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ABSTRACT Intracranial haemorrhage (ICH) has become a critical healthcare emergency that needs accurate
assessment and earlier diagnosis. Due to the high rates of mortality (about 40%), the early classification
and detection of diseases through computed tomography (CT) images were needed to guarantee a better
prognosis and control the occurrence of neurologic deficiencies. Generally, in the earlier diagnoses test
for severe ICH, CT imaging of the brain was implemented in the emergency department. Meanwhile,
manual diagnoses are labour-intensive, and automatic ICH recognition and classification techniques utilizing
artificial intelligence (AI) models are needed. Therefore, the study presents an Intracranial Haemorrhage
Diagnosis usingWillow Catkin Optimization with Voting Ensemble (ICHD-WCOVE)Model on CT images.
The presented ICHD-WCOVE technique exploits computer vision and ensemble learning techniques for
automated ICH classification. The presented ICHD-WCOVE technique involves the design of a multi-head
attention-based CNN (MAFNet) model for feature vector generation with optimal hyperparameter tuning
using the WCO algorithm. For automated ICH detection and classification, the majority voting ensemble
deep learning (MVEDL) technique is used, which comprises recurrent neural network (RNN), Bi-directional
long short-term memory (BiLSTM), and extreme learning machine-stacked autoencoder (ELM-SAE). The
experimental analysis of the ICHD-WCOVE approach can be tested by a medical dataset and the outcomes
signified the betterment of the ICHD-WCOVE technique over other existing approaches.

INDEX TERMS Brain imaging, intracranial haemorrhage, deep learning, computer vision, ensemble
learning, willow catkin optimization.

I. INTRODUCTION
Stroke is the main reason for a higher number of death
across the world. It may occur if there is any interruption
in the blood supply to brain parenchyma because of the
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rupture of blood vessels (hemorrhagic stroke) or occlusion
(ischemic stroke) [1]. Hemorrhagic stroke or Intracerebral
hemorrhage (ICH) occurs whenever bleeding takes place in
the cerebral parenchyma because of ruptured blood vessels.
Drug abuse, Weak blood vessels, trauma, and hypertension
were usually inducing these medical conditions [2]. ICH can
be considered a neurologic emergency and it has numerous
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subtypes namely pons, caudate nucleus, or basal ganglia.
The haemorrhage types were usually liable on the anatomic
location of the bleeding [3]. A timely and early ICH diagnosis
is important since this condition can worsen the patient’s
health in the first few hours of occurrence [4]. The imaging
modality named Noncontrast head computer tomography
(CT) was leveraged for detecting haemorrhage due to its
speed and wide availability. Such a modality has revealed
a high specificity and sensitivity in the detection of acute
haemorrhage [5].
Computer-aided diagnosis (CAD) refers to cutting-edge

technology in the medical field that interfaces medicine
and computer science [6]. CAD schemes are similar to the
skilled human expert to do diagnostic decisions through
diagnostic rules. The CAD system performance can be
enhanced and advanced CAD can infer novel knowledge
through analyses of the medical dataset [7]. For learning
these capabilities, the mechanism should have a feedback
system where the learning occurs through failures and
successes. Over the past, dramatic enhancement is found
in human skills and examination tools like CT, X-ray,
ultrasound, and MRI [8]. The diagnosis seems to be more
complex with the study and discovery of novel diseases and
their development. Several aspects like complicated medical
diagnosis, accessibility of massive data concerning diseases
and conditions in the medical field, rising knowledge on
diagnostic rules, and the appearance of innovative areas
like data mining, AI, and ML in the computer science
field have paved the way for the CAD development [9].
Quantitative analysis of pathology imageries has increased
significantly among the research community in the arena of
image analysis and pathology. There comes the demand for
quantitative image-based assessment of pathological slides
since the diagnosis solely depends on the pathologist’s
opinion. CAD decreases the pathologist’s burden by filtering
the benign cancer imageries thereby the diagnosticians can
concentrate on more complex imageries which is tough to
detect. Quantitative analysis of pathology imageries will be
helpful in diagnosis and also in medical research. Lately,
deep learning (DL) has risen effectively and rapidly [10].
DL-related networks have a great generalization ability
that can be enforced to overcome challenging medical
complexities like medical organ detection, medical image
classification, disease detection, and medical image analysis.
Convolutional neural network (CNN) is the most effective
network than deep network.

