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ABSTRACT Quantum computing (QC) and quantum machine learning (QML) are emerging technologies
with the potential to revolutionize the way we approach complex problems in mathematics, physics, and
other fields. The increasing availability of data and computing power has led to a rise in using Artificial
Intelligence (AI) to solve real-time problems. In space science, employing AI-based approaches to address
various challenges, including the potential risks posed by asteroids, is becoming increasingly necessary.
Potentially Hazardous Asteroids (PHAs) can cause significant harm to humans and biodiversity through
wind blasts, overpressure shock, thermal radiation, cratering, seismic shaking, ejecta deposition, and even
tsunamis. Machine Learning (ML) algorithms have been employed to detect hazardous asteroids based
on their parameters. Still, there are limitations to the current techniques, and the results have reached a
saturation point. To address this issue, we propose a QuantumMachine Learning (QML)-based approach for
asteroid hazard prediction, employing Variational Quantum Circuits (VQC) and PegasosQSVC algorithms.
The proposed work aims to leverage the quantum properties of the data to improve the accuracy and precision
of asteroid classification. Our study focuses on the impact of PHAs, and the proposed supervised QML-based
method aims to detect whether an asteroid with specific parameters is hazardous or not. We compared
several classification algorithms and found that the proposed QML-based approach employing VQC and
PegasosQSVC outperformed the other methods, with an accuracy of 98.11% and an average F1-score
of 92.69%.

INDEX TERMS Quantum computing, quantum machine learning, qubits, quantum gates, entanglement,
astronomy, asteroid hazard prediction, astrometry, quantum algorithm optimization.

I. INTRODUCTION
The universe has always been a subject of fascination for
humans. The vastness and complexity of the cosmos have led
to numerous questions and theories that have been pondered
for centuries. Astronomy, the scientific study of celestial
objects and phenomena, has been an essential tool for unrav-
eling the mysteries of the universe. Reference [1] not only has
it allowed us to understand the workings of our solar system,
the formation of galaxies, and the birth and death of stars,
but the idea of exploring the unknown and discovering new
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worlds has been a driving force behind many scientific and
technological advancements. Over the years, we have sent
numerous probes and rovers to explore planets and moons in
our solar system. These missions have given us information
about the geology, atmosphere, and potential for life on these
celestial bodies.

The nearest possible sources for origins study are disparate
floating rogue objects, such as asteroids and meteorites,
in the Kuiper [2] and Inner Main Belt [3]; some of the most
important celestial objects providing valuable insights into
the solar system’s formation. These objects are essentially the
building blocks of planets and can provide us with a glimpse
into the early stages of the solar system’s formation. They are
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remnants of the primordial material in the early solar system
and have remained unchanged since then. Despite their scien-
tific significance, asteroids and meteorites also threaten our
planet significantly. The discovery rate of such objects has
increased in the last decade, with the current detection rate
of Fast Moving Objects (FMOs), according to the Zwicky
Transient Facility (ZTF), having been 100 per year [4]. While
the assertion that celestial object impacts could have cata-
clysmic consequences on Earthmay seem alarmist, the poten-
tial for significant damage has been substantiated through
historical precedent. One such event was the Tunguska phe-
nomenon that occurred in Siberia in 1908, where an estimated
15-megaton TNT-equivalent meteoroid detonation caused
extensive terrestrial damage, flattening approximately
80 million trees over an area of 2,150 square kilometers [5].
Therefore, it is essential to have a reliable method of predict-
ing the trajectory of these objects to mitigate their potential
impact.

With the rise in deep space telescopes and earth-based
deep-space surveys, identified rogue objects and Near Earth
Asteroids (NEAs) have risen, with over 1.8 Million known
asteroids and 25000 known NEAs, with 1100 NEAs identi-
fied almost every year [6], [7]. Such a population of rogue
objects and the rise in detection of the FMOs and NEAs
necessitates their prediction and estimation of their colli-
sion trajectory for future evasive maneuvers. Conventional
techniques in predicting the trajectory of hazardous asteroids
majorly involve comprehensive mathematical modeling that
considers various factors, such as the object’s size, velocity,
and gravitational pull [8]. These models can provide rea-
sonably accurate predictions of the object’s trajectory, but
their reliance on known parameters limits them. Despite the
simulated paths and trajectory modeling, the path of such
rogue objects is random to some extent due to thermophysical
changing characteristics of the observed vs. model asteroids,
non-linear gravitational effects of the sun and planetary posi-
tion, and errors in observation defining the characteristics to
generate the orbital parameters [9], [10]. Accounting for all
factors leads to extreme precision in predicting the collision
probability. However, lack of fixed pattern and lack of com-
putational efficiency, and high time complexity limits such
conventional techniques.

Statistical approximation of asteroids and their orbital
parameters and physical characteristics have presented
hope for using machine learning (ML) in inter-dependant
feature inference and complex calculation towards classifi-
cation [11]; however, current ML algorithms and techniques
also have a high time complexity with limitations in per-
forming complex large scale calculations. Recent techno-
logical advances, specifically in quantum machine learning
(QML), have opened up new possibilities for predicting
and estimating the trajectory of hazardous asteroids [12],
[13]. Quantum Machine Learning (QML) involves lever-
aging quantum computers to perform complex calcula-
tions that surpass the computational capabilities of classical

computers, as supported by empirical research conducted
by Biamonte et al. [14] who demonstrated the potential of
quantum algorithms in accelerating pattern recognition,
data clustering, and optimization problems, highlighting the
advantages of quantum computing over classical methods
in the context of machine learning tasks. This technology
can potentially revolutionize asteroid hazard prediction and
planetary defense by allowing us to consider a more extensive
range of factors and make more accurate predictions.

Motivated by the current limitations in conventional tech-
niques for asteroid detection and hazard prediction, we recog-
nize the need for simpler, faster, yet sophisticated approaches.
Traditional ML methods have reached a saturation point in
efficient classification and prediction tasks, implying a doubt
of efficacious asteroid hazard prediction, hence highlighting
the potential for QML to fill this gap. To address these
challenges, we propose a QML-based approach that employs
Variational Quantum Classifiers (VQC) and Pegasos Quan-
tum kernel Support Vector Machines (PQ-SVM) for the pre-
diction and classification of asteroids. In the proposed work,
we investigate the application of VQC and PQ-SVM for pre-
dicting and classifying potentially hazardous asteroids. VQC,
which merges variational quantum circuits with classical
optimization methods, forms hybrid quantum-classical clas-
sifiers adept at discerning intricate patterns within data [15].

The VQC’s capacity for representing high-dimensional
data efficiently and its intrinsic robustness against noise ren-
der it an attractive candidate for tackling the challenges in
asteroid hazard prediction. Conversely, PQ-SVM incorpo-
rates the Pegasos algorithm’a primal sub-gradient technique
for addressing the SVM optimization problem’alongside
quantum kernels [16]. The Fidelity Quantum Kernel in
PQ-SVM facilitates the computation of inner products in
high-dimensional feature spaces, enabling the separation of
complex, non-linearly separable data. The amalgamation of
these QML algorithms offers a powerful framework for the
classification of hazardous asteroids, bolstering both accu-
racy and computational efficiency. TheQML framework aims
to harness the inherent capabilities of quantum computing
to enhance the accuracy and efficiency of asteroid hazard
prediction. By leveraging VQC and PQ-SVM algorithms,
we have the potential to overcome the limitations inherent in
classical Machine Learning (ML) methods. VQC algorithm,
utilizing the principles of superposition and entanglement
in quantum computing, enables efficient exploration of a
larger solution space, allowing for more accurate modelling
and prediction of possible celestial phenomena. Similarly,
PQ-SVM leverages quantum algorithms to enhance clas-
sification and regression tasks with potential applications
in astronomy and astrophysics, potentially achieving higher
accuracy in discerning intricate relationships between vari-
ables. These advancements and their inherent utilization, can
indirectly help in improving our understanding of the for-
mation and dynamics of the solar system and unveiling the
mysteries of the universe, helping reshape our knowledge of
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the cosmos. This ultimately contributes to developing more
reliable asteroid hazard predictions, allowing us to assess
better and mitigate the potential impacts of these celestial
objects on our planet.

A. RESEARCH CONTRIBUTION
Major contributions presented in this work have been outlined
as follows,

1) We proposed a QML-based classification approach to
detect potentially hazardous objects (e.g., asteroids)
that pose a risk to our planet. For that, a stan-
dard celestial object dataset is utilized that is used
by the QML algorithm for prediction purposes. Fur-
ther, the utilized dataset is converted into a quantum
dataset using ZFeatureMap and forwarded to the QML
algorithms.

2) The proposed QML-based classification approach
adopts different QML algorithms, such as VQC and
PQSVC, for binary classification of the potentially haz-
ardous state of an asteroid.

3) Further, we compared the QML algorithms with ML
algorithms to showcase the competency of QML algo-
rithms, wherein we utilized different performance
parameters, such as accuracy, precision, recall, and F1
score. The results show that QML algorithms outper-
formML in terms of accuracy, where PQSVC achieves
98.11% accuracy.

