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ABSTRACT Inspection of cracks is an important process for properlymonitoring andmaintaining a building.
However, manual crack inspection is time-consuming, inconsistent, and dangerous (e.g., in tall buildings).
Due to the development of open-source AI technologies, the increase in available Unmanned Aerial Vehicles
(UAVs) and the availability of smartphone cameras, it has become possible to automate the building crack
inspection process. This study presents the development of an easy-to-use, free and open-source Automated
Building Exterior Crack Inspection Software (ABECIS) for construction and facility managers, using state-
of-the-art segmentation algorithms to identify concrete cracks and generate a quantitative and qualitative
report. ABECIS was tested using images collected from a UAV and smartphone cameras in real-world
conditions and a controlled laboratory environment. From the raw output of the algorithm, the median
Intersection over Unions (IoU) for the test experiments are (1) 0.686 for indoor crack detection experiment in
a controlled lab environment using a commercial drone, (2) 0.186 for indoor crack detection at a construction
site using a smartphone and (3) 0.958 for outdoor crack detection on university campus using a commercial
drone. These IoU results can be improved significantly to over 0.8 when a human operator selectively
removes the false positives. In general, ABECIS performs best for outdoor drone images, and combining
the algorithm predictions with human verification/intervention offers very accurate crack detection results.
The software is available publicly and can be downloaded for out-of-the-box use.

INDEX TERMS Building inspection, construction automation, deep learning, Detectron2, image processing,
segmentation.

I. INTRODUCTION
Depending on the maintenance plan, the inspection of build-
ings is a time-consuming, repeating process with intervals
between 5 to 10 years [1]. For the most part, inspections
are done manually by inspectors. It is a labor-intense task
when done for large buildings (or a portfolio of buildings).
Moreover, it is dangerous if the inspection of the exterior
of the building is required for high-rise buildings because,
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traditionally, it requires an inspector to abseil down over
different sides of a building [2]. Also, the manual visual
examination is usually done by experienced operators with
specialized surveying tools such as magnifiers, crack rulers,
etc. Sometimes, the results can be inconsistent and suffer
from human subjectivity [3]. Therefore, the manual inspec-
tion does not leave consistent computerized data (i.e., digital
data), which can be used to compare the results of successive
inspections over time later.

In recent years, there have been developments in commer-
cial Unmanned Aerial Vehicles (UAVs) or drones and the
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widespread availability of smartphones. Moreover, there are
also immense developments in open-source Artificial Intelli-
gence (AI) systems. Therefore, it has now become possible
to fuse all these technologies to implement a partially, if not
fully, autonomous crack detection system which takes digital
images from smartphone cameras, UAVs, or robots as input,
then uses AI and image processing techniques to identify the
location of the cracks and provides detailed quantitative and
qualitative reports. There has been an increase in research
utilizing image processing techniques and AI to detect and
classify cracks with varying levels of success [4]. Neverthe-
less, many of these research experiments tend to be very
technical or research-oriented and have not been adopted by
mainstream construction and facility managers. This research
aims to close the gap between theoretical research in crack
detection and practical application in the field by developing
an Automated Building Exterior Crack Inspection Software
(ABECIS). ABECIS has been developed as an easy-to-use,
free and open-source graphical crack detection software that
runs cross-platform on all operating systems. The software
only takes images of buildings (either taken by smartphone
cameras, UAVs, or other robotic platforms) as input, detects
the cracks based on user-adjusted parameters and automati-
cally generates detailed quantitative and qualitative reports.
Therefore, the construction and facility managers can simply
select a folder with all the images of the building they want
to inspect using ABECIS, and the rest of the process will
be automated with minimum need for human intervention,
allowing them to harness all the advantages of AI without
the need to be technical or knowledgeable about it. ABECIS
has been made publicly available through a GitHub repos-
itory [5]. Installation instructions can be found in [6]. The
main elements and contributions of this paper are as follows:

• A novel open-source Automated Building Exterior
Crack Inspection Software (ABECIS) for construction
and facility managers has been developed.

• The software is not dependent on a specific platform for
the origin of the information, making it accessible to the
general public.

• The system provides an easy-to-use interface with a
completely automated process that locates and segments
cracks within the provided pictures.

• The detected cracks are analyzed to determine their type
and their length.

• The software gives the possibility for the human operator
to provide feedback in the process, increasing the overall
performance of the method.

• Both indoor and outdoor experiments have been per-
formed to test the validity of the software.

• The datasets, results, and software are open-source and
have been made publicly available.