This study presents an Intracranial Haemorrhage Diagno-
sis using Willow Catkin Optimization with Voting Ensemble
(ICHD-WCOVE) Model on CT images. The presented
ICHD-WCOVE technique exploits computer vision and
ensemble learning techniques for automated ICH classifi-
cation. The presented ICHD-WCOVE technique involves
the design of a multi-head attention-based CNN (MAFNet)
model for feature vector generation with optimal hyper-
parameter tuning using the WCO algorithm. For auto-
mated ICH detection and classification, the majority voting

ensemble deep learning (MVEDL) technique is used, which
comprises recurrent neural network (RNN), Bi-directional
long short-term memory (BiLSTM), and extreme learning
machine-stacked autoencoder (ELM-SAE). The experimen-
tal analysis of the ICHD-WCOVE algorithm can be tested by
a medical dataset. In short, the key contribution of the paper
is listed as follows.

• An automated ICHD-WCOVE technique comprising
MAFNet feature extraction, WCO based hyperparam-
eter tuning, and ensemble classification has been pre-
sented for ICH diagnosis. To the best of our knowledge,
the ICHD-WCOVE technique for ICH classification
never existed in the literature.

• Employ MAFNet model for feature extraction, which
enables to capture various aspects of the input data,
improving the network’s ability in the extraction of
useful features and enhance its performance.

• Hyperparmaeter optimization of MAFNet model using
WCO algorithm helps to boost the overall ICH classifi-
cation performance.

• Present ensemble model, comprising RNN, BiLSTM,
ELM-SAE model for classification process. It leverages
the strengths of multiple models, improving accuracy,
robustness, and generalization capabilities.

II. LITERATURE REVIEW
Kothala et al. [11] developed a novel YOLOv5x-GCB archi-
tecture that is capable of detecting multiple haemorrhages
with a lack of availability of resources by using the ghost
convolution technique. It can be benefited from generating
a similar amount of feature maps as vanilla convolution
while applying lower-cost linear operation. An additional
feature is that it employs a mosaic augmentation method
during the training for improving the performance of mixed
haemorrhage recognition. Kumaravel et al. [12] introduced a
model that leverages the capability of pretrained DCNN for
the recognition of ICH in CT scans. Initially, the presented
method including the AlexNet, pretrained DCNN, was used
for the classification and feature extraction using the TL
approach. Then, an adapted AlexNet- SVM classification is
considered, and lastly, a feature selection technique, PCA,
was proposed in the AlexNet-SVM classification method,
and also its efficiency is considered.

Anupama et al. [13] developed a DL-based ICH analysis
with GrabCut-based segmentation using synergic DL (SDL),
termed the GC-SDL approach. The presented technique
uses GF for the removal of the noise, thus the image
quality could be enhanced. Additionally, the GrabCut-based
segmentation method is used for efficiently identifying the
infected portion in the CT images. The SDL technique is
exploited to implement the feature extraction method, and
eventually, the softmax (SM) function is exploited as a
classifier. Kirithika et al. [14] designed an ensemble of deep
and handcrafted features for ICH and BT detection. The
input image preprocessing can be performed in three different
ways such as CLAHE based contrast enhancement, skull
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stripping and bilateral filtering (BF). Furthermore, AlexNet
and SIFT techniques are exploited for the process of feature
extraction. To categorize the presence of ICH and BT, two
classifier methods are performed namely random forest (RF)
and Gaussian Naïve Bayes (GNB).

