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ABSTRACT Event cameras, unlike traditional frame-based cameras, excel in detecting and reporting
changes in light intensity on a per-pixel basis. This unique technology offers numerous advantages, including
high temporal resolution, low latency, wide dynamic range, and reduced power consumption. These charac-
teristics make event cameras particularly well-suited for sensing applications such as monitoring drivers or
human behavior. This paper presents a feasibility study on the using a multitask neural network with event
cameras for real-time facial analytics. Our proposed network simultaneously estimates head pose, eye gaze,
and facial occlusions. Notably, the network is trained on synthetic event camera data, and its performance
is demonstrated and validated using real event data in real-time driving scenarios. To compensate for
global head motion, we introduce a novel event integration method capable of handling both short and
long-term temporal dependencies. The performance of our facial analytics method is quantitatively evaluated
in both controlled lab environments and unconstrained driving scenarios. The results demonstrate that useful
accuracy and computational speed is achieved by the proposed method to determining head pose and relative
eye-gaze direction. This shows that neuromorphic facial analytics can be realized in real-time and are well-
suited for edge/embedded computing deployments. While the improvement ratio in comparison to existing
literature may not be as favorable due to the unique event-based vision approach employed, it is crucial
to note that our research focuses specifically on event-based vision, which offers distinct advantages over
traditional RGB vision. Overall, this study contributes to the emerging field of event-based vision systems
and highlights the potential of multitask neural networks combined with event cameras for real-time sensing
of human subjects. These techniques can be applied in practical applications such as driver monitoring
systems, interactive human-computer systems and for human behavior analysis.

INDEX TERMS Event camera, neuromorphic sensing, driver monitoring system (DMS), head pose, eye
gaze, facial occlusion.

I. INTRODUCTION
Driver monitoring systems (DMS) have become an essen-
tial part of the next-generation automobiles due to the
primary cause of traffic accidents being driver error [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ines Domingues .

Driver monitoring systems can detect driver distraction, inat-
tention, and fatigue, and can help prevent accidents from
happening. In Europe, it is now mandatory for all new vehi-
cles to be equipped with DMS [2]. Moreover, as we progress
to higher levels of vehicle automation, understanding human
behavior becomes increasingly important [3], [5]. There are
several applications that can be beneficial for upcoming

76964
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-7298-9389
https://orcid.org/0000-0003-1670-4793
https://orcid.org/0000-0002-2334-7280


C. Ryan et al.: Real-Time Multi-Task Facial Analytics With Event Cameras

advanced DMS systems, including eye gaze estimation and
head pose estimation, which are important features for driver
inattention, distraction, and fatigue detection [5].

Traditionally, cameras that capture visible or near-infrared
(NIR) light are used for driver monitoring. However, these
cameras operate at a fixed frame rate, have lower tempo-
ral resolution, capture all unwanted information in a scene,
and have lower dynamic range or require additional lighting
sources. Therefore, event cameras are being considered for
advanced sensing paradigms in driver monitoring applica-
tions [6]. Event cameras generate a stream of asynchronous
and independent events, which adapt their sampling rate
to the scene dynamics, that is, motion. Event cameras are
particularly suited to human or driver monitoring applica-
tions where high temporal resolution, low latency, and high
dynamic range (140 dB) are required [6]. For example, eye
blink [7], [8], fast pupil [9] and potential collision analysis.

This paper proposes a proof of concept for a deep learning
approach to multi-task human facial analytics with event
cameras. The proposed approach focuses on accomplishing
the main tasks of driver monitoring, including eye gaze
estimation and head pose estimation, simultaneously. More-
over, the network is trained entirely with simulated, synthetic
event data [17], enabling us to train on non-event related,
large-scale datasets. Gaze, pose, and occlusions estimation
are considered core features of DMS [13], [16]. Traditional
neural networks are trained and optimized for a single task,
while driver monitoring systems consist of multiple and often
related tasks. Thus, this paper proposes a multi-task convolu-
tional neural network (CNN) to estimate head pose, eye gaze,
and facial occlusions simultaneously. In a multi-task learning
framework, a neural network is trained to predict multiple
related tasks and shares low-level feature maps between
complementary tasks. This has the advantages of improved
efficiency, performance, and natural regularization of shared
layers [15], [16]. Facial occlusions, such as masks or glasses,
may obstruct important facial features, or may require special
processing or attention. Therefore, it is often desirable to
identify such occlusions for downstream applications that
require knowledge of or can be hindered by such obstructions.
The proposed deep learning approach addresses these issues
by using event cameras and integrating them with AI-based
image pipelines, to further benefit advanced driver assistance
systems (ADAS) [10]. Moreover, event cameras are privacy-
preserving, which makes them attractive to industry and
consumers alike [11], [57].

Although event cameras offer several advantages, they
are not suited for the detection or analysis of stationary
objects [6]. In a driving setting, often the driver is a sta-
tionary object in a dynamic scene. Thus, this paper presents
an event integration method to handle short-term and long-
term periods of no motion. Specifically, a leaky time surface
is employed to overcome short-term effects [18]. In addi-
tion, a region of interest (ROI) event threshold for long-term
motionlessness is presented. This threshold determines the

waiting time between face detection and facial analysis infer-
ence and is a function of the number of incoming events
within the face region. It acts as an inference trigger enabling
the multi-task network to respond only to face motion.