In the first part of this paper, an extensive literature review
is done through relevant research papers in recent years,
as well as a review of publicly available crack detection algo-
rithms online and some industry research papers. Secondly,

the paper addresses the necessary background information
on data collection with smartphones and drones, classifi-
cation of building crack types, deep learning, and instance
segmentation algorithms. The third part of this paper dis-
cusses the research methodology, lays out the theoretical
assumptions, and explains the basic functionality of the soft-
ware. This is followed by an implementation section, where
the process of developing ABECIS, its functionalities and
outputs are described. Afterward, the results from testing
ABECIS with images taken (a) using a commercial drone
in a laboratory environment with a mockup concrete wall,
(b) using a smartphone camera in an actual construction site
and real urban settings and (c) using a commercial drone out-
doors on the university campus are evaluated and discussed.
Finally, the conclusion, outlook, and acknowledgment are
provided.

II. LITERATURE REVIEW
A literature review was done through a wide variety of
conferences and journal publications to identify and summa-
rize the state-of-the-art crack detection techniques and their
situation at the time of this study. To focus the paper on the
application and usability of these techniques on-site in the
real world, this literature review discusses academic research
papers (subsection II-A) and addresses the open-source
code for crack detection that are publicly available
(subsection II-B).

A. LITERATURE REVIEW OF ACADEMIC RESEARCH
A comprehensive summary of relevant papers addressing
the use of image processing techniques (with and with-
out the use of AI), with varying degrees of automation to
detect defects on buildings or structures with various sur-
face materials, published in recent years, were identified
using a keyword-based search. This study identified the state-
of-the-art research trends in crack detection and building
monitoring techniques in construction in general, using the
following keywords: ‘‘building inspection,’’ ‘‘automation,’’
‘‘deep learning,’’ ‘‘machine learning,’’ ‘‘crack detection,’’
‘‘building monitoring,’’ ‘‘segmentation,’’ ‘‘image process-
ing.’’ The sources are selected based on clarity, the novelty
in the methods presented, and their relevance to this study.
Findings from that review are provided below, and a summary
table with all papers reviewed is available in Appendix A
(Table 4).

From the literature review and a quick inspection of Table 4
in Appendix A, cracks are some of the most common defects
detected when inspecting building exteriors. Most of the
approaches are semi-autonomous, meaning that at least the
data acquisition during the process is manually commanded,
or the methodology requires some manual input during the
crack recognition process. The most popular platform is a
drone (UAV) for data acquisition (i.e., taking images during
the inspection).

Similar studies to the one proposed in this paper have
been done. However, the proposed method addressed some
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of the limitations. For example, within the approaches that
use Artificial Intelligence (AI) for data processing, a few of
the methods [7], [8], [9] use an R-CNN [10] approach for
data processing. Ayele et al. [7] used images of the Skods-
berg concrete bridge in Norway taken with a UAV to detect
cracks. The length, width and areas of the cracks were found
computationally. However, the study does not provide any
datasets or code samples for replicating it. Yu et al. [11] and
Cen et al. [12] presented machine learning-based approaches
to detect cracks on the concrete surface of bridges. They
used a UAV to collect the images to train the algorithm,
but those studies do not account for automation in the data
collection process. The approach proposed by Yu et al. [11]
only provides the classification and localization of the cracks
instead of the actual instance segmentation needed to fur-
ther analyze the crack. In the work of Cen et al. [12], they
evaluated how the size of the filter window and the setting
of the threshold can affect the results of the crack detec-
tion process. However, they only provide a classification of
images without a precise localization or instance segmen-
tation of the cracks. Jo and Jadidi [13] presented a system
that used multi-layered image processing and deep belief
learning to classify road surface cracks. They indicate that
their method can be used with a UAV. However, they do
not test this particular data collection approach, showcasing
just RGB and infrared images collected with a smartphone
camera (with the help of a FLIR one attachment). The first
step in their processing stage was a multi-layered traditional
image filtering, applying different filters such as Gabor, Otsu,
Retinex and Prewitt filters in order to extract features of
segmentation, edges and background. The features were then
sent to a Deep Belief Network (DBN) classifier [14]. Their
system is only able to classify images, not actually detect
and segment the cracks. Within the AI spectrum, CNN-based
approaches are the most popular [15], [16], [17], [18], [19],
[20]. Silva et al. [15] used YOLOv4 [21] classifier to clas-
sify and detect potholes and cracks in the pavement. Both
Yeum et al. [16] and Dorafshan et al. [17] used a CNN-based
AlexNet approach [22]. Yeum et al. [16] focused on validat-
ing Regions of Interest (ROI) around bridge metal joints for
further inspection of the welding areas. Dorafshan et al. [17]
compared the performance of the CNN approach against
traditional image processing filters, proving the superiority of
the AI-based approaches when it comes to crack detection.
Chen et al. [23] proposed a two-step deep learning method
for the automated detection of façade cracks. They used a
UAV to collect the images and put them through a first
classification step where a CNN model was used to classify
regions of the image as crack or non-crack. Based on a
U-Net neural networkmodel, the second step extracts the pix-
els corresponding to cracks from the crack-labeled regions.
They also compared how their algorithm performs against
traditional image processing methods. Despite their method
being reliable for crack segmentation, they do not provide any
analysis of the detected crack.