Le et al. [15] introduced a novel strategy for brain
hemorrhage detection with object detection techniques such
as R-FCN and Fast RCNN. The presented technique
could identify various areas of a brain hemorrhage on
CT images. The result shows that the R-FCN technique
provides the best outcome than the Fast RCNN model on
accuracy and time of detection. Patel et al. [16] introduced
the recognition of ICH in 3D non-contrast CT. The technique
integrates an RNN and CNN in the form of a bi-directional
LSTM for ICH detection at the image level. A CNN
was trained for the recognition of ICH. Zhang et al. [17]
formulated a new technique to produce artificial lesions
on non-lesion CT images to generate labelled training
instances. Artificial masks in any shape, size, or location
can be made by Artificial Mask Generator (AMG) and later
transformed into hemorrhage lesions via Lesion Synthesis
Network (LSN).

Khan et al. [18] presented an automated system for brain
tumor recognition and classification utilizing a saliency map
and DL feature optimizer in this study. During the primary
stage of the presented structure, a fusion-based contrast
enhancement system was presented. An optimum features
can be selected in the last stage utilizing an enhanced
dragonfly optimizer algorithm (DOA). At last, an optimum
features can be classified utilizing an ELM. In [19], Harris
Hawks optimized CNN (HHOCNN)was utilized in this effort
to solve these problems. The brain MRI are pre-processing,
and the noisy pixels can be removed for minimizing the
false tumor detection rate. Afterward, the candidate region
procedure was executed for identifying the tumor area.
Odusami et al. [20] presented a multi-modal fusion-based
system which utilizes a mathematical approach termed as
DWT for analyzing the data, and the optimizer of this method
was realized by TL utilizing a pre-training NN named as
VGG16. The last fused image was reconstructed utilizing
inverse DWT (IDWT).

In the framework of ICH analysis utilizing CT brain
imaging, there exist a research gap in searching and opti-
mizing the hyperparameters of method utilized for analyzing.
It contains parameters like rate of learning, regularized
strengths, network structures, and dropout rate. Exploring
the outcomes of various hyperparameter settings on the
efficiency of methods are support recognize the optimum
configuration which affects to enhanced efficiency on ICH
analysis. Besides, an ensemble learning was extremely
discovered in many fields, there could still exist a research
gap in its application specifically for ICH analysis utilizing
CT brain imaging. Research can concentration on examining
the efficiency of distinct ensemble approach like bagging,
boosting, or stacking, for combining several approaches
trained on various subsets of the data or utilizing distinct

FIGURE 1. The overall flow of the ICHD-WCOVE approach.

techniques. It is support enhance the entire efficiency and
robustness of ICH analysis by leveraging the collective
knowledge of varied methods.

III. THE PROPOSED MODEL
In this study, we have focused on the development of the
ICHD-WCOVE model for ICH classification on the CT
images. The presented ICHD-WCOVE technique exploits
computer vision and ensemble learning techniques for
automated ICH classification. The presented ICHD-WCOVE
technique encompasses MAFNet feature extraction, WCO-
based parameter tuning, and MVEDL-based classification.
Fig. 1 signifies the overall flow of the ICHD-WCOVE
approach.

A. FEATURE EXTRACTION: MAFNET MODEL
The presented ICHD-WCOVE technique comprises the
MAFNet model for feature vector generation. The MAFNet
is composed of 1 × 1 × 1 convolutional layers [21]; in the
middle are 4 convolution models with three convolution
structures in every module, where the convolutional model
was disseminated in a symmetrical structure of [2,2,2,2],
and at last, in FC layer with the overall of 26 convolution
modules. Next, the images are inputted, and the 1 × 1
convolutional process can be performed at first. Then, the
4 convolution models are passed over the 4 convolution
models. The 3 × 3 convolutional operation was substituted
with Contextual Transformer (CoT) blocks in the original
ResNet convolution block. Then, the preceding convolution,
excitation, and pooling operations, the feature extracted was
inputted to the FC layers that performed as ‘‘classification’’
in the CNN.