B. ORGANISATION
The following is the organizational structure of this arti-
cle. Section II discusses the various works in the QML
and QC domain and relevant updates on the task domain
of asteroid hazard prediction. Section III derives the prob-
lem statement for the task and explains the system model.
Section IV describes the proposed QML-based methodology
for PHA classification, dataset description, pre-processing
steps followed, and feature selection steps used for the model.
Section V describes and states the experimental setup, dif-
ferent evaluation metrics used, and discussion of results
obtained. Finally, section VI wraps up the study’s conclusions
and comments on the future scope.

II. RELATED WORKS
Over the years, the study of astronomy and space exploration
has been instrumental in unraveling the mysteries of the
universe. Recent advancements in technology, particularly
in quantum machine learning (QML), have opened up new
possibilities for predicting the hazardous nature of asteroids
and mitigating the potential impact of these objects. How-
ever, the study of asteroids and meteorites also highlights
their potential threat to our planet, and it is crucial to have
reliable methods of predicting their trajectory. Conventional
techniques in asteroid hazard prediction have limitations due
to their reliance on known parameters. But with the advent of
QML, researchers have the potential to improve the accuracy

of asteroid hazard prediction significantly. Research in this
field has been extensive, with researchers worldwide working
to develop better techniques for predicting the hazardous
nature of rogue floating asteroids. Table 1 tabulates the com-
parison of various other state-of-the-art.

In [17], authors have addressed the asteroid-comet hazard
by identifying and investigating potential collisions and close
approaches of asteroids with the Earth. Resonant returns after
encounters with the Earth present a challenge for predicting
these events due to the loss of precision in such encounters.
Themain asteroid of interest in this study is Apophis (99942),
for which multiple possible orbits of impacts associated with
resonant returns were identified. The study suggests that
an early change in Apophis’ orbit could avoid these main
impacts, which is a feasible solution. Additionally, the study
explores potential impacts with Ground asteroid 2015 RN35
and presents 21 possible collisions in this century, includ-
ing seven collisions with significant gaps reported on the
NASAwebsite. Finally, the study presents the observations of
three near-Earth asteroids, including 7822 and 68216, which
are potentially hazardous, using the ZA-320M telescope at
Pulkovo Observatory.

Asteroids such as the Apophis, followed by a case study
of Identification and estimation of the S-type Asteroids
Itokawa and Bennu, are significant yet limited observed
proofs of collision 100% bound to happen in the coming
1000 years. Solely individual identification and trajectory
estimation of asteroids that are potentially hazardous for
Earth limits other future possibilities; Hence, inferencing
other collision possibilities via statistical approximation and
pattern analysis are significant and necessary in generat-
ing more accurate results with the clustering of asteroid
families. A study used supervised-learning hierarchical clus-
tering algorithms to identify family members with high
accuracy, precision, and recall values, consistently above
89.5% [18]. In the study, the authors identified six new
families and 13 new clumps that appear consistent and homo-
geneous regarding physical and taxonomic properties. The
results highlight the efficiency and speed of machine-learning
clustering algorithms for the problem of asteroid family
identification.

The hierarchical clustering mechanism results very well in
identifying new asteroid families and rubble pile-type rock
clumps. The k-Nearest Neighbor algorithm was combined
with the Bus-DeMeo taxonomic classification schema to test
the ML approach in clustering asteroid families in [19]. The
results suggest that the visible wavelength region is more
diagnostic of the spectral slope, while the NIR wavelength
region is more diagnostic for surface mineralogy. While the
author achieved overall accuracy scores (>80%) of the ML
test dataset validated the methodology, it fell short of the
threshold necessary to replace current methods of classifica-
tion (>95%). Nonetheless, the study corroborates the overall
robustness of the Bus-DeMeo taxonomy in asteroid family
clustering.
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Various research has also explored the prediction of poten-
tially hazardous asteroids (PHAs) using ML algorithms.
In [20], the authors’ proposed approach focuses on identi-
fying subgroups of near-Earth asteroids (NEAs) that have
a high concentration of PHAs. To achieve this, the author
utilized the Support Vector Machines algorithm with RBF
kernel to identify the boundaries of PHA subgroups in 2- and
3-dimensional subspaces of orbital parameters. The results
show high PHA purity (>90%) and contain>90% of all real
and virtual PHAs. These findings can help plan future PHA
discovery surveys or asteroid-hunting space missions.

In [21], authors highlight the significance of potentially
hazardous objects (PHOs) such as asteroids and comets, that
can approach Earth and cause severe damage. The work
presents a project aimed at analyzing NASA data on PHOs
and predicting whether an Earth-approaching body is haz-
ardous. The authors used the Azure platform for machine
learning algorithms to preprocess and model the data, com-
paring the results of various machine learning models. The
Two-Class Decision Forest algorithm achieved the highest
accuracy, with a ROC-AUC score of 0.99. However, it is
important to note that the dataset used by the authors is of low
records, which may limit the generalizability of the results
to larger datasets. Nonetheless, the project highlights the
potential of machine learning in predicting hazardous PHOs.
It is evident that the work underscores the need for continued
efforts to monitor and mitigate potential risks from celestial
bodies near Earth.

In [22], authors aim to prevent potential asteroid impacts
by accurately predicting and classifyingNear-EarthAsteroids
(NEAs) as potentially hazardous or non-hazardous. The pro-
posed approach uses deep neural networks to learn complex
representations of orbital asteroid data and classify them
accordingly. By generating an automatic potentially haz-
ardous asteroid detector, the study hopes to speed up the
characterization rate of NEAs and contribute to the preven-
tion of natural disasters caused by asteroid impacts. The
research highlights the importance of identifying Potentially
Hazardous Asteroids early on and classifying them correctly
to avoid catastrophic events. The increasing availability of
asteroid data through scientific advances provides an oppor-
tunity to use ML techniques to tackle this important problem.
The field of asteroid hazard prediction has seen significant
advancements in recent years, with classical simulations
being one of the primary approaches. However, these sim-
ulations can be computationally expensive due to the need to
predict the collision courses of rogue objects accurately. As a
result, using QML has emerged as a promising solution for
pattern analysis, generating analytics, and making inferences.

In [23], authors introduce the concept of QML as a domi-
nant paradigm to program gate-based quantum computers in
the current NISQ era. QML involves tuning the parameters
of a quantum circuit via classical optimization based on data
and measurements of circuit outputs. Parameterized quan-
tum circuits (PQCs) can address optimization problems, and

generative models and carry out classification and regression.
The monograph portrayed in the work by the authors is
aimed at engineers with a probability and linear algebra back-
ground and provides a self-contained introduction to quantum
machine learning. The author has covered the necessary back-
ground, concepts, and tools to describe quantum operations
and measurements and delves into parameterized quantum
circuits, variational quantum eigensolvers, and supervised
and unsupervised quantum machine learning formulations.
Wherein in the paper, author specifically emphasizes the
potential of quantum machine learning in solving complex
optimization problems and carrying out advanced inference
tasks.

In [24], author discusses the challenge of scalability
in QML and proposes a novel framework that utilizes
projection-valued measurements (PVM) to expand the output
dimension from qubits to 2q. The aim is to achievemulti-class
classification by leveraging quantum circuits and the pro-
posed model outperforms state-of-the-art methodologies by
42.2%. The paper also proposes a probability amplitude
regularizer to fit the probability distribution of observables
to the probability distribution of classification. The authors
highlight future work directions, including quantum rein-
forcement learning with large action spaces or multi-agent
settings with fewer qubits and quantum object detection by
leveraging PVM for classification and POVM for bounding
box prediction. While the results are promising, the paper
focuses on datasets with no more than 6 qubits, leaving
open the question of how this framework will scale to larger
datasets. Additionally, the authors could have discussed the
feasibility of implementing their proposed framework on cur-
rent NISQ quantum computers, as this may pose significant
practical challenges. Nonetheless, the proposed framework
can potentially address the scalability issue in QML and lead
to more complex quantum machine learning applications.

In the field of astronomy, QML has shown promise in vari-
ous applications such as exoplanet detection and characteriza-
tion. In [25], the authors demonstrate the application of QML
to classify exoplanets using their transit light curves. The
study proposes a quantum algorithm that leverages param-
eterized quantum circuits to perform binary classification
tasks. By encoding the light curve data into a feature Hilbert
space, the quantum algorithm enables the efficient processing
of complex patterns in the data. The study provides insights
into the potential of QML for analyzing complex astronomi-
cal data, which can be extended to asteroid hazard prediction.

Astrodynamics and celestial mechanics have also seen
the application of QML for orbital dynamics and trajectory
optimization. Authors in [26] present a quantum algorithm
for solving the two-body problem, a fundamental problem
in celestial mechanics. The proposed quantum algorithm
leverages quantum phase estimation to determine the energy
eigenvalues of the two-body Hamiltonian. By reducing the
complexity of the problem from exponential to polynomial,
the quantum algorithm outperforms classical algorithms in
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solving the two-body problem, suggesting that QML can
be potentially applied to other problems in astrodynamics,
including asteroid hazard prediction.