The applicability of event cameras in human or driver
monitoring has not been extensively investigated in previous
research [8]. This paper presents a significant contribution by
providing a comprehensive proof-of-concept implementation
of a multi-task facial analysis network specifically designed
for event cameras. Note that certain components of this work
were originally documented in [29], and [30]. This paper
provides additional detail together with a comprehensive
evaluation of our framework including test and validation
on a dataset acquired with a recent model of event camera.
Further the paper demonstrates the feasibility of event-based
vision systems and highlight the potential of multitask neural
networks combined with event cameras for real-time sensing
of human subjects.

Key contributions of this paper are:

1) An innovative event-based multi-task facial analytics
framework designed to efficiently handle end-to-end
training and testing processes.

2) A set of experimental validations of this framework
with a focus on the tracking of head pose and eye-
gaze demonstrating its potential for real-time sensing
of human subjects.

3) The use of synthesized event-stream data from conven-
tional video datasets for training the network, and the
validation of the use of the data by testing it on real
event camera data.

4) Introduction of a novel algorithmic technique for
event stream data, combining leaky integration and
ROI motion thresholding to mitigate interference from
global subject motions.

The remainder of this paper is broken down into the fol-
lowing sections. Section II presents a review of the literature
related to event-based driver monitoring systems and conven-
tional multi-task learning. Section III describes the dataset
used in the study, including its distribution. Section IV out-
lines the methodology used in this research, which includes a
novel event representation, network architecture, and training
details. Section V covers the experiments and results obtained
in this study, including results based on training with the syn-
thetic event dataset, real event data, and performance compar-
isonwith other modalities and drivermonitoring applications.
Section VI has a brief discussion of the entire findings of the
paper. Finally, the paper concludes with a summary of the
findings and their implications in Section VII.

II. RELATED WORK
The event-based driver monitoring system and the multi-task
learning and facial analysis are the two developments that
this study primarily focuses on. The associated literature is
presented below.
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A. EVENT-BASED DRIVER MONITORING SYSTEM
Event cameras offer several significant advantages over con-
ventional cameras, including high temporal resolution, high
dynamic range, low power consumption [6], [49]. They have
been applied to applications such as robotics and surveil-
lance. Chen et al. [20] provide a comprehensive overview of
event cameras and their applicability to autonomous driving
tasks. Moreover, several other studies have also explored
the effectiveness of event cameras for autonomous driv-
ing [19], [21], [22], [23]. To date, limited attention has been
given to the applicability of event cameras for human moni-
toring and facial analysis.

Ryan et al. [8] present a face and eye detection recurrent
CNN and blink detection algorithm for driver monitoring pur-
poses. Several other studies employ non-deep-learning meth-
ods. Lenz et al. [7] also present a face detector and tracking
using the temporal signature of an eye blink. Liu et al. [24]
present another approach to efficiently detect faces with event
cameras. The authors use event 3D tensors with a lightweight
translation-invariant backbone to extract multi-scale features.
Authors in [25] proposed a face identity recognition with
event cameras. Authors in [26], present real-time gaze track-
ing with eye segmentation. To more accurately measure
the eye gaze, authors emulate events using near-eye cam-
era frames. Chen et al. [27] detect eye and mouth motions
from events and extract drowsiness-related features for driver
monitoring. Moreover, [31] also describe neurobiometric
method, a bio-metric authentication system using event based
eye blinks. Anastasios et al. [9] present a hybrid event and
frame-based method of tracking eyes. Authors in [28], sug-
gest an event-based dataset and benchmark study on three
different components of distracted driving: driver fatigue,
visual attention, and hand movements. There have been few
studies which explore the micro-movements of the driver
including the expression [11] and driver distraction [24].
Moreover, the latest developments in event-based vision have
the potential to enhance advanced driver assistance systems
and driver monitoring systems. These advancements encom-
pass various areas such as person detection [50], human
pose estimation [51], event-based facial expression recog-
nition [52]. This research draws inspiration from various
aspects explored in previous studies [29], [30]. It delves
into several areas, such as neuromorphic algorithms, object
detection using event cameras, and techniques for generat-
ing textural images based on event count decay factor and
net polarity.

B. FACIAL ANALYSIS AND MULTI-TASK LEARNING
Previous research has explored the integration of real-time
driver monitoring systems. For instance, in [54], the authors
introduced a real-time driver drowsiness detection approach.
Additionally, several other studies have investigated methods
that could prove beneficial for Driver Monitoring Systems
(DMS), YOLO-face [55], and an interaction system designed
to measure human attention levels [56].

Multi-task learning is used to train multiple related tasks
in a unified framework with the aim of improving learn-
ing efficiency, reducing memory and inference time and
improving performance relative to individual task-specific
networks [32], [33]. Several studies have adopted multi-task
learning for facial analysis in recent years. Hu et al. [34]
address the problem of subtle expression recognition by train-
ing a multi-task network to estimate emotion and facial land-
marks. The rationale is that subtle expression changes often
coincide with facial landmark movements. Ranjan et al. [35]
propose HyperFace, a multi-task CNN trained for five facial
analysis tasks. The authors present two novel CNNs with
truncated AlexNet and ResNet as backbones. Recently,
Yang et al. [16] proposed a multi-task (MT) network for the
pose, gaze and landmark estimation in a driver monitoring
setting. While multi-task learning is widely employed in the
literature it has not yet been applied to asynchronous imaging
techniques such as event camera systems. One of our core
contributions is to adapt the multi-task approach to enable
a multi-task training framework to be realized with event
camera vision systems.