Some methods focus on traditional image processing tech-
niques without the involvement of AI techniques. For those
focusing on crack detection, the data processing involves
multiple algorithms based on edge detection [24], [25], [26],
[27], [28], [29], [30], [31]. For the most part, methods based
on edge detection cannot provide results as reliable as those
with AI data processing. For instance, Liu et al. [26] per-
formed a 3D reconstruction of bridge piers with the help
of Structure from Motion (SfM) techniques to later project
the located crack in 3D. Although they thoroughly analyzed
the detected crack, they did not provide quantitative results
on how well the algorithm detected said cracks (i.e., there
is no information on false negatives). Other approaches do
not focus on the precise localization of cracks and rely more
on qualitative surface evaluation, such as the absence of
paint [32] or variation of defects by measuring the similarity
between two pictures [33].

The approaches mentioned above are either manual or
semi-autonomous in the sense that none of them consider
the automation of the data collection process. Within the
few fully autonomous approaches that have been found,
Jo et al. [34] proposed a methodology that would perform
fully autonomous inspections on concrete surfaces. The work
is based on an autonomous control over the UAV during the
data collection, considering different agents (e.g., wind) to
control the path of the UAV while both RGB and infrared
images are being collected. Both images are later processed
by a machine learning agent to identify cracks by combining
the detections in both spectrums. Nonetheless, they do not
provide any results of the proposed methodology. Kang and
Cha [35] proposed an ultrasonic beacon system to replace the
role of the GPS to provide autonomy to the UAV during the
data acquisition. The video data taken with the UAV is later
processed with the help of a deep convolutional neural net-
work (CNN) to detect concrete cracks. Their method can suc-
cessfully locate a small set of cracks present on the concrete
floors. However, their approach could only detect and locate
cracks without performing actual instance segmentation that
could be used to further analyze the crack to provide more
data. Li et al. [36] used an autonomous UAV-based system to
detect cracks in mining slopes. They compared some of the
most traditional edge detectors (i.e., Prewitt, Sobel, Canny)
with a U-Net approach to detect rocks and cracks amongst the
slopes. Even though their study highlighted the performance
of each method for edge detection, it did not provide an
assessment of the cracks detected during the experiment or
the outcomes of the project; therefore, it is hard to evaluate
the effectiveness of the proposed approach.

B. INDUSTRY RESEARCH AND AVAILABLE CRACK
DETECTION CODE
To consider the development in the industry and the acces-
sibility of these tools in the public domain, the literature
review was extended to include code repositories on GitHub
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TABLE 1. Summary of review on the crack detection code and
industry/commercial products available online.

and online writings by the industry, such as Canon [37].
The keyword-based search on search engines (Google, Duck-
DuckGo) and GitHub using the keyword ‘‘crack detection
software’’ led to the resources summarized in Table 1.

There are existing codes for crack detection available to
the public. Except for Zou et al. [42] and Dais [41], that
provide their dataset and pre-trained models online so that the
public can download their code and run the crack detection
algorithms on their own for specific types of cracks (for
masonry surface cracks and pavement cracks only), most
available code does not offer pre-trained models. There-
fore, one must perform the training before the algorithm
can be used. Training a machine learning algorithm by one-
self has both advantages and limitations. As an advantage,
one can fine-tune the parameters, such as the number of
epochs, to make the model suitable for the project’s specific
needs. However, as a limitation, setting up the computing
environment and requirements to train the machine learning
model may be difficult for unfamiliar individuals. There-
fore, everyone cannot utilize this crack detection algorithm
unless they can set up the computing environment them-
selves. It is worth noting that there are several commercially
available crack detection algorithms, such as those developed
by Dynamic Infrastructure [43] and T2D2 [44, p. 2]. They are
proprietary software developed by businesses and cannot be
freely accessed. Their technology remains proprietary, closed
source, and not accessible for obvious reasons; hence cannot
be included or evaluated in this study.

Nevertheless, even if the code and the data are provided
online to be accessible by interested stakeholders (e.g., con-
struction and facility managers and building inspectors),
those resources are still very limited in many ways. For
example, (1) they require the user to be able to operate them
using a command-line interface since many of the Python
scripts have to be run in the terminal, (2) they assume that the
users can set up several things on their own – for instance,
there are no instructions on these GitHub pages about how to
set up the required machine learning libraries, except simply
stating that they are required, e.g., Requirements – PyTorch,
and (3) they do not generate a final report summarizing the
cracks identified and the analyzed data, which is one of
the most important information for construction and facility
managers.

FIGURE 1. General types of object detection algorithms for images.