The FC layers act as a ‘‘classification’’ in the CNN
which incorporates the preceding, extremely abstracted
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feature, maps the learned feature to sample space, employs
the Softmax function to estimate the probability for the
classification, and lastly output the classifier outcome:

Softmax
(
zj
)

=
ezi

6n
i=1e

zi
,

Eq. (1) illustrates the number of classes, zj characterizes the
output value of j − thnodes, zi indicates the output value of
i − thnodes, and e shows the natural constant and it is given
in the following equation:

LCE = −

∑N

i=1
lilogpi,

In Eq. (2), N signifies the number of tags) and li designates
the thermal encoding of tag i(i∈ (0, · · · ,N−1) once the target
label was i then li = 1, other labels were corresponding to
zero , pi represents the predictive probability of ith labels, i.e.,
Softmax value.

Note that the smallest learning rate might lead to slower
convergence, and the largest learning rate might lead to the
constant oscillation of loss functions. A dynamic-learning-
rate approach can be used for adjusting the learning rate per
30 epochs for making a model to find the optimal parameter
accurately and more quickly trained as follows:

lr = lr0×0.1
epoch
30 ,

where lr represents the current learning rate, lr0 shows the
primary learning rate, and epoch characterizes the overall
amount of training rounds.

B. PARAMETER TUNING: WCO ALGORITHM
At this stage, the WCO technique is applied for the optimal
hyperparameter selection of the MAFNet method. The
WCO was presented as the novel meta-heuristic optimizer
technique. Hybrid exploration and exploitation methods are
presented in WCO [22]. The particles can be separated into
2 parts from the searching procedure, and exploitation and
exploration can be started simultaneously. The particles from
distinct procedures are various performances and parameters.

During this initialized stage, many random seeds can
be created in the willow tree and disseminated from the
solution space. Utilizing a matrix with D columns and N
rows, the population was demonstrated where N implies the
particle count and D represents the data dimensional of every
particle. The algorithm utilizes Eq. (1) for generating random
particles.

χi = r×(UB− LB) + LB, i= 1, 2, . . . ,N (1)

In Eq. (1), r denotes the random number from the interval of
0 and 1.xi signifies the solution of D dimensional. The lower
and upper bounds of solution spaces are LB and UB.

In the search stage, a willow catkin falls in the willow
trees and flutters from the wind which is all affected by
2 variables like wind speed and direction. Airflow from
the environment takes either wind speed or wind direction.
The wind was signified mathematical with a vector. Thus,

the meteorological wind vector changed to ‘‘math’’ wind
direction. It was general practice in meteorology for working
with u and v elements. The vector components of winds, u
and v are achieved when the wind direction and speed are
measured, as: {

v = −ws× cos(wd)
u = −ws× sin(wd)

(2)

In Eq. (2), wd signifies the wind direction, andws refers to
the wind speed. The transformation of u, and v elements as
wind speed and direction on a 2D plane.

Afterwards decomposing the wind direction and speed
for obtaining u and v, the particles are upgraded. The
particle upgrade was mostly compared with the wind speed
and direction. The particle upgrade was carried out in the
exploration stage utilizing Eq. (3).

x = x + a× (u× v) + (2 − a)
(
Pg−χ i

)
(3)

whereas xi denotes the individual’s present location and
a refers to the variable which controls the change from explo-
ration to exploitation. Pg denotes global optima under the
present iteration. By balancing exploration and exploitation,
a will change during the iteration process:

a = c×e−( t
1000 )

2
(4)

In Eq. (4), T denotes the maximal amount of iterations.
c represents the constant with value 2. t shows the existing
amount of iterations. If t< 0.4T , as was higher than 1, the
particle update will be impacted by wind, which makes
particle position further random.