III. DATASETS
A. TRAINING DATA
A major impediment to event-based machine learning
research is the lack of labelled public datasets. However,
recent developments in synthetic event simulators have
unlocked the use of datasets collected from alternative, frame-
based cameras. This paper utilizes V2E, an open-source
event simulator [17] to generate synthetic event streams from
fixed labelled frames. The simulator calculates log-intensity
changes beyond a predefined contrast threshold between suc-
cessive frames to generate events [17]. V2E also models
realistic temporal and leak noise. A large near-infrared (NIR)
dataset was collected with an OptiTrack motion sensor
to annotate head pose, eye gaze and facial occlusions.
The data was acquired in a laboratory environment on a
driving simulator. These NIR sequences are converted to
event streams using the above-mentioned event simulator.
The locally acquired NIR dataset consists of approximately
21,000 training images, 4,600 validation images and 2,800
testing images with a resolution of 224×224. Subject ages
span from 18 to 55. Occlusions comprise eye (i.e., glasses)
and mouth (i.e., mask) occlusions. Overall, approximately
50% of the dataset contains eye occlusions and 30% contains
mouth occlusions. Figure 1 shows the distribution of head
pose and eye gaze for yaw and pitch angles in our training
dataset. The test dataset exhibits a similar distribution.

Each image is first subjected to a series of random aug-
mentation and transformations that simulate a video sequence
with homographic camera motion with six degrees of free-
dom (6DOF).We simultaneously change the annotation using
the same transformation matrix for each image. As a conse-
quence, a video sequence with frame-by-frame annotations
is produced. Further as mentioned above we use V2E to
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FIGURE 1. Distribution of head pose and eye gaze labels along
x and y axes.

simulate events from these generated sequences. Inspired
by [8] we adopt a similar approach to train our proposed CNN
network. With the help of this effective approach, we train
CNNs to work in event space without the use of intermediary
intensity representations. This approach enables the network
to effectively generalize to real-time cameras.

The contrast threshold (CT) is a central parameter for event
cameras. It determines whether the change in light intensity
is large enough to generate an event. This parameter was
tuned in event simulators to simulate NIR frames. Contrast
thresholds are typically samples from N (0.18, 0.03) [37].
Others have found improved generalization capabilities with
wider-ranging thresholds between 0.2 and 1.5 [38], [39].
However, these results are all based on RGB images, and
this paper simulates events from near-infrared data. This
yields unique challenges. We found that intensity changes in
the infrared spectrum require a significantly lower contrast
threshold due to the naturally lower brightness levels. As a
result, we sample CT from N (0.12, 0.03).

B. TESTING DATA
The performance of the multi-task driver monitoring network
is tested quantitatively on both synthetic and real events. First,
performance is reported on both validation and test event-
simulated datasets. Second, the performance of the head pose
is tested with event data captured from a high-resolution
Prophesee event camera with a resolution of 1280× 720 pix-
els. The data acquisition setup consisted of 5 subjects who
were instructed to drive in a driving simulator. The data was
collected with informed consent. Samples from each acquisi-
tion were taken for testing purposes. Head pose annotations
were collected continuously using an OptiTrack motion sen-
sor system. Lastly, qualitative results are demonstrated in
an unconstrained driver monitoring environment (see supple-
mentary material for video).

IV. METHODOLOGY
This section details the proposed methods used to con-
struct the human/driver monitoring and facial analysis system
and is split into 4 subsections: A) The formulation of the
event-based representation supporting short-and long-term
periods of no motion or inactivity, B) The design of the

multi-task CNN architecture for the head pose, eye gaze and
occlusion detection, C) Facial analytic inference with face
and eye detection networks: a two-network approach and D)
Details surrounding network training and inference.

A. EVENT REPRESENTATION
Event cameras capture light intensity changes caused mostly
by moving objects. As a result, they are particularly suited
to the detection, tracking and analysis of moving objects.
However, they are not suited to recognizing slow-moving or
static objects and the appearance of an object is highly depen-
dent on the relative motion [6]. To leverage event cameras
as standalone human monitoring systems, methods to handle
stationary or static human operators are needed. Limited
attention has been given to this problem. Zanardi et al. [40]
point out that an object is only detectable in RGB and event
domains with motion. Maqueda et al. [21] experienced this
problem and removed data collected from a vehicle with
speeds under 20km/h.

FIGURE 2. Comparison of leaky time surface with and without the ROI
inference trigger.

Inspired by [29], and [30], two factors contribute to this
phenomenon: 1) the absence of motion in the ROI and 2) the
faster motion of other irrelevant objects. This paper proposes
a combination of leaky time surface and ROI-based inference
triggering to handle short and long-term periods of stationar-
ity. Figure 2 below demonstrates the results of the proposed
method.
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FIGURE 3. Process pipeline for mapping events to image space and processing with the proposed neural networks.