In another study, [27] authors’ have explored the appli-
cation of QML in space situational awareness (SSA) and
space surveillance and tracking (SST) problems. The authors
propose a quantum algorithm for detecting and tracking
artificial satellites in geostationary orbits. By leveraging
quantum amplitude estimation and quantum support vector
machines, the algorithm demonstrates improved classifica-
tion and tracking performance compared to classical meth-
ods. This research demonstrates the potential of QML in
addressing complex problems in astrodynamics and celestial
mechanics and may provide valuable insights for asteroid
hazard prediction.

Moreover, in [28], the authors investigate the application
of QML for solving the Kepler problem, another fundamental
problem in celestial mechanics. The authors develop a quan-
tum variational eigensolver (QVE) to determine the energy
eigenvalues and eigenstates of the Kepler Hamiltonian. The
QVE algorithm exhibits faster convergence rates and higher
accuracy compared to classical variational eigensolvers. The
success of the QVE algorithm in solving the Kepler prob-
lem highlights the potential of QML for tackling challeng-
ing problems in astrodynamics, including asteroid hazard
prediction.

Through extensive experimentation and evaluation, QML
has proven its ability to outperform current machine learning
algorithms and techniques in some domains. Additionally,
there is a possibility of expanding QML to other domains in
the future. Both supervised and unsupervised learning have
shown positive results, indicating that QML can be a domi-
nant paradigm in programming gate-based quantum comput-
ers. As the field of QML is still evolving, there is significant
potential for further advancements and developments, which
can lead to exciting discoveries and applications. Finally,
applying QML in the realm of asteroid hazard prediction
shows the potential to overcome the limitations associated
with traditional simulations. QML algorithms have shown
great accuracy, precision, and recall in recognizing asteroid
families and PHAs, and can help with taxonomic categoriza-
tion and forecasting future collisions and near encounters.
Further study in this area may yield useful insights and aid in
the prevention of catastrophic occurrences caused by asteroid
strikes.

A. LIMITATIONS OF CONTEMPORARY ML CLASSIFIERS
Present-day machine learning classifiers, despite their pro-
found predictive abilities, grapple with certain qualitative
limitations. Primarily, these classifiers exhibit a strong
dependency on both the training dataset’s volume and
integrity. Insufficient or poor-quality data often lead to
an over-generalization phenomenon known as overfitting,
wherein the model delineates an excessively complex deci-
sion boundary that performs exceedingly well on the training
set, but falters on unseen data [29]. While methods like

regularization and dropout [30] aims to mitigate overfitting,
these techniques offer a partial solution and often necessitate
careful hyperparameter tuning.Further, these classifiers typi-
cally rely heavily on pre-defined features for model training,
making feature engineering a critical task. This process often
necessitates domain-specific knowledge, posing a significant
limitation, especially in intricate domains [31]. Despite the
emergence of deep learning algorithms that facilitate auto-
matic feature extraction, the necessity for manual feature
selection isn’t entirely negated.

Moreover, these classifiers frequently lack transparency
and interpretability, attributing to their characterization as
‘‘black box’’ models [32]. This opacity can be especially
problematic in domains such as healthcare or finance, where
interpretability is as crucial as prediction accuracy. Machine
learning classifiers, if trained on biased data, can inadver-
tently propagate and magnify these biases, leading to poten-
tially skewed or prejudiced outcomes [33]. This latent bias
in machine learning models presents serious ethical impli-
cations, necessitating more research towards ‘‘fair’’ machine
learning. Lastly, these models often exhibit a lack of robust-
ness. They tend to be sensitive to minor perturbations in
the input data or shifts in the data distribution, resulting in
significant fluctuations in predictions [34].

In summary, the limitations of machine learning clas-
sifiers, including data dependency and overfitting, reliance
on domain knowledge and feature engineering, lack of inter-
pretability, the potential for bias propagation, and stability
issues, underscore the importance of ongoing research in
improving the qualitative aspects of machine learning mod-
els. While modern machine learning classifiers struggle with
these drawbacks, the emergence of quantum machine learn-
ing (QML) offers a potential remedy. The paradigm shift in
processing capabilities brought about by quantum computing,
which is based on quantum mechanical principles, may be
able tomitigate the drawbacks of traditional machine learning
methods.

B. QUANTUM MECHANICS AND COMPUTING
QC is built on the mathematical and physics foundations of
quantum mechanics incorporated into the basics of computer
science. Using superposition of states and particle entan-
glement, QC utilizes a novel approach towards information
storage via qubit that enables an exponential speedup in
computation time, increased parallelism, and complex cal-
culations. Starting with the basic unit of QC, a qubit is a
superposition of two basis states |0⟩ or |1⟩ represented by a
complex vector as shown in Eq. 1,

|ψ⟩ = α|0⟩ + β|1⟩ (1)

Here, α and β are complex numbers that satisfy the condition
||α|2 + |β|2 = 1 to ensure the qubit is normalized. The
coefficients α and β are called probability amplitudes, and
they determine the probability of measuring the qubit in the
state |0⟩ or |1⟩, which is a translation for a tertiary state of
information indicating superposition.
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The superposition property of qubits is one of the key
features that makes QC so powerful for certain types of
computations. It allows a single qubit to perform multiple
computations simultaneously, and a quantum system with
multiple qubits can exist in an exponentially large num-
ber of possible states. To perform multiple complex and
parallel computations, quantum computers use sophisticated
circuits that involve gates similar to classical computing
involving simple binary logic gates. In the view of quantum
gates, unitary matrices perform operations on qubits to find
the current position of qubits. One important operation is
the Hadamard gate, which transforms the basis states as
follows,

H =

{
H |0⟩ = 1/

√
2(|0⟩ + |1⟩)

H |1⟩ = 1/
√
2(|0⟩ − |1⟩)

(2)

The Hadamard gate puts the qubit into an equal superpo-
sition of the two basis states. This operation is crucial for
many quantum algorithms, including QML, widely used in
various QML algorithms. QML algorithms typically involve
a combination of quantum and classical components. The
quantum component performs specific calculations that are
difficult or impossible to perform on classical computers,
such as evaluating a quantum kernel function and the classical
component performing the final classification or regression
step.

III. SYSTEM MODEL AND PROBLEM FORMULATION
The expanse surrounding all celestial bodies, including those
with habitable planets like Earth, is commonly characterized
as a vacuum. However, this space is not devoid of matter, as it
is populated by rogue celestial objects, including meteorites
and asteroids, which continuously drift within its bounds.
Consider a set of rogue entities, denoted asA, comprising an
infinite collection of disparate floating objects, represented
by {α1, α2, . . . , αm} ∈ A. These objects are classified as
rogue due to their lack of association with any particu-
lar celestial body, rendering them susceptible to collisions
amongst themselves. The outcome of such collisions can lead
to the formation of even larger objects, which may potentially
pose a significant threat to habitable planets such as Earth
upon contact.

Deep-space satellites are critical in gathering data such
rogue celestial objects, potentially threatening habitable plan-
ets like Earth. The primary conventional method for acquir-
ing and gathering useful data about rogue celestial objects’
characteristic nature is through satellite imaging via opti-
cal and radio astrometry using a set of orbiting satellites
{σ1, σ2, . . . , σn} ∈ S in low Earth orbit and deep space
orbit. Each captured set of satellite data I is a partitioned
collection of images and radar data Iαm = {ι1, ι2, . . . , ιk} for
∀αm ∈ A,∀σn ∈ S. Now, all the collected data I is sent to
earth data processing centers {c1, c2, . . . , cj} ∈ Cearth.

I f (θ )
−−→ K (3)

In Eq.3, processing operation f (θ ) is a set of analyti-
cal astrometrical operations {f1, f2, . . . , fo} ∈ f (θ ) such
as two-body solutions (Sun-Earth-Object), Kepler’s laws
of planetary motion, radio astronomy, and other solar
astronomy-based analytical metric operations applied to
extract the needed available data {H , diameter, albedo, . . . ,
moid} ∈ K, where H represents absolute magnitude of
the rogue object, diameter signifies span of the spherical
type structure of object, albedo represents the magnitude of
reflected sunlight,moid is the minimum orbit intersection dis-
tance, etc. Considering a generalized inference function g(),
attribute sets [Diameter,Albedo, a, e, i, tp] ∈ Kϕ ⊂ K and
[moid,moid_ld] ∈ Kϑ ⊂ K in conjunction with attributed
data Kearth about Earth’s astrodynamics aids in obtaining the
probabilistic possibility of an asteroid’s collision course.

g(Kϕ ∪Kϑ ∪Kearth) −→ P(Collision) (4)

Processing operations applied for the generation of the attri-
buted data are the same equations applied towards the conven-
tional highly accurate simulation of collision for the safety
of the planet and bettering planetary defense, i.e., hazard
mitigation methods. Simulating the trajectory of a celestial
object requires solving a set of complex equations of motion
that take into account the object’smass, velocity, gravitational
forces, atmospheric drag, and other factors. One commonly
used set of equations for simulating the motion of celestial
objects is the Keplerian equations f1(a, e), which describe the
motion of an object in an elliptical orbit around a central body.

f1(a, e)=


r =

a(1− e2)
1+ e cos(θ)

; (distance (focus to ellipse))

x = r cos(θ + ω); (Object’s x-coordinate)
y = r sin(θ + ω); Object’s y-coordinate)
z = zp + r sin(i)T sin(θ + ω);

(5)

where, zp + r sin(i)T sin(θ + ω) is the object’s z-coordinate.
Subjecting the obtained attributed data K to the Keplerian
Equations f1(a, e), we obtain the object’s motion characteris-
tics. The above set f1(a, e) provides either set of coordinates
(Polar Coordinates P(r, θ, ω) and Cartesian Coordinates
V(x, y, z)) based on available data.