Many of the construction and facility managers that are not
familiar with coding or do not interact with computers daily
might not have the required technical literacy to operate the
command line interface or figure out how to set up machine
learning libraries on their own, and they would benefit by
having a more user-friendly way to do the crack detection and
analysis. To address that, ABECIS was developed as a freely
accessible and user-friendly crack detection software with an
intuitive Graphical User Interface (GUI). The main purpose
is to utilize and modify existing algorithms with our own data
to produce a readily accessible solution for facility managers,
which currently does not exist. ABECIS is designed to work
out-of-the-box, with minimal setup by the user. There is no
need to go and download the pre-trained model and set up
the software directory since it will perform the setup on its
own. Moreover, once the input images are selected, the rest of
the tasks, from the analysis to the report generation, are also
done autonomously. For the parts of the cracks detected with
uncertainty, the user will have a choice to intervene manually
and reject the wrong identifications. Afterward, a qualitative
and quantitative report will be generated alongwith annotated
crack images.

C. CRACK DETECTION ALGORITHMS
Many algorithms currently exist for the detection of objects.
However, almost all the algorithms can be generally clas-
sified into 4 broad categories. These algorithms can be
classified into (a) Semantic Segmentation, (b) Classifica-
tion and Localization, (c) Object Detection and (d) Instance
Segmentation algorithms (Figure 1). Semantic Segmentation
classifies every pixel in the image into classes (e.g., wall and
crack). Classification and Localization algorithms only show
the location of a single object. Object Detection algorithms
are superior to the former two since they detect each object
(e.g., in Figure 1) and its location, but not shape and size.
Instance Segmentation is the most powerful technique among
the four because it provides information about each object’s
location, shape and size. Therefore, for this study, instance
segmentation was used as the main detection algorithm.

Hafiz and Bhat [45] did a survey on the state-of-the-
art instance segmentation algorithms. Their study indicated
that notable instance segmentation algorithms include PANet,
YOLACT, andMask R-CNN. PANet [46] and YOLACT [47]
algorithms have their code on GitHub repositories but are no
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longer actively maintained and updated. PANet uses an adap-
tive feature pooling technique to funnel useful information in
each feature level through the neural network for better mask
prediction. YOLACT achieves real-time instance segmenta-
tion by breaking the instance segmentation into two subtasks.
Nevertheless, non-updated code makes PANet and YOLACT
non-ideal due to the deprecation of dependent Python pack-
ages over time. Regarding Mask R-CNN, its official GitHub
repository [48] states that Mask R-CNN has been depre-
cated and is now implemented into an instance segmentation
framework called Detectron2 [49, p. 2], which is actively
maintained byMeta Research. The comparison among differ-
ent instance segmentation algorithms is beyond the scope of
this study, and given the current state of Detectron2 regarding
updateability and overall reported performance, the authors
decided to use Detectron2 as the algorithm used to develop
ABECIS.

III. BACKGROUND
The ABECIS system is designed in a very flexible way
such that it can accept a variety of inputs produced by dif-
ferent methods of data collection – from very accessible,
simplistic methods, such as photos taken using smartphones,
to complex, professional methods such as photos taken using
industrial drones such as the DJIMatrice 300 RTK (Figure 2),
or autonomous robotic platforms as suggested by [50]. The
only requirement is that the input must be an RGB image. For
this study, twomethods for image collection, namely cameras
on (1) an industrial drone and (2) smartphones were used.

FIGURE 2. DJI Matrice 300 RTK [51].

Although the ABECIS system can function independently
of the input method used, the quality of results and analy-
sis produced may differ depending on the quality of input
images from different methods. For instance, the images
taken by the industrial drones will have more metadata that
can be extracted for further analysis (e.g., the distance of the
drone from the wall), which can be used to approximate the
dimensions of the items of interest (in this case the length
of a concrete crack). However, with the images taken by the
smartphone, the data for the distance between the smartphone
camera and the wall is missing; therefore, the dimensions of
the crack cannot be approximated. Moreover, the difference
in methods will also affect the accessible locations of the
images for crack detection (e.g., drones can facilitate captur-
ing images for crack detection in the façade of a 30th-floor

FIGURE 3. Different types of cracks classified in ABECIS: (a) horizontal,
(b) vertical, and (c) diagonal from a horizontal perspective (source [53).

building compared to a manual inspection using a smart-
phone).

A. CRACK CLASSIFICATION TERMINOLOGY
The classification of the concrete cracks for this study has
been done in accordance with the ACI Concrete Terminology
report by American Concrete Institute [52]. In particular,
concrete cracks have been classified into 3 categories based
on their orientation (Horizontal Crack, Vertical Crack and
Diagonal Crack). Cracks that are either 180◦ or 90◦ to the
horizontal are classified as horizontal and vertical cracks,
respectively. Other cracks are classified as diagonal cracks
(Figure 3). It is assumed that the images of the cracks are
upright and not rotated, taken from a horizontal position, and
with a camera orientation perpendicular to the plane being
inspected.