The distance di between the global optimum and the
current individual is evaluated. Based on the easier adhesion
radius R, When di<=R, the two seeds were liable to stick
together. When di > R, then two seeds are lesser likely to
stick together. {

ws = r × R
wd = r × 2π

(5)

Now di indicates the distance of the particle from optimum
global solutions. R indicates the adhesion radius of willow
catkins. ws is produced by Eq. (5) if di > R. r denotes
the random integer within [0, 1]. Bringing the wd and ws
randomly generated is define the distance of movement
and individuals’ direction, such that every individual with
a distance of more than R would be moved at random,
enhancing the exploration capability of themodel and prevent
from getting trapped in local optima.

DW = 1 −

∣∣pg − xi
∣∣∥∥χi − pg
∥∥ (6)

K =
DW

6D
i=1DWi

(7)ws = µ × (6D
i=1Ki|pg − xi|) + (1−µ)×r2 × R

wd= arccos(
xi·pg

||xi|| × ||pg||
) + r3 ×

π

8
(8)
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When di<=R, the weight can be evaluated using Eqs (6)
and (7), and the wind direction and wind speed are
evaluated using Eq. (8). DW represents the weights of every
dimensional distance in pg and xi to the overall distance and
|| · || represents the Euclidean distance between pg and χj.
Eq. (8) normalize .µ, representing the random value from
0.4 to 0.6. r2 and r3 denote the random number within [0, 1].

Algorithm 1 Pseudocode of WCO Algorithm
Require Population size N , Fitness function, Dimension D, Max_iteration
T , Upper and Lower boundaries UB and LB,
Ensure: Global optimum value
Initializing the Gbest, GlobalBestPos and Pop of every
population
While (t <MaxIteration or satisfy the minimum
threshold value) d

a = Equation
For = 1: N d
If Ri > Rz then
Produce ws and wdz based on Equation
Else
Produce ws and wdz based on Eqs (6)-(8)
End if
Update Pop
Evaluate the fitness value of the population
Upgrade GlobalFmin and GlobalBes
End for
End while

The WCO method has derived a fitness function to obtain
maximum accuracy of the classification and also described
a positive integer to characterize the superior efficacy of the
solution candidate. The reduction of the classification error
rate is taken as a fitness function.

fitness (xi) = ClassifierErrorRate (xi)

=
number of misclassified samples

Total number of samples
∗ 100 (9)

C. ENSEMBLE LEARNING-BASED CLASSIFICATION:
MVEDL MODEL
For automated ICH detection and classification, the MVEDL
technique is used, which comprises ELM-SAE, RNN, and
BiLSTM models. The MVEDL exploits the confidence
preservation mode for increasing the performance of ICH
classification [23]. The class prediction of the MVEDL
technique equivalent to the ICH classification can be assessed
by Algorithm 1. Hard and Soft voting systems have been
agglutinated owing to the number of base learners utilized,
to resolve the probability of an even number of output
predicted4j. The average weight confidence probabilityµW j
of each 4j is expressed as follows:

µωj , =
1
n

n∑
j

4j (10)

1) ELM-SAE MODEL
The deep architecture captures abstract and high-level
features. One of the direct ways to construct the deep

Algorithm 2: Pseudocode of MVEDL
Given an input image i
Transfer iz to the corresponding handler (b1, b2, . . .bn)z of the learner.
Calculate prediction for every handler based on distributed processing.
Compile responses from every handler of the learner.
Calculate ωj per 4j

Aggregate the outcomes of the handler with ωj>= 0.25.
If accurate one class Kj has the maximum predictable outputs 4j

P
(
Kj

)
= Kj

Else
P

(
Kj

)
= Kj with the highest average weighted confidence µωj

End

ELM (DELM) is to cascade the feature layer randomly.
But the randomness requires guidance and suffers from
unpredictability [24]. The ELM-SAE is used with l1-norm
constraint for finetuning the weight between layers of
DWELM to accomplish meaningful and more compact rep-
resentation. Fig. 2 showcases the framework of ELM-SAE.
The input parameter of ELM-SAE is produced at random.
An ELM-SAE is an FFNN whose input is similar to the
output. By resolving the optimization problems, the output
parameter can be upgraded:

argmin
Ŵ

||ZŴ − X ||
2
2 + λ||Ŵ ||1, (11)