P(r, θ, ω)←−−
x,y,z

f1(a, e) −−→
θ,ω

V(x, y, z) = r⃗t (6)

However, the Keplerian equations f1(a, e) alone may not be
sufficient for simulating the motion of rogue celestial objects,
especially those on a collision course with Earth. Additional
factors such as the object’s mass, the Earth’s gravitational
pull, atmospheric drag, and non-uniform gravity fields must
also be considered. One commonly used set of equations for
this purpose is the two-body problem f2(r⃗t ), which describes
themotion of two objects that interact with each other through
gravitational forces at a givenmoment of time t . The equation
for the two-body problem is as follows.

f2(r⃗t ) :
d2r⃗t
dt2
= −

GM
R3 r⃗t =

¨⃗r (7)
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TABLE 1. A comparison between the state-of-the-art methodologies and the proposed work.

where,
−→rt ; Earth relative position vector
G; Gravitational constant
M ; Mass of the Earth
R = |r|; Magnitude of the position vector

The distance in terms of travel time between the Kuiper
belt and Earth can be estimated as a 100-120 year period
considering the orbital velocities of roaming rogue objects.
Hence for plotting a trajectory, it is important to track the
object for 100 years to calculate the probabilistic certainty
of colliding with Earth. For plotting the trajectory, we need
to double integrate the Eq. 7 from time ti (Initial time of
spotting the object) to tF (Period of 100 years). Therefore
the generated set of calculated vector points known as orbit
propagation is as follows,

V⃗ =
∫∫ tF

ti

¨⃗r dt2 (8)

Now, each rogue object αm ∈ A has a gravitational effect
on each other and is also affected by other planets; hence to
compensate for such effects, the N-body solution has to be
employed. Now Eq. 7 can be expanded as follows, summing
up the gravitational effect on the object αi

f2(r⃗t ) :
d2r⃗
dt2
= −G

n∑
i=1

mi
R3
i

r⃗i =
n∑
i=1

¨⃗ri (9)

Substituting Eq. 9 in Eq. 8 for the integral, we get

V⃗ =
∫∫ tF

ti
−G

n∑
i=1

mi
R3
i

r⃗i dt2 (10)

From Eq. 10 we obtain the propagated orbit of the asteroid
accounting for all possible gravitational effects and hence
a certainty for its possible collision with earth. However,
gravitational compensation doesn’t accurately provide prob-
abilistic certainty of possible collision to a certain extent
since temporal-based variance can occur, such as inter-object
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collision, which may change the course of objects. The posi-
tion uncertainty of an asteroid is usually relatively small
over the time span of the observations, but it usually grows,
or stretches, as the object’s position is predicted farther and
farther into the future. To account for this and to sam-
ple such uncertainty, Monte-Carlo Simulations (MC) are
performed in which coarse exploration of virtual asteroids
(β1, β2, β3, . . . , βj ∈ B; j = 10000) is done [43].

Sp =
10000∑
j=1

MC(V⃗j, βj) (11)

Dp = F(Sp,A,K) (12)

From the parameter space U (Orbit Sphere), we obtain
a simulated characterized region Sp (Eq. 11) which is a
MC simulation of varied virtual asteroid set B. The above
obtained probabilistic distribution of collision uncertainty is
filtered further based on the miss-distance at the time of
close approach i.e., extended orbit determination filter (F)
as shown in Eq. 12 based on the previously available data K
with the incorporation of the simulation object sample (βj)
as a pseudo observation. Final available data on the certainty
factor for possible Near Earth Asteroids (NEAs) N can be
depicted as follows,

N : V⃗αi +DP,αi; ∀αi ∈ A (13)

Computational efficiency and time complexity are major fac-
tors in tracking and predicting the hazardous state of rogue
objects. Considering the set of NEAs N , time complexity
is in order of years (Eq. 14). The complexity of simulating
the motion of a rogue celestial object does depend on various
factors such as the accuracy required, the length of the simu-
lation (tF ), the number of objects involved ([A,B]), and the
computational resources available. For example, simulating
the motion of an object with high accuracy over a long period
may require a large number of iterations (x) and signifi-
cant amounts of memory storage, making it computationally
expensive.

T (g(A,MC(V⃗,Bj), x)
Sentry
−−−→ N ) = n · Years (14)

In contrast, QML algorithms and quantum computation tech-
niques can efficiently flag hazardous rogue objects, wherein
the QML algorithms can be used to process large amounts of
data and identify patterns that are difficult or impossible for
classical algorithms to detect. Subjecting the processed data
K to QML algorithms {ρ1, ρ2, ρ3, . . . , ρp} ∈ Q, the subjec-
tive time complexity is reduced parallel to efficiently training
a highly accurate model for flagging the sample objects of
the collected dataset. The main objective for the problem of
efficient and accurate hazard prediction can be defined as a
set of multiple maximizing and minimizing functions. In this
study, 2 major QML algorithms, namely, VQC, and PQSVC
have been employed wherein the best-performing algorithm
is PQ-SVC. Hence the objective function O for algorithm

PQ-SVC ρ1 can be defined as minimizing hinge loss function
h() for predicted (ψ) and true label (µ) delta (δ) (15).

O(ρ1,K) −→ min
κ∈K

h(k, ρ1, δ(µ,ψ)) (15)

IV. PROPOSED METHODOLOGY
In this proposed methodology (as shown in FIGURE 1),
a preprocessed and cleaned dataset is used for analysis using
quantum algorithms. Exploratory Data Analysis (EDA) tech-
niques are used to gain insights into the dataset and identify
any patterns or trends that can be used to improve the accu-
racy of the predictions. Two quantum algorithms, the VQC
algorithm and the PQSVC algorithm, are used to classify
and predict the potential hazard of asteroids and meteorites.
The proposed methodology shows promising results and has
the potential to improve the accuracy and speed of potential
asteroid hazard prediction.

A. DATA COLLECTION AND DATASET DESCRIPTION
For rogue entities α1, α2, . . . , αm ∈ A, collected observed
data I is processed via processing centers C. Processed data
κ1, κ2, . . . , κn ∈ K,∀αm ∈ A is stored in a repository
maintained and updated by NASA Jet Propulsion Laboratory
(JPL). The dataset utilized in developing this research is
sourced from Kaggle [44], wherein the authors Hossain and
Zabed have generated the dataset from a maintained repos-
itory of NASA JPL. The dataset contains 958524 records
of deep space objects described across 45 attributes with
two target columns of Near Earth Object Flag and Poten-
tial Hazard Flag. Only the potential hazard flag column has
been considered the target column for this research. In the
target column, only 2066 records of asteroids are flagged
as potentially hazardous, and the rest, 956458, are flagged
as non-hazardous. Due to the general Quantum Comput-
ing Constraints, 4132 records of rogue objects have been
included in the final dataset wherein there are original 2066
Hazardous objects and 2066 random sampled subsets of
the 956458 non-hazardous rogue objects. The collection K
details the rogue object’s orbital characteristics (e.g., semi-
major axis, eccentricity, perihelion distance, inclination, etc.),
physical characteristics, and identification-naming attributes.
It is pre-processed and cleaned to ensure the dataset is accept-
able for quantum algorithms analysis.

B. DATASET PREPROCESSING
The preprocessing of the dataset involves several steps to
ensure that the data is suitable for analysis using quantum
algorithms. The dataset, denoted by K, is obtained from the
JPL repository through a dataset filter provided by JPL. The
publishing author [44] utilizes this filter to obtain the filtered
dataset, denoted by Kn where n = 958524 records. This
filtered dataset is stored in a comma-separated value (CSV)
file, which is loaded into a data frame using the pandas library
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FIGURE 1. Proposed methodology for QML-based for potentially hazardous asteroid classification.

(see Eq. 16).