B. DEEP LEARNING AND CRACK DETECTION
Deep Learning is a technique in Artificial Intelligence (AI)
that uses artificial neural networks and is widely used to clas-
sify images [54]. Traditionally, crack detection algorithms
use non-AI techniques such as Local Binary Patterns and
shape-based algorithms [54]. Since 2012, deep learning algo-
rithms have gained popularity and outperformed traditional
detection methods [22].

1) OPEN-SOURCE DEEP LEARNING FRAMEWORKS
There has been a significant increase in publicly available
open-source deep learning software libraries in recent years,
allowing users to quickly create their custom deep learning
models. For this study, a computer vision technique called
instance segmentation - the task of detecting the distinct
objects of interest appearing in the images – is used. Many
popular instance segmentation algorithms already exist, such
as PixelLib [55]. However, Detectron2 [49, p. 2], a state-
of-the-art instance segmentation algorithm developed by
Meta (formerly Facebook) Research, has been used for this
study. Detectron2 is an improvement on Mask R-CNN and
is updated more frequently than other algorithms [49, p.
2], [56].

2) PREPARATION OF DATASET FOR TRAINING
The algorithm must first be trained to detect cracks
using instance segmentation. The training requires many
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pre-labeled images. This dataset can be obtained by oneself
or using publicly available datasets. Özgenel and Sorguç [53]
have publicly shared their dataset of concrete crack image
data, which has been used in this research to train the model
for concrete wall crack detection. For this study, the authors
did a manual polygonal annotation of 800 images from [53]
using LabelMe software [57], [58] (e.g., Figure 4) so that
those images could be used for instance segmentation training
during the development of the model. A sample of the labeled
images developed for this study is publicly shared and avail-
able at [59].

FIGURE 4. Polygonal annotation of images by the authors using
LabelMe [57] and used for model training.

IV. RESEARCH METHODOLOGY
A. REAL-WORLD CONSTRAINTS AND ASSUMPTIONS
Numerous constraints and situations can interfere with the
crack detection algorithm, producing false results in the
real world. Image-processing results can be heavily affected
depending on the camera angle, distance to the wall, shadows
in images, and blind spots. For this study, the ABECIS system
assumes the following from the images captured from the real
world:

• The images are upright, not rotated and taken from a
horizontal position.

• The images only contain the object of interest (wall) and
no other objects.

• All the crack-like features, whether naturally occurring
or intentionally man-made (e.g., some architectural fea-
tures might contain gaps or openings in the walls for
aesthetic purposes), will be flagged as possible cracks
and verified by humans afterward.

• Camera orientation is perpendicular to the plane of the
object under inspection.

These assumptions are made because unless the images
taken by inspectors or drones are preprocessed before apply-
ing the crack detection algorithm, a high number of unde-
sirable false-positive and false-negative errors are likely to
occur [16].

FIGURE 5. System architecture of the automated building exterior crack
inspection system (ABECIS) (expanded from [60]).

B. SYSTEM ARCHITECTURE
The overall system architecture for ABECIS is an expansion
of the authors’ work presented in [60]. It includes human
input and machine automation parts (Figure 5). Initially, the
system will prompt the user to select a directory on their
computer containing all the images to be analyzed for cracks.
Afterward, the user will need to adjust the lower and upper
confidence score threshold. Confidence scores are numbers
between 0 and 100 used to describe how well the algorithm
thinks it has detected a crack (100 being a perfect detection).
The threshold values set a cutoff point such that identified
cracks with a confidence score below the threshold value
will be rejected. However, there may be some images of
non-cracks for which the software is highly confident that
they are cracks, resulting in false positives. In some scenarios,
there might be objects which resemble cracks (e.g., dents
or scratches on the walls, intentional man-made crack-like
grooves, such as small gaps between two walls). For such
cases, the algorithm might not be certain of the cracks identi-
fied and might require the assistance of a human operator to
make a final decision (i.e., verification/intervention).

Therefore, ABECIS has two threshold values (upper and
lower) for the confidence scores, which work as shown in
Figure 6. Using the pre-trained segmentation model on all
the available images, any images containing crack detec-
tion confident scores higher than the upper threshold will
be classified into a folder named ‘‘Confident.’’ In contrast,
identified cracks that fall within the upper and lower threshold
will be classified into a folder named ‘‘Possible’’. Otherwise,
the identified cracks are rejected. These two parameters are
fully adjustable by the human operator and are to be decided
by their judgment based on the environmental situation and
difficulty of the crack detection task. Such threshold values
are subjective; however, they are necessary to give more
control to users depending on their specific use case.

After the cracks are identified and classified into the ‘‘Pos-
sible’’ and ‘‘Confident’’ folders, the detection results are
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FIGURE 6. Confidence threshold in ABECIS.