In Eq. (11), Z represents the sparse feature and
X represents the input and output of ELM − SAE.Ŵ
represents the output weight of ELM − SAE. The abovemen-
tioned formula is named as Lasso problem where a faster
iterative shrinkage thresholding algorithm (FISTA) model
and alternating direction technique of multipliers (ADMM)
is used to effectively resolve the problem:

argmin
Ŵ

f
(
Ŵ

)
+ g

(
Ŵ

)
, Ŵ∈Rn×L , (12)

where f (Ŵ ) = ||ZŴ−X || and g(Ŵ ) = λ||Ŵ ||1. By applying
ADMM, the abovementioned problem is expressed by
Eq. (13):

argmin
Ŵ

f (Ŵ ) + g(O),s.t.W − O = 0. (13)

The proximal problem can be resolved by:
Ŵj+1:= (ZTZ + ρI )−1(ZTX + ρ(Oj − Vj))
Oj+1:=S λ

ρ
(Ŵj+1 + Vj)

Vj+1:=Vj+(Ŵj+1 − Oj+1)

(14)

where ρ> 0 represents the regularization parameter,I indi-
cate the unit matrix, j denotes the iteration number, and
Sλ/ρ represent the soft thresholding operator, given as
follows:

Sκ (α) =


α − κ, α > κ

0, |α| ≤ κ

α + κ, α< −κ.

(15)
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FIGURE 2. Structure of ELM-SAE.

2) RNN MODEL
Due to the effects of reducing gradients, training RNN to
capture long-term dependency is more complicated, thus
the frequently used RNN unit is the LSTM which does
not prevent free gradient flow and provides the ‘‘constant
error carousel’’ [25]. The most common LSTM architecture
comprises a recurrent cell, output, input and forget gates.
Generally, the LSTM cell is well-arranged in the form of
a chain structure, with an output of the previous LSTM
connected with the input of subsequent LSTM. GRU encom-
passes separate ‘‘update gates’’ instead of input and single
forget gates, does not discriminate hidden and cell states,
and frequently discloses the entire hidden layer (HL). The
RNN is an NN model that includes cyclic connection which
enables one to learn the temporal dynamics of successive data
as follows:

ht = F (Whht−1 + Uhxt + bh) (16)

yt = F
(
Wyht + by

)
(17)

An HL in RNN encompasses various nodes. Each node
has a function which is used to generate the yt current
output and ht hidden state using its preceding hidden state
ht−1 and current input xt. From the expression, Wh, Uh,
& Wy correspondingly indicate weight for hidden to hidden
recurrent connection, input to hidden connection, and hidden
to output connection. bh and by represents bias and hidden
output state. Furthermore, it has an activation function F
connected with all the nodes. This is a component-wise
nonlinearity function, usually chosen from different functions
like ReLu, sigmoid, or hyperbolic tangent.

3) BILSTM MODEL
Here, the Bi-LSTM was proposed to execute the detection
of ICH [26]. Bi-LSTM is particularly helpful to learn the
sequence with a pattern of unknown length. Also, the stacked
recurrent HL in NN is used to confine the structure of a
time series. To develop the gradient vanishing problems as
the LSTM utilizes the cell state of the memory for data
transmission. A cell state was suitable to calculate a dataset
that isn’t used for a longer duration. Hence, LSTM comprises

TABLE 1. Details of the dataset.

Reset, Forget and Update gates. Furthermore, some key
components of LSTM are given below.

• Input Gate: A multiplicative unit that defends data saved
in CEC from irregular inputs.

• Output Gate: A multiplicative unit defends another unit
from interruption through content retained in CEC.

• Constant error carousel (CEC): A fundamental compo-
nent uses unit weight and repeated connection. Then, the
recurrent connection shows a time step 1 and a feedback
loop.