Kn
csv−conversion
−−−−−−−−→

Pandas
Df (16)

All the preprocessing operations are performed on the con-
verted dataset pandas dataframe. After the dataset has been
loaded onto the pandas dataframe, the dataset is searched for
‘Not a Number’ (NaN) type values, obtaining a set of columns
having the NaN values. Post obtaining the column name, the
column set is segregated based on the columns’ characteris-
tics, i.e., one with negligible relevance is eliminated, and the
rest are retained for further processing (Eq. 17).

Df
NaN
−−−→
Search

LNaN
Importance
−−−−−−→
segregation

Lp(partitioned set) (17)

In Eq. 17, partitioned set Lp = [Le (columns for removal)
| Lr (columns for retention) ]. From the dataframe Df ,
Columns Le are removed. The retained columns Lr are yet
to be processed; however, before processing them, the dataset
is searched for columns with object type datatype, i.e., string
type datatype (Eq. 18).

Df −Df [Lr ]
reduced
−−−−→ Dr

object−type
−−−−−−→

filter
Lo (18)

The column set Lo containing the name of object type
columns obtained from Eq. 18 is used to process dataframe
Dr , i.e., label encode and replace the NaN values by mean
value using SimpleImputer (Eq. 19).

Dr [Lo]
Label
−−−−→
encoder

Dl
Simple
−−−−→
imputer

Di (19)

We obtain a cleaned dataset from Eq. 19 with all unnec-
essary columns removed and NaN columns processed for

further steps. Statistical analysis is conducted where skew-
ness analysis, (Sk (D)), is performed on all columns. Further,
the necessary normalization technique is applied based on the
skew nature of the value distribution in each column.

Sk (Di) :


Sk (Di) > 0.5 : Bc(D)
Sk (Di) ∈ (−0.5, 0.5) : Zs(D)
Sk (Di) < −0.5 : Gl(D)

(20)

In Eq. 20 Bc(D), Zs(D) and Gl(D) denote the normal-
ization techniques BoxCox power transformation, Z-Score
normalization and Log transformation applied based on the
respective skew value.

Bc(Di) ∪ Zs(Di) ∪ Gl(Di)
normalized
−−−−−−→
dataset

Dn (21)

After normalizing the dataset using Eq. 21, we analyzed
that there is a significant imbalance in the frequency of
records for each of the binary classes (C0 : Non −
Hazardous, C1 : Hazardous), where one class (C0 = 956458)
has a substantially higher frequency than the other (C1 =
2066), a sampling process Sd is performed. The records from
the higher frequency class are sampled (random sampling)
equally to match the number of records in the lower fre-
quency class. Hence the final subset of the dataset contains
a total of 4132 records subject to dimensionality reduction.
Algorithm 1 shows all the steps used in data preprocessing.

Dn :

{
freq(Dn[C1]) = n
Dn[C0] = Sd (n,Dn[C0])

sampling
−−−−−→
balancing

Db (22)

QML requires manipulating quantum states, which can be
challenging when dealing with high-dimensional data. This
is because the number of quantum resources required to
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represent and manipulate the data increases exponentially
with the dimensionality of the data. Therefore, to reduce
the dimensionality of the data, classical ML algorithms are
utilized before applying QML techniques, helping reduce
the number of quantum resources required and making the
problemmore tractable for quantum computers. Furthermore,
reducing the dimensionality of the data can also help mitigate
the effects of noise and other errors inherent in quantum
systems, improving the accuracy of the QML algorithms.

Post-normalization and dataset balancing (Eq. 22), the
dataset Db is subject to a series of classical machine learn-
ing algorithms for calculating feature importance Fe(m,D).
These algorithms are employed to reduce the dimen-
sionality of the data, thereby easing the computational
requirements of the subsequent Quantum Machine Learn-
ing (QML) model. The suite of nine selected algorithms
m1,m2,m3, . . . ,me ∈ M, where e = 9, include the
ExtraTrees classifier, RandomForestClassifier, AdaBoost-
Classifier, GradientBoostingClassifier, DecisionTreeClassi-
fier, IsolationForest, VarianceThreshold, SelectKBest, and
RandomForestEnsemble. Ensemble methods, ExtraTrees and
RandomForestClassifiers, manage high-dimensional data by
employing multiple decision trees. Their output is averaged,
providing robust feature importance rankings and reducing
overfitting [45], [46].

Similarly, AdaBoostClassifier and GradientBoostingClas-
sifier are ensemble methods that function by sequentially
fitting models and adjusting weights of incorrectly predicted
instances, hence focusing on ‘‘harder-to-predict’’ instances
and enhancing overall model performance [47], [48]. The
DecisionTreeClassifier, a fundamental algorithm, ranks fea-
ture importance based on how features are used to split data
within the tree, offering interpretability [49]. The Isolation-
Forest algorithm, distinct in its approach, isolates anomalies
or outliers in the dataset by randomly selecting a feature
and a split value. This method provides an understanding
of which features contribute most to these anomalies [50].
Variance threshold is a straightforward baseline feature selec-
tion method that discards features with low variance, pre-
suming they contain less useful information [31]. Finally,
SelectKBest, a univariate feature selection method, applies
statistical tests to select the ‘k’ best features. Here, it is used
to identify the top 4 most important features [51].

e⋃
i=1

Fe(mi,Db) = Fa
frequency
−−−−−→
voting

Tf 4
final
−−→ DF = Db[Tf 4]

(23)

Therefore, using the aforesaid algorithms, we deter-
mine the feature importance from each method, creating
the feature importance set Fa for the normalized dataset
(Eq. 23). By ranking these features, we apply a frequency
voting approach to further refine the selection. In this voting
process, we create two sets of highly important features. The
first set includes features that have been deemed important

Algorithm 1Dataset Preprocessing for Quantum Algorithms
Inputs: Filtered dataset Kn Output: Preprocessed dataset DF for
QML training and testing
1: procedure Preprocess(Kn)
2: Df ← Pandas_csv_conversion(Kn) (Eq. 16)
3: Lp ← NaN_segregation(Df ) (Eq. 17)
4: Dr ,Lo ← Remove_Reduce_Columns(Df ,Lp) (Eq. 18)
5: Di ← Label_Encode_Impute(Dr ,Lo) (Eq. 19)
6: Dn ← Normalize(Di) (Eq. 20, 21)
7: Db ← Balance_Sampling(Dn) (Eq. 22)
8: Tf 4 ← Feature_Importance_Selection(Db) (Eq. 23)
9: return DF
10: end procedure

Algorithm 2 Procedure for QML Classifiers With Ansatz
Variations for Asteroid Hazard Prediction
Inputs: Filtered dataset of Rogue Objects, denoted byKn Output:
Classification of Hazardous Nature of the Asteroid - 1(Hazardous) /
0 (Non-Hazardous)
1: procedure QML(D)
2: DF ← Preprocess(Kn) (Algorithm 1)
3: traind , testd = train_test_split(DF , test_size=0.2)
4: n_qubits = 4
5: quantum_instance← QuantumInstance(backend)
6: feature_map← ZFeatureMap(n_qubits)
7: fidelity_quantum_kernel ← FidelityQuantumKer-

nel(feature_map)
8: for ansatz in [RealAmplitudes(), EfficientSU2()] do
9: M1← VQC(ansatz, feature_map)
10: M1.train(traind )
11: p1 ← M1.predict(testd )
12: evaluate_performance(testd , p1)
13: end for
14: for C in [0.01, 0.1, 1, 1000] do
15: M2 ← PegasosQSVM(fidelity_quantum_kernel, C=C)
16: M2.train(traind )
17: p2 ← M2.predict(testd )
18: evaluate_performance(testd , p2)
19: end for
20: compare_performance(M1, M2)
21: end procedure

by more than four algorithms, and the second set includes
those selected by more than five algorithms. The intersec-
tion of these sets will contain the most consistently signifi-
cant features across the different methods, further validating
their importance. Subsequently, from these intersection sets,
we select the top 4 most important features, denoted as Tf 4.
These are deemed the most significant and will be used to
reduce the dimensionality of the dataset. The final dataset
containing these top 4 features is generated, which is then
utilized for training and testing the QuantumMachine Learn-
ing (QML) model. This approach, which combines multiple
classical machine learning methods for feature selection,
helps to manage high-dimensional data, reduces the quantum
resources required, andmitigates the noise and errors inherent
in quantum systems.
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C. QUANTUM MACHINE LEARNING
In this work, two algorithms, namely PQSVC and VQC
have been trained and tested for quantum modeling toward
potential asteroid hazard prediction.

1) VARIATIONAL QUANTUM CLASSIFIER (VQC)
The variational quantum classifier takes a variational
approach toward quantum circuit training for input data clas-
sification. Being a hybrid, this classical quantum classifier
has three key components: a primary circuit, a variational
circuit, and a classical optimizer. The complete procedure
of training a variational quantum classifier is divided into
4 steps: input encoding, variational quantum circuit, mea-
surement encoding, and a classical optimizer for performance
optimization. Initially, the input data is encoded into a quan-
tum state using a mapping function. One common method is
the ZFeatureMap, which is defined as.