FIGURE 7. Examples of images used for the (a) training and (b) testing
datasets (red = diagonal cracks, green = vertical cracks, yellow =

horizontal cracks). The dataset was prepared via polygon labeling by the
authors in LabelMe using raw images from [49, p. 2]. A subset of the
labeled images developed for this study can be found in [59].

ready to be visualized, and all the segmented masks of the
images (black and white binary images where white repre-
sents the crack regions) are generated for quantitative analysis
(e.g., length and area of the crack). The process is done
completely autonomously by the software. Afterward, the
human operator can use the Graphical User Interface (GUI)
to inspect the crack detection results in the ‘‘Possible’’ and
‘‘Confident’’ folders and reject any false positives, if any.
Finally, taking this human input into account, the software can
generate a detailed report for individual images with the types
of cracks, including the time the image was taken (identified
from metadata for monitoring purposes) and the length and

FIGURE 8. General overview of the architecture of the used segmentation
algorithm.

area of the wall cracks in pixels and relative percentages.
Therefore, the algorithm contains two instances where human
intervention is required (initially to set the threshold parame-
ters and finally to verify the outputs). Outside this, the process
is fully automated. It is worth mentioning that ABECIS
could run completely autonomously with predefined thresh-
olds. However, construction places are extremely dynamic
environments and present a wide variety of conditions and
scenarios. Allowing the human operator to provide some
minimum input on the system allows for more robust and
reliable results that can be used in real construction projects.
ABECIS can be downloaded from the GitHub repository [5]
and used by construction and facility managers and building
inspectors with minimal setup using their own inspection
images.

V. DEEP LEARNING MODEL AND SOFTWARE
DEVELOPMENT
A. TRAINING THE INSTANCE SEGMENTATION NEURAL
NETWORK
The image segmentation model was developed using
800 images and the Detectron2 library using the Özgenel
and Sorguç [53] dataset labeled by the authors. The training
dataset consists of 700 images, and the testing dataset consists
of 100 images (i.e., a distribution of 87.5% for training and
12.5% for testing). Example images of the training and testing
datasets can be seen in Figure 7.

The model was trained using COCO-Instance Segmen-
tation, mask_rcnn_R_50_FPN_3x, the pre-trained model.
It would take a long time to train a model from scratch;
therefore, pre-trained models like these are used to speed up
the process. Although Detectron2 contains more pre-trained
models, such as C4 and DC5, FPN was chosen because
it provides the best speed/accuracy tradeoff, according to
Detectron2 documentation. A general overview of the archi-
tecture of the used model is shown in Figure 8. For detailed
information on COCO-Instance Segmentation, readers are
referred to [61, p. 2].

In terms of parameters, ABECIS uses the COCO-Instance
Segmentation model in Detectron 2 with the parameters
shown in Table 2 below.
The kernel size is the size of the convolutional filter and

is set to a combination of (1, 1), (3, 3) and (7, 7) in pixels
to capture small and large features in the image. Stride is the
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TABLE 2. Detailed parameters and architecture of maskrcnn R50 FPN 3X.

step size of the filter and is set to (1, 1) and (2, 2) in pixels
to capture both fine and coarse details in the image. Padding
is the number of pixels added to the image to preserve the
spatial dimensions and is set to (1, 1) and (3, 3) pixels. Bias
is set to false to prevent overfitting. EPS, a small value that is
used to prevent numerical instability or divide-by-zero errors,
is set to 1e-05 to ensure numerical stability. The number of
features, which are the number of output channels for the
convolutional layer, is set to 64 and 256.

In addition to these parameters, the configuration file,
cfg, is created by merging the parameters from the COCO-
InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml file.
The number of workers for the dataloader is set to 2;
the weights are set to the checkpoint URL of the COCO-
InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml file.
The solver is set to have 2 images per batch and a base learn-
ing rate of 0.00025 with a maximum number of iterations set
to 3000. The number of classes for the ROI heads is set to
3 and can be modified according to the specific application.

Cross-entropy loss [62] and accuracy [63] were calculated
to measure how well the model performed. Cross-entropy
loss of 0 indicates a perfect model and an accuracy of 1 indi-
cates a perfect model, too. After training for 3,000 epochs,
the cross-entropy loss of the model reached close to 0.1
(Figure 9a), and the accuracy was 0.97 (Figure 9b). This
indicates that the trained model is reliable.

B. SOFTWARE FEATURES AND DEVELOPMENT
Once the image segmentation model was trained, a cross-
platform software application was developed using Detec-
tron2 [49] for the deep learning component, PyQt6 [64] for
the Graphical User Interface (GUI), and OpenCV for image
processing [65]. Detailed code implementation is available
at [5] for interested readers. The application has been tested
on Windows and macOS. Although it has not been used in
Linux, there is no known incompatibility that would prevent
ABECIS from working in Linux as well. Full installation
instructions and code are available in the GitHub repos-
itory [66]. All the functions described in Figure 5 have
been implemented in the ABECIS Graphical User Interface
(Figure 10).
The software uses multithreading; therefore, human oper-

ators can begin inspecting the results and start rejecting false
positives without having towait for the entire analysis process
to finish.