At present, input and output gates manage access control
for CEC. During the training phase, the input gate can
be recognized and enables a new dataset in the CEC.
The data is not connected when the input gate is zero.
Likewise, the output gate was analysed and allowed the
dataset to be obtained from CEC. Moreover, if the data get
stuck in the memory cell, then the gate is closed. Without
considering diminishing gradients, it permits the error signals
to flow many times. It is a trivial data sequence. When the
input stream is separated physically, then the LSTM state
isn’t organized and changed to the appropriate sequence.
Especially, LSTM will learn to reset memory cells as a
sequence is completed and obtain a new sequence. These
problems are resolved by the LSTM using forget gate.
As well, the Bi − LSTM was an extended model of LSTM
where both LSTM models are used to input the dataset. The
maximized learning of long-term dependency enhances the
efficiency of the network in the application of LSTM.

IV. RESULTS AND DISCUSSION
The proposedmodel is simulated using Python 3.6.5 tool. The
proposed model is experimented on PC i5-8600k, GeForce
1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The
parameter settings are given as follows: learning rate: 0.01,
dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. In this work, the ICH classification outcomes of the
ICHD-WCOVE technique can be examined on the CT image
dataset [27], comprising 341 samples with five classes as
represented in Table 1. Fig. 3 showcases the sample images.

In Fig. 4, the ICH classifier outcomes of the ICHD-WCOVE
technique can be examined in the form of a confusion matrix.
The results indicate that the ICHD-WCOVE technique results
in improvised performance in all classes.

In Table 2 and Fig. 5, the overall ICH classification
results of the ICHD-WCOVE technique are studied on
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FIGURE 3. Sample images.

FIGURE 4. Confusion matrices of ICHD-WCOVE approach (a-b) TRS/TSS of
80:20 and (c-d) TRS/TSS of 70:30.

80:20 of TRS/TSS data. The results pointed out that the
ICHD-WCOVE technique gains improvised performance
under all class labels. For instance, with 80% of TRS,
the ICHD-WCOVE technique obtains an average accuy of
94.41%, precn of 81.04%, sensy of 69.34%, specy of 95.77%,
a Fscore of 72.29%. On the other hand, with 20% of TSS, the
ICHD-WCOVE method attains an average accuy of 97.10%,
precn of 96.18%, sensy of 84.97%, specy of 97.62%, a Fscore
of 89.21%.

In Table 3 and Fig. 6, the overall ICH classification
outcomes of the ICHD-WCOVE algorithm are studied on
70:30 of TRS/TSS data. The outcomes signified that the

TABLE 2. ICH outcome of ICHD-WCOVE approach under 80:20 of TRS/TSS.

FIGURE 5. The average outcome of the ICHD-WCOVE method on 80:20 of
TRS/TSS.

ICHD-WCOVE approach obtains improvised performance
under all class labels.

For example, with 70% of TRS, the ICHD-WCOVE
approach achieves an average accuy of 97.31%, precn of
94.59%, sensy of 85.73%, specy of 97.58%, and Fscore of
89.43%. Instead, with 30% of TSS, the ICHD-WCOVE
method gains an average accuy of 98.45%, precn of 97.93%,
sensy of 92.82%, specy of 98.74%, and Fscore of 95.14%.

The TACY and VACY of the ICHD-WCOVE method
are investigated on ICH performance in Fig. 7. The figure
designated that the ICHD-WCOVE technique has enriched
performance with higher values of TACY and VACY. Visibly,
the ICHD-WCOVE technique has higher TACY outcomes.

The TLOS and VLOS of the ICHD-WCOVE algorithm
are tested on ICH performance in Fig. 8. The figure exhibits
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TABLE 3. ICH outcome of ICHD-WCOVE approach under 70:30 of TRS/TSS.

FIGURE 6. The average outcome of the ICHD-WCOVE approach on 70:30
of TRS/TSS.

FIGURE 7. TACY and VACY outcome of the ICHD-WCOVE approach.

the ICHD-WCOVE method has superior performance with
the minimal values of TLOS and VLOS. Notably, the
ICHD-WCOVE algorithm has reduced VLOS outcomes.