ZFeatureMap(x) =
n∏
i=1

Z (φi)xi (24)

where, x is the input data, n is the number of features, Z (φi)
is the Pauli-Z gate with a rotation angle of φi, and xi is the ith

feature of the input data. The encoded quantum state can be
expressed as.

|ψin⟩ = ZFeatureMap(x)|0⟩ (25)

where 0⟩ is the initial state of the qubits.

|ψin⟩ =
∑
xi∈0,1

√
p(xi) · |xi⟩ (26)

where, p(xi) is the probability of measuring the ith qubit
in the computational basis state xi⟩. After the input data
is encoded into the quantum state, it is passed through a
variational quantum circuit, which consists of a series of
parameterized gates. The output state of the circuit is then
measured to obtain a classical bit string. Two variations of
the parameterized circuit employed are the RealAmplitudes
circuit and the EfficientSU2 circuit. The RealAmplitudes
circuit is a simple circuit that consists of alternating layers
of single-qubit rotations and entangling gates. The circuit
parameters are the rotation angles and the entangling gate
types. The RealAmplitudes circuit can be expressed as.

U (θ ) = e−iθpHpe−iθp−1Hp−1 · · · e−iθ1H1 (27)

where, θ is the set of variational circuit parameters, Hi
is the Hamiltonian for the ith layer of the circuit, and θi
are the rotation angles for the ith layer. FIGURE 2 illustrates
the trainable parameterized circuit used for data encoding.
The EfficientSU2 circuit is a more complex circuit that
consists of layers of single-qubit rotations and entangling
gates, similar to the RealAmplitudes circuit. However, the
EfficientSU2 circuit uses a more efficient parameterization
for the single-qubit rotations, which reduces the number of

FIGURE 2. Parameterised circuit.

circuit parameters. The circuit can be expressed as.

U (θ ) =
m∏
j=1

Uent(θ j)Usingle(φj) (28)

where, θ j and φj are the sets of entangling and single-qubit
rotation parameters, respectively, for the jth layer of the cir-
cuit, and m is the number of layers. The output state of either
of the two circuits can be written as.

|ψout ⟩ = U (θ )|ψin⟩ (29)

The measured bit string for either of the two parameterized
circuit output states is represented as a classical probability
distribution.

P(z|θ ) = |⟨z|U (θ )|ψin⟩|2 (30)

where z is a bit string representing the measurement outcome.
The classical bit string obtained from the circuit output is
then mapped back to a quantum state using measurement
encoding. This is done by applying a set of Pauli-X gates to
each qubit corresponding to a bit in the classical bit string
and then applying a phase flip gate to the resulting state. The
measurement encoding can be representedmathematically as.

|ψme⟩ =

n∏
j=1

(−1)zjXj|ψout ⟩ (31)

where n is the number of qubits in the circuit, zj is the jth bit
of the classical bit string, and Xj is the Pauli-X gate acting on
the jth qubit. The final quantum state is used to compute the
cost function, whichmeasures the error between the predicted
and actual classification outputs. One common cost function
is the binary cross-entropy function, which is defined as.

C(θ ) = −
1
N

N∑
i=1

[yi log(P(yi = 1|θ , xi)) (32)

+ (1− yi) log(P(yi = 0|θ , xi))] (33)

where, θ is the set of variational circuit parameters, N is
the number of input samples, xi is the ith input sample, yi
is the corresponding target output, and P(yi = 1|θ , xi) is
the probability of predicting a positive output for the ith

input sample, given the variational circuit parameters. In sum-
mary, the input encoding for a VQC using the ZFeatureMap
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involves applying the Pauli-Z gates to the input data, and the
VQC itself involves using a variational quantum circuit with
either the RealAmplitudes circuit or the EfficientSU2 circuit,
where the circuit parameters are optimized to minimize the
loss function.

2) PEGASOS QUANTUM SUPPORT VECTOR CLASSIFIER
The PQSVC is a QML algorithm that accelerates the com-
putation of support vector machines (SVMs) using quantum
mechanics. It is based on the classical Pegasos algorithm,
a variant of the stochastic gradient descent (SGD) algorithm
commonly used to optimize SVMs. The Pegasos algorithm is
highly efficient, easy to implement, and has excellent conver-
gence properties. PQ-SVC builds upon this foundation, using
quantum computing to solve large-scale SVMproblemsmore
efficiently than classical algorithms. The training process of
PQ-SVC is a non-linear process. This quantum version of
the Pegasos algorithm is the basis of the PQ-SVM algorithm,
which is formulated as follows:

Opegasos = min
w

1
2
|w|22 + C

m∑
i=1

max(0, 1− yiwT xi)2 (34)

where w is the weight vector, xi is the input vector, yi is
the corresponding label, and C is a regularization parame-
ter. The first term in the objective functionOpegasos represents
the regularization term, while the second term represents the
hinge loss function. The optimization problem aims to find
the weight vector that minimizes the objective function. The
PQ-SVM algorithm uses a quantum feature map 8(x) to
map the input vectors into a high-dimensional quantum state,
which is then used to compute the inner product between the
weight vector and the quantum state. The quantum feature
map is defined as follows.

8(x) =
2
√
d

d∑
j=1

sin
(
π j
d

)
|j⟩|xj⟩ (35)

where x is the input vector of dimension d , and |j⟩ is the
j-th computational basis state in a quantum system. Prior to
mapping the input vector to the quantum state, classical data
is converted to a quantum basis state via Pauli Z-evolution
circuits. FIGURE 3 shows the circuit utilized in encoding the
classical data to qubit basis state.

The Fidelity QuantumKernel is used to compute the kernel
matrix in the PQ-SVM algorithm. The kernel matrix is a
matrix of inner products between the feature maps of all
pairs of input vectors, which is used to calculate the decision
boundary between the classes. The Fidelity Quantum Kernel
is defined as follows:

K (xi, xj) = |⟨8(xi),8(xj)⟩|2 (36)

where xi and xj are two input vectors, and8(x) is the quantum
feature map of input vector x. This kernel is based on the
fidelity of the quantum states represented by the feature maps
of the input vectors. It is sometimes called the Fidelity Kernel
because it measures the overlap between two quantum states

FIGURE 3. ZFeature map for classical to qubit encoding.

regarding their fidelity. Once the kernel matrix is computed,
the PQ-SVM algorithm uses it to find the optimal weight
vector that separates the classes with a maximum margin
by minimizing the regularized empirical loss function. The
weight vector is updated using the classical stochastic gra-
dient descent (SGD) algorithm, with each step involving a

projection onto the ball of radius
√

2
λ
, where λ is the regular-

ization parameter. The update rule is given by:

wt+1=wt − ηt

(
λtwt +

1
mC

m∑
i=1

[yi > [wt ·8(xi)]+]8(xi)

)
(37)

where wt is the weight vector at iteration t , ηt is the learning
rate at iteration t , λt = 1

t is the regularization parameter
at iteration t , m is the batch size, C is the regularization
parameter, yi is the label of input vector xi, and [·]+ denotes
the hinge loss function. The hinge loss function is defined as
follows.

[w ·8(x)]+ = max(0, 1− yw ·8(x)) (38)

where, y is the label of the input vector. The PQ-SVC
algorithm is a quantum version of the Pegasos algorithm
used to optimize SVMs. The algorithm aims to minimize the
hinge loss function in a binary classification problem, with
the weight vector as the decision boundary. PQ-SVM, on the
other hand, is a quadratic program that finds the optimal
hyperplane separating the classes with a maximum margin.
The PQ-SVM algorithm uses a quantum feature map to map
the input vectors into a high-dimensional quantum state and
the Fidelity Quantum Kernel to compute the kernel matrix.
The algorithm iteratively applies the quantum feature map,
kernel matrix computation, and classical SGD optimization
until convergence.

The regularization parameter C in the PQ-SVM algorithm
fundamentally influences the balance between the regulariza-
tion term and the misclassification term in the SGD update
rule. It inversely scales the aggregated hinge loss term in
the SGD update rule, thus directly governing the weightage
of misclassified points in the gradient update of the weight
vector wt . A larger value of C effectively decreases the con-
tribution of the hinge loss term in the SGD update, making the
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algorithmmore tolerant of individual misclassifications. This
typically results in a classifier with wider margins, promoting
better generalization of unseen data. However, it simultane-
ously increases the risk of higher bias or underfitting, as the
model may not capture all patterns in the training data. Con-
versely, a smaller value of C increases the influence of the
misclassified points in the weight vector update. This urges
the algorithm to fit these pointsmore strictly, leading to a clas-
sifier with narrower margins that fits the training data more
closely. While this can capture more complex patterns in the
data, it also increases susceptibility to overfitting, especially
in the presence of outliers or noisy data.