FIGURE 9. (a) Cross-entropy loss, and (b) accuracy during the training of
the neural network model.

C. CRACK LENGTH ESTIMATION
Once the black and white binary masks of the crack detec-
tion results are generated, the length of the cracks can be
approximated by converting the shape into a one-dimensional
object, removing the width dimension using a morphological
thinning operation [67]. This operation is an image process-
ing method to reduce the shape of the object into a 1-pixel
wide line, called the topological skeleton of the object. This
operation is also handled by the ABECIS Graphical User
Interface. The process is described in (1).

A ∧ B = A− (As∗B) = A ∩ (As∗B)c (1)

where A is the set containing the image pixels with the value 1
(white), B is the structuring element, s∗ is a hit-or-miss trans-
formation used in morphological image processing [68], and
c is the complement operation.

As shown in Figure 11, the original image is analyzed for
cracks, and the cracks are segmented. Then, the segmented
cracks are converted to a binary mask, followed by the thin-
ning process of the lines to 1-pixel width. Once the lines
have a width of 1 pixel, the total length of the cracks in the
image is simply the number of white pixels belonging to each
crack. Without a metric reference in the image or information
regarding the scale, it is not possible to get a proportional
conversion between pixels and real-world measurements.
Figure 11 is meant to show the process only. Challenging
examples are discussed in Sections VI-B and VI-C.
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FIGURE 10. Graphical user interface (GUI) for the ABECIS software.

VI. EXPERIMENTATION
Images taken in different environments using different meth-
ods were used to evaluate the performance of the ABECIS
crack detection software. The results were evaluated (1)
visually and (2) using the Intersection over Union (IoU),
a metric to evaluate the performance of instance segmentation
algorithms based on the extent of overlap of two boxes.
The software has been tested in three different environments,
(1) a controlled environment in the laboratory with images
taken by a commercial drone, (2) a construction site with
images taken by a smartphone camera, and (3) an outdoor
environment around the New York University Abu Dhabi
campus with images taken by a commercial drone (DJI
Matrice 300 RTK).

A. LABORATORY EXPERIMENT (DRONE)
A movable mockup wall and a drone were used for the
laboratory test (Figure 12). The mockup wall consisted of a
concrete surface (approximate dimensions of 63 cm x 76 cm)
with a wood frame and 7 intentionally made diagonal cracks.
It was mounted on an aluminum frame with wheels for ease
of transport. The drone was a DJI Matrice 300 RTK com-
mercial. Altogether, 14 images were taken (the images can be
found in [69]) from a distance of 4 meters from the wall and

FIGURE 11. Different components of the crack length estimation process
showing (a) original image, (b) instance segmentation of cracks, (c) binary
mask resultant from the segmentation process, and (d) morphological
thinning operation applied to the binary mask, resulting in lines with a
width of 1-pixel.

analyzed using ABECIS. The images taken by the drone have
a resolution of 4,056× 3,040 pixels. The results (i.e., IoU and
length) from these images are in Appendix B (Table 5).
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FIGURE 12. General views of the experimental setup showing the
mockup wall with concrete cracks and the drone used in (a) standby
mode and (b) in operation (i.e., flying and taking images).

From the visual inspection of the different images and the
result summarized in the report, it was found that the ABECIS
system was able to successfully detect all the cracks in the
controlled laboratory environment (Figure 13a), with just a
small number of false positives. The false positives occurred
when the image contained the surrounding objects in addition
to the wall. In such cases, surrounding objects (similar to
cracks) were classified as cracks (Figure 13b).

B. ON-SITE EXPERIMENT (SMARTPHONE CAMERA)
For the on-site test, the authors visited an ongoing construc-
tion site and took images using an Android smartphone with
a 1.9 Megapixel camera with a resolution of 4,000 × 2,252
pixels. Altogether 14 images were taken (the images can be
found in [69]), and the reports were generated using ABECIS
software. The results can be found in Appendix B (Table 6).
Although there are not many cracks in the construction site,
the ones present were correctly detected with varying degrees
of accuracy (Figure 14).
However, there are also several false positives. These are

mainly due to objects that are very similar to cracks (e.g.,
scratches, markings on walls, pipes, wires). Some examples
can be seen in Figure 15. It is worth mentioning that a real
ongoing construction site is an extremely difficult scenario
for a segmentation process. Nonetheless, all the true positives
were detected, and all the resultant false positives can be

FIGURE 13. General views of the experimental setup showing the
mockup wall with concrete cracks and the drone used in (a) standby
mode and (b) in operation (i.e., flying and taking images).

manually discarded with an easy manual operation from the
ABECIS GUI.

C. OUTDOOR EXPERIMENT (DRONE)
Moreover, for the outdoor test, the authors also took images
of the surrounding areas of the NYUAD campus using a DJI
Matrice 300 RTK commercial drone. Altogether, 14 images
were taken (the images can be found in [69]), and the results
can be seen inAppendix B (Table 7). A few cracks foundwere
detected (e.g., Figure 16a). However, the algorithm occasion-
ally missed very thin hairline-type cracks (Figure 16b).