FIGURE 8. TLOS and VLOS outcome of the ICHD-WCOVE approach.

FIGURE 9. The precision-recall outcome of the ICHD-WCOVE method.

A brief precision-recall review of the ICHD-WCOVE
method under the test database is shown in Fig. 9. The
outcomes specified that the ICHD-WCOVE algorithm has
enhanced values of precision-recall values in each class label.

The detailed ROC analysis of the ICHD-WCOVE process
under the test database is given in Fig. 10. The outcomes
signified the ICHD-WCOVE algorithm has the ability in
classifying distinct.

To ensure the goodness of the ICHD-WCOVE algorithm,
a comparative study is performed in Table 4 and Fig. 11 [28].
Based on sensy, the ICHD-WCOVE technique reaches
an increasing sensy of 92.82% while the AIMA-ICHDC,
DL-ICH, AMG-LSN, RF, and SVM models obtain decreas-
ing sensy of 92.05%, 91.22%, 91.37%, 90.68%, and 76.44%
respectively. Concurrently, with specy, the ICHD-WCOVE
method reaches an increasing specy of 98.74% while the
AIMA-ICHDC,DL-ICH,AMG-LSN, RF, and SVMmethods
obtain decreasing specy of 91.83%, 91.60%, 90.57%, 89.63%
and 79.63% correspondingly.

Simultaneously, with accuy, the ICHD-WCOVE sys-
tem reaches an increasing accuy of 98.45% while the
AIMA-ICHDC, DL-ICH, AMG-LSN, RF, and SVM
approaches gain decreasing accuy of 94.51%, 93.58%,
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FIGURE 10. ROC curve outcome of ICHD-WCOVE approach.

TABLE 4. Comparative analysis of the ICHD-WCOVE method with other
systems [28].

FIGURE 11. Accuy analysis of the ICHD-WCOVE approach with other
systems.

92.95%, 89.99% and 77.58% correspondingly. These
outcomes verified the improved performance of the
ICHD-WCOVE method over other existing methods.

In summary, the ICHD-WCOVE approach demonstrates
best outcome with maximal accuy of 98.45%. The improved
performance of the ICHD-WCOVE is because of the integra-
tion of the WCO based hyperparameter tuning and ensemble
learning method. Hyperparameters are settings which could
not learned in the training, then need to be fixed prior to

training. It could be an important effect on the performance
of the model, and choosing the optimum values are cause to
optimum accuracy. Ensemble learning is improve the entire
accuracy of ICH classifier. With integrating the predictive
of several approaches, ensemble approaches are mitigate
the biases and errors of individual method, leads to further
reliable and correct outcome. The ensemble is frequently
demonstrate some single method or classification. It alleviate
overfitting by decreasing the outcome of individual methods
which can overfit certain features of trainied data. This
leads to enhanced efficiency on unseen data that is vital
to accurate ICH classifier. With integrating WCO based
hyperparameter tuning and ensemble learning, the presented
method was gain even optimum outcomes by choosing an
optimum settings for this approach. These outcomes make
sure the enhanced efficiency of the presented method over
other existing approaches.

V. CONCLUSION
In this study, we have focused on the development of the
ICHD-WCOVE model for ICH classification on the CT
images. The presented ICHD-WCOVE technique exploits
computer vision and ensemble learning techniques for
automated ICH classification. The presented ICHD-WCOVE
technique comprises a MAFNet model for feature vector
generation with optimal hyperparameter tuning using the
WCO algorithm. For automated ICH detection and classi-
fication, the MVEDL technique is used, which comprises
ELM-SAE, RNN, and BiLSTM models. The experimental
analysis of the ICHD-WCOVE technique is tested using a
medical dataset and the outcomes signified the betterment of
the ICHD-WCOVE technique over other existing approaches
with maximum accuracy of 98.45%. In the future, the
performance of the proposed method can be enhanced by
feature fusion-based approaches. Besides, the computational
complexity of the proposed model can be examined in future.
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