Our exploration started with a lower value of C = 1, corre-
sponding to a simpler model with a larger margin and a higher
tolerance for misclassifications. As we increased C to 10, the
margin reduced and the model’s complexity increased in an
attempt to more accurately fit the data. However, our results
indicated a slight decrease in model performance compared
to C = 1. Subsequently, we tested the model with C = 100,
further pushing toward a more complex model. Interestingly,
this also led to inferior performance compared to C = 1. This
underlines the fact that simply increasing the model com-
plexity doesn’t necessarily lead to improved performance,
as it may cause the model to overfit the training data. Driven
by these insights, we decided to test the opposite end of
the spectrum by setting C = 1000. This choice corresponds
to a much more complex model with a smaller margin and
fewer tolerated misclassifications. Notably, this model out-
performed all previous settings on our dataset, demonstrating
that in our specific case, a more complex model with stricter
classification constraints was more suitable.

Therefore, the parameter C has a critical role in determin-
ing the behavior of the PQ-SVM algorithm, striking a balance
between bias and variance in themodel. Careful tuning ofC is
essential to achieve the optimal performance of the PQ-SVM
model. The regularization parameter and the learning rate
control the convergence speed and generalization capability
of the algorithm. A predefined tolerance level determines
the algorithm’s convergence, which measures the difference
between the current and previous weight vectors. The training
process of PQ-SVC is a non-linear form of tracked loss
updation with an increase in complexity at every step.

V. RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP AND SIMULATION ANALYSIS
The proposed architecture was simulated on the IBM Quan-
tum Experience cloud computing facility, utilizing quantum
resources that included a context-aware 32 qubit QASM
simulator and 7 qubit free access quantum computers located
across 3 different locations. These quantum resources pro-
vided the necessary computational power to carry out the
simulations and experiments. To thoroughly assess the algo-
rithms’ performance, multiple runs were scheduled and con-
ducted. This involved testing the algorithms’ handling and
efficiency with dataset size variations and evaluating their
performance on different quantum systems. After running

multiple experiments, it was concluded that current NISQs
cannot be utilized to analyze QML algorithms for large
datasets with higher dimensions. Hence, currently, NISQs can
be operated up to 7 qubits without noise and error with less
computational time with roughly dataset size being in the
range of 5000 to 10000 records.

During the simulation analysis, careful consideration
was given to the limitations and unique characteristics of
each quantum system. This ensured that the algorithms’
behavior in real-world scenarios was effectively evaluated,
taking into account the specific attributes of the quantum
resources used. To support the simulation analysis, a range
of Qiskit libraries were employed. These libraries, includ-
ing qiskit-aer, qiskit-ibm-experiment, qiskit-ibm-provider,
qiskit-ibm-runtime, and qiskit-machine-learning, played a
crucial role in facilitating quantum circuit simulation, exe-
cuting experiments on IBM Quantum systems, interacting
with the quantum computers, and constructing and training
the Quantum Machine Learning (QML) model. The imple-
mentation code was done in Python on the IBM Quantum
Experience iPython Environment. The results for the classical
ML comparison were carried out in MATLAB.

Through the comprehensive evaluation of the algorithms
on various quantum systems and the use of dedicated quan-
tum resources, the proposed architecture’s effectiveness,
efficiency, and robustness were rigorously examined. This
thorough analysis serves to validate the suitability and poten-
tial of the proposed approach for the given task. Table 2
displays the simulation parameters used in the proposed
methodology.

B. EVALUATION METRICS
Evaluation metrics enable quick comparison of models and
comprehensive assessment of their performance on training
and new data. This ensures well-trained models with effective
generalization, making evaluation metrics a vital tool for
ensuring model efficacy and reliability, especially in fields
where a detailed understanding of model performance is nec-
essary. The ensuing discussion concerns a range of metrics
that have been utilized in selecting the final QML model
from among multiple algorithms, including variations based
on hyper-parameters. The problem task’s target is binary
classification; therefore, the metrics for analyzing the model
performance are accuracy, f1_Score, precision, recall, and
confusion matrix, described as follows.

1) CONFUSION MATRIX
The confusion Matrix summarizes the complete characteris-
tics of a model’s performance. Consisting of Four elements
as below, a combination of them indicates the model’s per-
formance bias. The elements of the confusion matrix are as
follows,
• ϵ (True Positives): The number of correctly identified
positive instances by the classifier.

• ζ (False Positives): The number of incorrectly identified
positive instances by the classifier.
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TABLE 2. Simulation parameters of the proposed methodology.

• η (True Negatives): The number of correctly identified
negative instances by the classifier.

• θ (False Negatives): The number of incorrectly identi-
fied negative instances by the classifier.

A comparative display of the confusion matrix for the vari-
ous algorithms has been shown in FIGURE 4. Prediction of
Asteroid being Hazardous is the primary target, hence it is the
’1’ label in the model. Based on the values of the confusion
matrix, three differences are present across the algorithms
Employed. Model Characteristics and varying training times
lead to,
• Higher Sensitivity (ϵ > η)
• Higher Specificity (ϵ < η)
• Balanced Classification (ϵ ≈ η)
Sensitivity and specificity are two essential metrics that

directly measure a model’s ability to classify positive and
negative instances correctly. Sensitivity, also known as the
true positive rate, represents the proportion of true positive
instances correctly identified by the model. Specificity, also
known as the true negative rate, indicates the proportion of
true negative instances accurately classified by the model.
Given that detection of hazardous asteroids is as important
as the low expectancy of an asteroid being life-threatening,

therefore it is required that the model have equal sensitivity
and specificity towards the PHA detection. As observed in the
confusionmatrices of the algorithms in FIGURE4,VQCwith
EfficientSU2 as the ansatz or trainable parameterised circuit
has a balanced specificity @397 and sensitivity @389 with
Low Type I error @28 and even lower Type II error @13.
Also algorithm Pegasos QSVC with C = 1000 has balanced
specificity@408 and sensitivity@402, both errors extremely
low with Type-I error @5 and Type-II error @12.

Algorithms VQC with RealAmplitudes ansatz, Pega-
sosQSVC with C = 100, C = 10, C = 1 and C = 0.01 have
a higher specificity. VQC with RealAmplitudes ansatz has a
higher specificity @409 with sensitivity @373, Low Type I
error @31 and even lower Type II error @14. The Peg-
sosQSVC algorithm with C = 100 and C = 10 have an
equal specificity@400 with low sensitivity@319 and@310,
respectively, with low Type I error @9 for C = 100 and 0
Type I error for C= 10, while the Type II error for both algo-
rithms is in the same range with C= 100 having Type II error
instances @99 and C = 10 having Type II error instances
@108. Similarly, the PegsosQSVC algorithm with C= 1 has
a higher Specificity @390 with low sensitivity @326, and
higher Type I error instances @82 than the Type II error
instances @29. Also, The PegsosQSVC algorithm with C =
0.01 has a higher Specificity@414with low sensitivity@313
and higher Type I error instances @77 than the Type II
error instances @23. Further, for all c variations for the
PegasosQSVC classifier, C = 0.1 is the worst performer
with significantly high sensitivity @441, lower specificity
@268, and 0 Type I error; however, much higher Type II error
instances @118. Algorithm 2 shows the procedure for QML
classifier with ansatz various for the proposed work.

2) PRECISION, RECALL AND F1-SCORE
Precision, recall, and F1-score are essential evaluation met-
rics in the field of machine learning, particularly for classifi-
cation problems. These metrics provide valuable insights into
the performance of a classificationmodel. Precisionmeasures
how accurately a model can predict positive instances, while
recall measures how well it can identify positive instances.
F1-score is a balanced measure that takes into account both
precision and recall, making it a reliable metric for imbal-
anced classes. These metrics are crucial for researchers to
understand the strengths and weaknesses of their classifica-
tion models. Therefore, it is important to carefully evaluate
these metrics and interpret the results to make informed deci-
sions about model selection and improvement. Precision (ρ),
Recall (τ ) and F1-Score (F1) can be defined in terms of true
positive instance (ϵ), true negative instances (η), false positive
instances (ζ ), and false negative instance (θ) as follows.

ρ =
ϵ

ϵ + ζ
; τ =

ϵ

ϵ + θ
; F1 = 2 ·

ρ · τ

ρ + τ
(39)

Table 3 tabulates the Precision, Recall and F1-Scores for all
the algorithms. While PQSVC - C = 1000 has a balanced
performance with the highest values across the 3 metrics:
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FIGURE 4. Confusion matrix heatMap for algorithms under analysis.

TABLE 3. Precision, recall, and F1-score values for all QML algorithms.

Precision-Recall-F1Score ∼ 97.94%, VQC and it’s ansatz
variation and PQSVC with C = 1000 and C = 1 has all
metrics almost equal with average difference1 0.065. Com-
paratively, PQSVC and its’ C variations (C = 100, C = 10,
C = 0.1 and C = 0.01) have a larger marginal difference
of 1100 1.77, 110 2.59, 10.1 3.72 and 10.01 0.83 for the
precision recall values. Out of all algorithms, PQSVC C =
0.1 has the lowest F1-Score, from which it is evident that
the algorithm has a much lower performance with low recall,
meaning weak ability to Distinguish Non-Hazardous Aster-
oids from PHAs. FIGURE 5c, 5b and 5d depict the Table 3
of Metrics graphically.