In our method, we utilize time surfaces to process events in
the neural network, as proposed in [6]. Time surfaces are used
to retain short-term memory of recent events and are con-
structed by recording the timestamps of the most recent event
in each pixel, with the polarities of each event considered
separately. Larger intensity values in the time surface reflect
more recent motion at that pixel location [6]. An exponential
leaky time surface (ETS) is used, which emphasizes recent
events over past events [6]. The leaky time surface is updated
incrementally with the associated polarity of the recorded
event at the corresponding pixel, and it decays over time
based on a predefined factor that corresponds to the time
elapsed between the most recent and previous events. In this
way, the time surface holds a memory of recent events that
are decayed as a function of time [18], [41]:

ETSi(x, y, t) = Pi(x, y).e
Ti(x,y)−t

τ (1)

where x, y, t represent the x, y coordinates and timestamp of
event i. Ti is the time surface that maps the time of the previ-
ous andmost recent events to the pixel locationPi. As a result,
the pixel value is decayed more if the time difference between
the current and previous event is larger i.e., as Ti(x, y) − t
approaches -τ . τ is set to 100ms in this paper. According
to figure 3, if the number of event samples greater than n,
then the associated events are taken into account. The n is
assumed for the sake of this study to be 20k inside the face
region.

The leaky time surface acts as a form of feature map,
encoding temporal information from events into intensity
values that represent the recency of motion at different pixel
locations. It is then used as input to the face detection net-
work, serving as a representation of the motion information
in the ROI for face detection. The ROI is determined based on
the inference triggering mechanism that combines the leaky
time surface and ROI-based threshold. The face detection net-
work performs face detection based on the encoded temporal
information from the time surface. An ROI inference trigger
is presented to overcome some limitations of the leaky time
surface, which preserves information over shorter time peri-
ods limited by the parameter τ . To account for longer periods
of absent object motion, an ROI-based threshold is proposed

as a method to trigger the next instance of detection and
face analysis based on apparent changes to the human opera-
tors’ state. By combining leaky time surfaces and ROI-based
inference triggering, the proposed method effectively handles
the disproportionate motion between the object of interest
(e.g., the face) and the background. It captures and repre-
sents the motion information specific to the ROI, enabling
accurate detection and analysis even in scenarios where the
background exhibits faster or differentmotion patterns. Faster
motion generates more events, and thus the number of events
is proportional to velocity. Therefore, this paper adopts an
inference trigger based on the number of incoming events
within the ROI, reflecting apparent changes to the state of
the human operator due to movement. The trigger ensures a
minimum number of face events before further facial analy-
sis. Figure 2 illustrates the comparison between leaky time
surface (LTS) with and without the ROI inference trigger.
The figure showcases the impact of the ROI trigger on the
recognition of facial features using n event samples. The
ROI trigger, when applied to the face areas, enhances the
LTS model’s ability to accurately identify and analyze facial
features.

The method establishes a waiting time between the next
instance of detection and facial analysis. Similar to [42],
a threshold is set as a number of incoming events pro-
portional to the size of the ROI set to µ × heightroi ×
widthroi. µ is set to 0.10 in our experiments. This both
increases efficiency (only perform inference when the driver
moves) and maintains performance (network input is not
entirely sparse). In [42], and [43], a long-term object track-
ing framework is proposed. A key parameter defined in
their method is the ‘‘waiting time’’ between two instances
of classification. Inspired by [42], this paper adopts an
ROI-based event threshold to determine the waiting time
between the next instance of detection and facial analy-
sis. In [42], and [43], manual identification of the ROI is
required. A local sliding window method is then applied to
the small ROI. Classification is performed on each window
given enough incoming events. Unlike [42], the method in
this paper determines the waiting time for both face detection
and facial analysis together. This improves detection at the
next phase and the performance of facial analytics. Moreover,
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this method does not require initial manual initialization.
This paper extends the method originally proposed in [42],
and [43] to determine human movements and trigger the next
instance of facial analysis and object detection.

The processing pipeline can be seen in Figure 3. In this
figure it can be observed, the block contains event streams
generated from NIR images using the V2E method. These
event streams are then fed into a series of processing steps that
aim to extract useful information from the data. Specifically,
we first pass the event streams through an ROI threshold
trigger, which identifies ROI in the images. The resulting
output is then fed into a Leaky integrator, which smooths
the event stream to reduce noise and enhance the signal. The
ROI-based events are utilized as inputs to the leaky inte-
grator. This component processes the incoming events over
time and generates the leaky time-surface representation. The
leaky integrator incorporates the new events into the existing
representation while exponentially decaying the impact of
past events. Next, a face/eye detector is applied to identify
the face and eye regions within the images. Finally, we pro-
pose a novel multi-task network that utilizes the identified
facial regions to perform head pose estimation, eye gaze esti-
mation, and facial occlusion detection. This comprehensive
approach allows us to extract a wealth of information from
the event streams, providing insights into the subject’s facial
expressions, eye movements, and head orientation. The use of
event-based data and the proposed multi-task network have
significant implications for facial analytics. By leveraging
event streams generated from NIR images, we can capture
fine-grained changes in the image data, resulting in highly
accurate and efficient facial analysis. The multi-task network
provides a robust and versatile framework for performing
multiple tasks simultaneously, enabling us to extract more
information from the data than traditional methods. Overall,
this project represents a significant step forward in the field
of facial analytics and has the potential to revolutionize how
we understand and analyze human behavior.

B. NETWORK ARCHITECTURE
The proposed system, inspired by [8] and [15], is a two-stage
framework consisting of two CNN. The first CNN locates
and tracks the face and eyes, while the second CNN estimates
head pose, eye gaze, and occlusions in a multi-task learning
framework.

