, the STDIO
bandwidth uses all internal parameters of Low GloSea6.
However, no discernible trend was observed in the graph
and heatmap presented in Fig. 27 and Fig. 28, respectively,
indicating that optimization through STDIO bandwidth was
impossible.

In summary, using ‘‘I/O performance estimate’’ metrics,
such as POSIX bandwidth and STDIO bandwidth, as per-
formance indicators for I/O performance optimization may
help determine the importance of parameters in the initial
optimization or as validationmetrics after optimization. How-
ever, because the I/O bandwidth is an estimated value, it is
inappropriate for performance optimization and prediction.

Conversely, using runtime as a performancemetric for overall
performance optimization led to improved performance not
only in runtime but also in the I/O aspect. The prediction error
rate for runtime based on the optimal parameter combination
was 16%, which is a significant result.

VI. CONCLUSION AND FUTURE WORK
A machine learning-based approach for optimizing hard-
ware/software parameters of scientific applications was
demonstrated in this study. The weather forecast scientific
application Low GloSea6 was used as a target, and a
dataset containing the application’s internal parameters and
hardware platform parameters and performance data based
on the combination of these two parameters was constructed.
Before applying the machine-learning model, the dataset was
verified, and the validity of the regression model trained
with insufficient data was ensured through the LOOCV
technique. The optimal hardware platform parameters and
corresponding Low GloSea6 internal parameters were found
using the trained machine-learning model in a new research
environment and these values agreed with the actual param-
eter combinations. In particular, the predicted execution time
based on the parameter combination showed a 16% error
rate compared to the actual execution time, demonstrating
a meaningful result in predicting execution time. The
proposed optimization method can be applied to improve the
performance of other HPC scientific applications. Besides
weather and climate modeling, to name a few, there are
computational fluid dynamics (CFD) simulations, molec-
ular dynamics (MD) simulations, and quantum chemistry
calculations. Frequently, scientists who run such HPC
scientific applications used to get help from staff members
at supercomputing centers to optimize their applications, and
our optimization method will help this manual performance
optimization process expedited.

Two directions for future research are outlined in terms
of data. First, increasing the absolute amount of data is
necessary. In this study, the accurate prediction of execution
time was hindered owing to the omission of some hardware
platform parameters. Therefore, collecting additional hard-
ware/software parameters and I/O performance indicators
would improve model performance. Second, implementing
the benchmark-based cross-inference optimization method
proposed in this study’s initial algorithm would be benefi-
cial. This would accelerate data collection and enable the
collection of parameter values not collected in this study
through alternative parameters, thereby expanding the model
performance improvement and application range.
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