3) ACCURACY
The accuracy metric is an essential measure to evaluate the
performance of a classification algorithm for identifying haz-
ardous asteroids. It is calculated as the ratio of the correctly
classified hazardous (ϵ), and non-hazardous (η) asteroids to
the total number of asteroids under consideration (ϵ + ζ +

η + θ) [52], [53]. Accurate classification is critical since
misclassifying a non-hazardous asteroid as hazardous can
result in unnecessary disruptions while failing to recognize
a hazardous asteroid can be disastrous. The mathematical
expression for accuracy, denoted by the Greek symbol κ ,
is provided below.

κ =
ϵ + η

ϵ + ζ + η + θ
(40)

Equation 40 shows the ratio of the correctly classified
hazardous and non-hazardous asteroids to the total number
of asteroids. The symbol κ represents accuracy and provides
insight into how effectively a model performs, which helps
compare different models for predicting the state of an aster-
oid being hazardous.

Results obtained for the eight different models indicate
that the VQC algorithm performs very well with varia-
tions in the ansatz with accuracy values of 94.56% and
95.04% for RealAmplitudes ansatz and EfficientSU2 ansatz,
respectively. For PegasosQSVC algorithm there is large vari-
ation △= 12.23 between the highest performing model
(PegasosQSVC c = 1000, Accuracy = 98.11%) and other
variations( PegasosQSVC c = 0.01, 0.1, 1, 10, 100), with
accuracy values 87.91%, 85.73%, 95.53%, 86.74%, and
87.82% respectively.

C. INTERPRETABILITY OF QML MODELS
By maintaining an analogy between the VQC and PQSVC
Models with classical counterparts, we can establish a work-
ing relationship between Neural Networks, Optimization
techniques and Kernel tricks to explain how the Quantum
algorithm can gain an advantage over the Classical ML algo-
rithms. While QMLmodels do not possess a direct metric for
evaluating interpretability, we can delve into their underlying
principles to understand how they make predictions. In the
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FIGURE 5. Comparison between ML and QML models.

case of VQC, the quantum deep learning approach to clas-
sification involves parameter variations of the qubits within
the quantum circuit. These variations can be interpreted as
playing a role analogous to the activation values of neurons in
classical deep neural networks. By applying predefined func-
tions, the probabilities of quantum states within the circuit
can be explicitly translated into the output values of the last
layer. These output values, in turn, enable the prediction of
classical labels or values. However, it’s important to note that
the exact choice of predefined functions can vary depending
on the specific application or problem domain.

On the other hand, PQSVC shares similarities with its clas-
sical counterpart in terms of its kernel. In classical Support
Vector Machines (SVM), the kernel function is responsible
for transforming the input data into a high-dimensional fea-
ture space, where the linear separation between classes can
be achieved. In PQSVC, the kernel function is based on the
principles of quantum mechanics, harnessing the intrinsic
high-dimensional properties offered by quantum systems.
While the exact implementation and selection of quantum
kernels may vary, the underlying idea remains consistent:
leveraging quantum effects to efficiently map the input
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data into a higher-dimensional space, potentially leading to
improved classification performance. While interpretability
in the traditional sense refers to the ability to understand and
control a model’s decision-making process, it is important
to note that QML models, including VQC and PQSVC, are
still nascent. The interpretability of QML models is currently
limited due to the complex nature of quantum states and
transformations. These models operate in a quantum realm
that lacks direct classical analogs, making it challenging to
provide explicit interpretations for their predictions.

D. DISCUSSION
The results comprise eight QML models, each with varying
hyperparameters and performance metrics, compared with
4 ML models.

The first four algorithms are machine learning algorithms -
Decision Tree, K-Nearest Neighbors (KNN), Adaboost Clas-
sifier, and Ridge Classifier - on the original dataset. The
average accuracy achieved by these models was 93.25%,
which mirrors the average recall score and an average
F1-score of 90.26% and a precision score of 88.06%; a
problem became apparent when these models were applied
to a smaller subset of data initially prepared for Quantum
Machine Learning (QML). The models showed a strong
tendency to overfit, performing exceptionally well on the
training data to the point of memorizing it, resulting in nearly
100% performances across all metrics.

Overfitting like this is a serious issue, as the models are
less effective when presented with new, unseen data. In con-
trast, our initial tests with QML on the same data subset
showed less evidence of overfitting, suggesting that QML
models may perform better when generalizing to new data.
These findings provide solid evidence for our decision to shift
our focus to QML, supporting the argument that traditional
machine learning algorithms are reaching their limits and
newer, more advanced techniques are required.

The following two models are quantum-classical hybrid
models, using the Variational Quantum Classifier (VQC)
algorithm with different ansatzes and optimizers. The Effi-
cientSU2 ansatz with COBYLA optimizer achieved an accu-
racy of 93.71%, while the RealAmplitudes ansatz with the
same optimizer achieved a slightly better accuracy of 94.56%.
Both Models have significantly fewer Type I (31 and 13) and
Type II (14 and 39) errors and almost balanced sensitivity and
specificity values, indicating an unbiased model. Both mod-
els’ precision, recall, and f1-score values are also relatively
high and balanced, indicating that they can effectively predict
the hazardous asteroid without bias toward the non-hazardous
floating object classification.

Lastly, the six models are quantum models using the clas-
sical Pegasos algorithm with the FidelityQuantumKernel and
ZFeatureMap. These models vary in the value of the regu-
larization parameter C. The model with C = 1000 achieved
the best performance with an accuracy of 98.11% and high
precision and recall values for both classes @0.9796 and
@0.9794, respectively. The model with C = 1 had lower

accuracy of 95.53% but maintained a balanced precision and
recall for both classes @0.9557 and @0.9553. However, the
models with C = 0.1 and C = 0.01 performed poorly, with
accuracy values of 85.73% and 87.91%, respectively.

The Ansatz used in the quantum models, RealAmpli-
tudes, and EfficientSU2, are different parameterized quan-
tum circuits used to prepare the quantum state in the
quantum-classical hybrid model. The choice of ansatz affects
the expressivity of the circuit and how well it can fit the data.
In this case, the EfficientSU2 ansatz, with its higher number
of parameters, performed better than the RealAmplitudes
ansatz.

The hyperparameter C controls the regularization strength
in the PegasosQSVC algorithm. Higher values of C impose
stricter boundaries on the decision boundary, which can lead
to overfitting if the dataset is small or noisy. Lower values of
C allowmore misclassifications, which can result in underfit-
ting if the dataset is complex. As the results show, the optimal
value of C depends on the dataset’s characteristics and should
be chosen through experimentation. Comparing sensitivity
over specificity, c = 1000 performed the highest out of other
c-value variations.

The precision and recall values for each model provide
insights into how well the model performs for each class.
Precision measures the proportion of true positives among
all positive predictions, while recall measures the proportion
of true positives among all actual positive instances. High
precision and recall values indicate that the model can effec-
tively classify the data without being biased toward either
class. However, a significant difference between precision
and recall values for a specific class can indicate that the
model struggles to identify that class, and improvements must
be made.

In conclusion, the results indicate that the VQC algorithm
can effectively classify data, and the choice of ansatz and
optimizer can significantly affect the model’s performance.
The PegasosQSVC algorithm with the FidelityQuantumKer-
nel and ZFeatureMap also achieved good results, with the
optimal value of C depending on the dataset’s characteristics.
The precision and recall values provide valuable insights
into the model’s performance, especially in identifying the
minority class, and should be considered when evaluating
classification models.

VI. CONCLUSION AND FUTURE SCOPE
In conclusion, existing machine-learning approaches for pre-
dicting asteroid hazards are often resource-intensive, neces-
sitating substantial computational time and effort. These
methods, while effective, often grapple with efficiency, par-
ticularly in accurately identifying potential asteroid threats
in a vast and rapidly expanding dataset. This limitation
underscores the imperative for exploring more potent and
efficient computational strategies such as Quantum Machine
Learning. To address this issue, we proposed a Quantum
Machine Learning-based methodology that leverages the
quantum properties of data to improve the accuracy and
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precision of asteroid classification. Our proposed method
using Variational Quantum Circuits and PQSVC algorithms
outperformed the existing techniques, achieving an accuracy
of 98.11% and an average F1-score of 92.69%. Further-
more, incorporating image-based analysis in our future scope
can enhance the accuracy and efficiency of the proposed
work. Integrating our QML-based asteroid hazard prediction
methodology into the actual system can aid in the real-time
detection and mitigation of potential risks posed by asteroids,
ultimately ensuring the safety of humans and biodiversity.

In futurework, wewill extend the proposedwork to involve
clustering of similar characteristic objects in 3d space, which
defines to be complex with classical computing wherein the
intrinsic nature of qubit to 3d-mapping based on qubit proba-
bility would largely help overcome and aid in the progress of
the task, exciting to expanding on the advanced applications
of QML and astronomy.
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