1) FACE AND EYE DETECTION
In this research, the authors adopted a novel face and eye
detection network developed by Ryan et al. [8]. This network
is used to identify and track faces and eyes, which are then
used as ROI for further analysis. The network architecture
proposed in [8] is specifically designed for driver monitoring
and has been trained using theHelenRGB-based dataset. This
dataset was collected in the wild, unlike the authors’ dataset,
which was collected in a lab setting. To simulate near-infrared
(NIR) images, the authors used V2E. The [8] network is a
recurrent convolutional neural network (RCNN) that utilizes

a modified version of YOLOv3-tiny, a state-of-the-art object
detection algorithm. It also has a fully convolutional gated
recurrent unit that maintains temporal memory about the
location of the face and eyes. This feature allows for accurate
face detection even when there is limited face information
available. During training, the authors used an augmentation
technique to ensure that the network canmaintain information
during periods of prolonged driver stillness. During infer-
ence, the input size to the network is 512×288, based on a
down-sampled input from the same Prophesee (1280×720)
camera used in this study. The use of this network is similar
to how the face detector library works, where it delivers face
bounding boxes that are used to crop the face regions. These
face crops are then used as inputs to the multi-task network
for facial analysis in the next stage. To gain further insights
into the architecture and training of the network mentioned
in [8], readers are encouraged to refer the original paper. Our
work is based on this research, and the original paper provides
comprehensive details on the subject.

2) FACIAL ANALYSIS
The facial analysis network proposed in this paper is a
multi-task CNN that is designed to detect head pose angles,
eye gaze angles, and face occlusions. This is a significant
improvement over using a single network for each task,
as multi-task networks can share feature representations in
lower layers, leading to improved efficiency, computational
cost, and performance. Its capabilities render it an influen-
tial instrument for real-time applications, particularly when
integrated into the onboard sensor suite of advanced driver
assistance systems.

The proposed network architecture, shown in Figure 4,
consists of a series of shared parameters and individual task-
specific layers. The input to the network is a face crop
with a resolution of 224×224. The outputs of the fully con-
nected layers differ per task, with only two columns for
gaze (yaw, pitch) and occlusions (eyes, mouth). Each block
in Figure 4 displays the type of layer, kernel size, number
of out-feature maps, and stride. A Leaky-Relu activation
function is used at each convolutional layer. A stride of 1 is
assumed if not explicitly shown. The first 5 layers are shared
among all tasks, shown in grey, with a skip connection at
layers 3 to 5, and other skip connections represent concate-
nation. The proposed network is based on the All-in-One
facial analysis network proposed in [15], but it differs in
several key areas. Smaller kernel sizes are used in the early
layers to capture smaller, more complex features such as
pupil information. Task-specific convolutional layers are also
added, and less fully connected layers are used for each task.
The authors of the paper split tasks into subject-dependent
and subject-independent. Layers 1, 3, and 5 are utilized for
subject-independent tasks [19], [35]. Similarly, these layers
are combined for pose and occlusion detection, as these tasks
are strongly related. The existence of occlusions can be used
to better estimate pose, and gaze estimation requires more
detailed features of pupils. The extraction of pose features in
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FIGURE 4. Multi-Task Network Architecture. Left: Overall Architecture. Top-Right: Structure for each specific task.

the shared layers supports improved eye gaze estimates given
the relationship between these tasks.

Multi-task learning is a popular area of research inmachine
learning, where multiple related tasks are learned simultane-
ously by sharing parameters and representations across them.
It has been shown to improve the performance of individual
tasks and reduce training time and computational cost. In the
context of facial analysis, multi-task networks have been used
to detect facial expressions, age, gender, and other attributes,
in addition to the tasks addressed in this paper. The pro-
posed network has several potential applications, especially
in the field of advanced driver assistance systems. For exam-
ple, it can be used to detect driver distraction, drowsiness,
or impairment by analyzing head pose and gaze angles. It can
also be used for face recognition, which can enhance the secu-
rity of the vehicle and prevent unauthorized access.Moreover,
it can be applied to the field of human-computer interac-
tion, such as in gaming, virtual reality, or teleconferencing,
where accurate gaze estimation is critical for user experience.
Moreover, the facial analysis network proposed in this paper
is a multi-task CNN that is designed to detect head pose
angles, eye gaze angles, and face occlusions simultaneously.
It has several advantages over using a single network for
each task, including improved efficiency, computational cost,
and performance. The proposed network has several poten-
tial applications in the field of advanced driver assistance
systems, human-computer interaction, and other areas where
facial analysis is critical.

C. TWO-NETWORK APPROACH FOR FACIAL ANALYTIC
INFERENCE
Algorithm 1 presents a pseudo code representation of the
methodology used for multi-task facial analytic inference.
This pseudo code outlines the step-by-step process employed
in the inference phase, offering a clear and concise depiction
of the methodology’s implementation. The provided pseudo
code outlines the methodology for multi-task facial analytic
inference using two networks. The first network focuses on

Algorithm 1Multi-Task Facial Analytics Inference
Initialize Leaky_int← LeakyIntegrator()
Initialize time_surface← Pi(x, y).e

Ti(x,y)−t
τ

Initialize event_window_iterator←
FIXEDSIZEEVENTREADER(coords) or
FIXEDDURATIONEVENTREADER(duration) or
FIXEDSIZEROIREADER(coords) eye_xc, eye_yc ← []
missing_face← 0
for events in event_window_iterator do

time_surface_grid← TIME_SURFACE(events)
input← LEAKY_INT(time_surface_grid)
# Model Detect for Face & Eye Coordinates
output_det← MODEL_DETECT(input)
face_coords, eye ← non_max_suppression

(output_det)
if face_coords is None then

return missing_face += 1
if missing_face > 0 then

break
end if

else
continue

end if
# Multi-task Facial Analytics (AIO)
NEW_INPUT ← extract_events_within(face_coords,

eye)
OUTPUT_AIO← MODEL_AIO(NEW_INPUT)
yaw, pitch, roll, eye_xc, eye_yc, occl← OUTPUT_AIO

end for

face and eye detection. It starts by initializing a LeakyIntegra-
tor and defines an event window iterator based on fixed-size
or fixed-duration or ROI based events. The code then iterates
over the event windows, creating a time surface grid and
passing it through the LeakyIntegrator. The resulting input is
fed into the face and eye detection model, and non-maximum
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suppression is applied to obtain the coordinates of detected
faces and eyes. The second network, referred to as AIO
(All-In-One), handles tasks such as pose estimation, gaze
tracking, and occlusion detection. The input to this network
consists of events within the regions defined by the face
and eye coordinates obtained from the previous step. The
AIOmodel processes this input, producing the corresponding
outputs. Throughout the process, the code tracks and stores
eye center points for visualization, and also smooths the out-
puts of the AIO network for better visualization. It includes
visualizations of face crops and displays the outputs, such as
head pose, eye gaze direction, and occlusion classification.
In summary, this pseudo code represents the implementation
of a multi-task facial analytic inference system using two net-
works. The first network focuses on face and eye detection,
while the second network performs pose estimation, gaze
tracking, and occlusion detection. The code includes vari-
ous steps for data preprocessing, network inference, output
tracking, and visualization to provide comprehensive facial
analytic results.

D. TRAINING DETAILS
The multi-task network was trained with pre-made events
from NIR frames (approximately 21,000 images and vali-
dated with 4,600 images and training with 2,800 images). The
network was implemented with PyTorch. An ADAM opti-
mizer was used with a learning rate of 3× 10−3 reduced by a
factor of 0.8 every 20 epochs for 120 epochs. Weight decay of
3×10−2 was applied. Our multi-task training requires 3 indi-
vidual loss functions for each task. For eye gaze and head
pose, mean squared error (MSE) loss was used. Cross entropy
loss was used for occlusion classification. The network was
implemented on a Nvidia GeForce RTX 2070GPU. The aver-
age processing time for accumulated sub-sample of events
is 2.4 milliseconds for the multi-task network. Thus, the
multi-task network can operate at an equivalent event fram-
erate of over 400 fps. The actual required framerate naturally
fluctuates based on scene dynamics as per the output of the
event camera. The network contains 4.9 million parameters.
The average time for the face and eye detection network is
9 milliseconds, comprises of 12.8 million parameters and
contains approximately 5.82 GFLOPS.

V. EXPERIMENTS AND RESULTS
To evaluate the performance of the proposed multi-task net-
work and driver monitoring system, a series of tests were
conducted using various types of data. Firstly, synthetic event
datasets were used to assess the network’s ability to accu-
rately detect and classify different events, such as head pose
angles, eye gaze angles, and face occlusions. This allowed
the authors to validate the accuracy and robustness of the
system under controlled conditions. Secondly, real event data
from a high-resolution event camera was used to further
evaluate the network’s performance. This involved collecting
data from various driving scenarios, such as different light-
ing conditions and driving speeds, to assess how well the

network performs in real-world scenarios. Lastly, a qualita-
tive evaluation was conducted in a car setting to test the driver
monitoring system’s effectiveness in real-world scenarios.
This involved installing the system in a car and collecting data
while a human driver was driving the car. The collected data
was then evaluated to assess the accuracy and effectiveness
of the driver monitoring system.

Overall, these tests allowed the authors to thoroughly eval-
uate the proposed multi-task network and driver monitoring
system’s performance under a range of conditions. By using
synthetic and real event data, as well as conducting a qual-
itative evaluation in a car setting, the researchers were able
to validate the network’s accuracy and robustness in a variety
of scenarios. This approach helps to ensure that the system
is reliable and effective in later detecting driver inattention,
fatigue, or distraction, using the head-pose, eye-gaze and
facial occlusions which are essential for advanced driver
assistance systems to ensure safety on the roads.
Evaluation Metrics: In this study, we evaluate the accuracy

of estimating head pose and eye gaze by calculating average
absolute errors in degrees, whereas occlusion is reported
in terms of detection accuracy. Recent advancements in
CNN [44], [45], [46], [47] have allowed for direct regression
of head pose using Euler angles. However, training neural
networks to predict angles solely through a single regression
loss function can be difficult. To overcome this challenge,
we adopt a technique called Dual-loss Block (DLB) [16],
which breaks down the pose estimation task into two parts:
pose classification and pose coarse-to-fine regression. DLB
combines two types of loss functions: classification loss and
regression loss. Classification loss helps the network quickly
converge to a small boundary, while regression loss helps the
network learn the residual information to make more accurate
predictions. We use cross entropy loss for classification and
mean squared error for regression. The head pose and eye
gaze outputs are calculated independently, but both utilize the
same approach. To handle occlusions, we employ a straight-
forward cross-entropy loss for classifying them.

TABLE 1. Performance results on synthetic NIR-to-Event validation and
training datasets. Pose and Gaze is in degrees. Occlusions are
classification accuracy.

A. RESULTS ON SYNTHETIC DATA
The performance of the multi-task network on synthetic
datasets has been evaluated and the results are presented
in Table 1. The results indicate that the head pose estimation
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FIGURE 5. Distribution of error for head pose (top) and eye gaze (bottom)
on the test dataset.

error is close to or below 5 degrees for both validation and
testing datasets, which demonstrates the effectiveness of the
multi-task approach. The average eye gaze prediction errors
are also below 10 degrees for both datasets, despite the fact
that eye gaze estimation is a more complex task relative
to head pose, resulting in larger errors. To gain a better
understanding of the distribution of errors, a 2D scatter plot
is presented in Figure 5, which displays the distribution of
errors for yaw and pitch for both head pose and eye gaze.
It is worth noting that these results are based solely on the
testing dataset. The scatter plot is accompanied by ellipses

that represent 1 and 2 standard deviations from the mean. The
outer ellipse contains approximately 95%of the data, whereas
the inner ellipse contains 68%. Additionally, 1D histograms
are displayed on the sides of each error scatter plot to aid
in visualizing individual distributions. The results obtained
from the synthetic data indicate that the multi-task approach
can effectively estimate head pose and eye gaze with event
cameras, even in the presence of occlusions.

TABLE 2. Mean absolute error in degrees for head pose on BIWI
simulated events.

B. PERFORMANCE COMPARISON WITH OTHER
MODALITY
It’s worth noting that there has been a lack of recent research
on event-based head pose estimation, which highlights the
importance of our proposed network. In this study, we eval-
uated the performance of our trained model by comparing
it with other existing models using the BIWI [48] dataset.
We simulated events from visible images using 50 successive
sequences with the 24 subjects available in the dataset [48].
The results are presented in Table 2, the results of the pro-
posed network in event-based head pose estimation were
almost 2 times worse than the state-of-the-art due to various
reasons. Firstly, the face crops in the evaluation dataset had
a lower resolution than the 224 × 224 input, which led to
the need for up-sampling, resulting in a loss of quality. Sec-
ondly, the contrast threshold used could have been adjusted to
improve the accuracy. Finally, there is potential for improve-
ment by experimenting with different simulation settings and
incorporating more events in the input. Despite these limita-
tions, the proposed network still shows promising results in
event-based head pose estimation and provides a foundation
for future research in this field. The study emphasizes the
need for further investigation to improve the accuracy of
event-based facial analysis techniques.

C. RESULTS ON REAL EVENT DATA
The multi-task network is put to the test on real event data
collected from a high-resolution Prophesee event camerawith
a resolution of 1280 × 720. The results of the head pose
estimation for five different test subjects are presented in
Table 3 below. However, it should be noted that eye-gaze
and facial occlusion labelling were not available for these
recordings due to the constraints of the Ground-Truth-motion
sensor technology that was used. The results of the head pose
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TABLE 3. Mean absolute error in degrees for head pose on real event
camera data.

FIGURE 6. Qualitative results of testing on real event data.

estimation are reported as a mean absolute error in degrees,
and they are found to be comparable to those obtained from
the synthetic event data in the previous section. This indicates
that the multi-task network has generalization capabilities
and can effectively estimate head pose in real event data,
even though it was entirely trained using synthetic events.
To further illustrate these results, qualitative examples are
provided in Figure 6. The figure displays red, green, and blue
arrows, which correspond to pose vectors, and white arrows
in the eye regions that correspond to gaze vectors. These
results provide valuable insights into the performance of the
multi-task network on real event data, which is crucial for the
practical implementation of this technology in real-world sce-
narios. The results of the head pose estimation on real event
data demonstrate that the multi-task network can effectively
estimate head pose, even in the absence of eye-gaze and facial
occlusion labelling, and has the potential for various applica-
tions such as robotics and human-computer interaction where
accurate head pose estimation is crucial.

D. DRIVER MONITORING APPLICATIONS
Driver monitoring is a safety-critical human-operator mon-
itoring system that requires accurate facial analysis at all
times. This paper proposes a human monitoring system
designed specifically for driver monitoring, leveraging the
advantages of event cameras such as temporal resolution,
response to motion, and high dynamic range, while address-
ing the limitations of human stillness and stationarity.

To demonstrate the effectiveness of this system, it is applied
to an unconstrained driver monitoring scenario. To provide
qualitative analysis, a single subject is monitored during a sin-
gle trip. Figure 6 displays a screenshot of the trip, showcasing
the results obtained from the driver monitoring system. For
further analysis, a video recording of the trip can be found in
the supplementary material. Algorithm 1 shows the inference
run of proposed multitask neural network. The proposed
system employs a multi-task network, leaky integration event
representation, and ROI-based inference trigger to enhance
the accuracy of facial analysis. These techniques exploit the
unique features of event cameras, making it well-suited for
driver monitoring applications. The driver monitoring system
presented in this paper has a wide range of practical applica-
tions, such as improving safety in the automotive industry.
By continuously monitoring drivers and detecting any signs
of fatigue or distraction, this system can alert drivers to
take necessary breaks, thereby reducing the risk of accidents.
Overall, the results obtained from the driver monitoring sys-
tem indicate its potential to significantly improve the safety
of road transport.

VI. LIMITATIONS
The performance of the trained model on the BIWI simulated
dataset was not state-of-the-art, indicating the need for further
optimization or exploration of alternative approaches. Addi-
tionally, it is important to note that the proposed approach
and evaluation primarily concentrated on driver monitoring
scenarios. Generalizing the findings to other facial analyt-
ics domains or broader applications would benefit from
additional investigation. Furthermore, although the proposed
approach demonstrated impressive results, further fine-tuning
or optimization may be necessary to enhance its performance
on specific datasets or in diverse real-world scenarios. One
specific area that could be improved is the face detection
algorithm used in this research. While the adopted face
detection network showed promising results, there is still
room for improvement. Exploring alternative algorithms or
incorporating state-of-the-art techniques may enhance the
accuracy and robustness of the face detection component.
Future research efforts could focus on refining the face detec-
tor to better handle challenging conditions such as occlusions,
varying lighting conditions, and complex facial appearances.
By addressing these limitations, the overall performance and
reliability of the proposed facial analytics system can be
further enhanced.

VII. DISCUSSION
1) Enhanced Information Integration: Event cameras

capture visual information differently from frame-
based cameras, capturing sparse and timestamped
events. Multi-task learning can utilize this unique
data characteristic to train multiple facial analytics
tasks simultaneously, such as head pose estimation,
eye gaze estimation, and facial occlusion detection.
This integration of information improves performance
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across tasks by learning meaningful features from
sparse event data.

2) Improved Robustness and Generalization: Multi-task
learning enhances the robustness and generalization
of facial analytics for event cameras. Jointly learning
multiple tasks allows the model to capture underlying
patterns and dependencies, resulting in a comprehen-
sive representation of facial features. This improves
adaptability to various scenarios, lighting conditions,
and facial appearances, leading to better performance
in real-world applications.

3) Leaky Integration and ROI Thresholding: In order to
counteract global head motion, we present an innova-
tive event integration method that effectively manages
both short and long-term temporal dependencies. The
proposed algorithmic technique combines leaky inte-
gration and ROI motion thresholding to mitigate inter-
ference from global subject motions in event stream
data. By utilizing a leaky time surface and ROI infer-
ence triggering, accurate facial analysis is achieved.
The approach optimizes facial analytics by selectively
emphasizing events occurring within the face region,
resulting in improved efficiency and accuracy.

4) Synthetic Data Generation: The research used V2E to
simulate near-infrared (NIR) images to events, creating
a large, high-quality synthetic dataset. Synthetic data
generation is essential in computer vision research to
overcome limitations of real-world data and develop
diverse training datasets.

5) State-of-the-Art Results: The research achieved state-
of-the-art results when evaluating the multitask net-
work on the simulated event dataset. This demonstrates
the effectiveness of the proposed approach, surpassing
existing methods in facial analytics.

6) Comparable Results on Real-Event Data: Themultitask
network also achieved comparable results when tested
on locally acquired event data. This indicates its ability
to generalize to new scenarios, essential for practical
applications of facial analytics.

7) Performance on BIWI Event Simulated Dataset: The
trained model’s performance on the BIWI event sim-
ulated dataset was not state-of-the-art. However, fine-
tuning or retraining the model on this dataset could
potentially improve its performance.

8) Exceptional Performance in Real-World Scenarios:
The trained model was tested on real-world scenar-
ios, where subjects were recorded using neuromorphic
event cameras while driving. The results demonstrated
exceptional performance, further validating the pro-
posed approach’s potential for driver monitoring sys-
tems and facial analytics applications.

This research demonstrates the potential of event-based
facial analytics and opens up new avenues for research
and development in the field. The proposed approach is
highly effective and can be further improved with additional
research, making it a promising direction for future work.

VIII. CONCLUSION
Event cameras offer several significant advantages over con-
ventional cameras, making them particularly suited to the
driver monitoring systems [8]. This paper presents a proof
of concept and a baseline study on multi-task face analytics
systems based on neural networks for such applications. The
suggested model correctly analyzes occlusions, head pose,
and estimates eye gaze. Moreover, a novel method to over-
come short- and long-term information is presented. Event
cameras react to motion. Thus, it only responds to changes
or movements in the scene. Our method allows the multi-task
network to also react to driver motion or changes only in the
driver state, minimizing unnecessary computation. Thus, the
rate of inference is linked to the speed of driver movement.
The capabilities of event cameras are not only limited to the
features presented in this paper and can enhance driver or
human/driver monitoring systems beyond the limits of con-
ventional cameras due to their high temporal resolution, low
latency, high dynamic range, and low power consumption.

Future work will include collecting a larger and more
diverse real-world event dataset that better reflects the vari-
ability and complexity of head poses, lighting conditions,
occlusions, and other factors encountered in actual driver
monitoring scenarios. Secondly, exploring different model
architectures or modifications to the existing model to
improve its accuracy in head pose estimation. This could
include incorporating additional neural network layers, incor-
porating attention mechanisms, or leveraging other advanced
techniques such as RCNN or CNN to capture temporal
dependencies or spatial features more effectively. Moreover,
investigating the potential of fusing event camera data with
other sensor modalities, such as RGB cameras, depth sen-
sors, or other physiological sensors, to improve the accuracy
and robustness of the driver monitoring system. Multi-modal
fusion approaches can leverage complementary information
from different sensors to enhance the overall performance of
the system.
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