There were a few false positives in the outdoor drone
experiment. Many were related to objects resembling cracks,
such as the control joints with fillers or areas between the
walls or concrete slabs, as in Figure 17a or the gap between
two concrete slabs, as in Figure 17b.

VII. RESULTS AND LIMITATIONS
All the results are provided in Appendix B and C. The Repos-
itory can be found with detailed information at [69].
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FIGURE 14. Examples of correctly detected (a) vertical and (b) diagonal
cracks from the indoor construction site images taken using a
smartphone.

A. INTERSECTION OVER UNION (IOU) EVALUATION
For the evaluation of the performance of the ABECIS system,
Intersection Over Union (IoU), a method to quantify the
percent overlap between the target mask and the obtained
output (Equation 2), was calculated for the 14 images in three
categories (i.e., Lab, On-Site and Outdoors). An IoU score of
1 indicates that the model performs perfectly, whereas a score
of 0 indicates that the prediction and the ground truth do not
overlap at all. The IoUwas calculated for a total of 42 (14×3)
images in three experiments, and the summary statistics are
shown in Table 3.

IoU =
Area of Overlap
Area of Union

(2)

To account for the effect of human verification/intervention,
two different types of summary statistics for the IoU were
calculated for each of the three experiments. One with all
the cases and another with True Positives only (indicating
the scenario where the inspector reviewing the output would
reject those cases). IoU (All) refers to the IoU statistics
calculated from the raw crack analysis data directly obtained
from ABECIS software, whereas IoU (True Positives) refers
to the IoU statistics after the human operator has removed all
false positives from ABECIS GUI.

For the IoU for all images, the median of IoU is
(1) 0.686 for the indoor crack detection experiment in a

FIGURE 15. Construction site false positive examples. (a) Scratches
identified as cracks. (b) Stains identified as cracks.

controlled lab environment using a commercial drone, (2)
0.186 for the on-site crack detection at a construction site
using a smartphone and (3) 0.968 for the outdoor crack
detection using a commercial drone. The interquartile range is
the smallest for the Indoor Lab experiment, followed by the
Outdoor Campus Experiment and the On-Site Construction
Site Experiment.

However, only considering the true positives after human
verification, the median of IoU is (1) 0.838 for the indoor
crack detection experiment in a controlled lab environment
using a commercial drone, (2) 0.967 for the on-site crack
detection at a construction site using a smartphone and (3)
0.968 for the outdoor crack detection using a commercial
drone. The interquartile range is the smallest for the On-Site
Construction Site Experiment, followed by the Indoor Lab
experiment and the Outdoor Campus Experiment.

These results indicate that with little or no human verifica-
tion, ABECIS worked best for the Outdoor Drone inspection,
even when compared to the controlled lab experiment. Also,
with human verification, the medians of IoUs significantly
improve for all categories. These large differences in medians
across different categories can be attributed to the condition
of the exterior walls not being covered with any obstacles
and having a relatively constant background color, making
them good candidates for object detection. Moreover, clear
weather and wall paint of light color also played a role in
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FIGURE 16. Examples of correctly detected cracks from outdoor images
taken with a drone. (a) Single diagonal crack. (b) Multiple hairline cracks.

the successful detection of the cracks, increasing the contrast
between the crack and non-crack pixels. The results from
the indoor controlled lab environment with the drone show
a median IoU smaller than the outdoor campus experiment.
This can be attributed to the number of false positives (e.g.,
wood planks in the mockup wall and noisy background
environment) and unfavorable lighting conditions. Lastly, the
construction site experiment has a very large interquartile
range and the lowest median. This means that ABECIS had
the lowest performance on an active construction site. This
is because the construction site is unstructured and contains
many temporary elements, such as exposed wires and scaf-
folding, which were falsely detected as cracks.

However, considering that all the IoUmedian values of true
positives are greater than 0.8, it can be argued that ABECIS
works very well in all indoor, outdoor and construction site
environments, using both smartphone and drone cameras
when the machine learning algorithm is aided by the human
verification process. The IoU score of the trained model can
be improved by retraining the model with the most common
falsely detected objects (e.g., wires) and removing them from
the results. However, this is impractical since many kinds of
objects can cause false positives.

B. CRACK LENGTH ESTIMATION
Another of the features provided by ABECIS is the crack
length estimation. It is worth mentioning that the length

FIGURE 17. False positive examples from the outdoor experiment.
(a) Control joint/filler between walls, identified as a horizontal crack.
(b) Area between the parapet wall (vertical element) and ceiling panel
(horizontal element) detected as a crack.

TABLE 3. Summary statistics for the intersection over union of the three
experiments.

measurement given in metric units is only possible if the
image has a scale reference to obtain a proportional relation-
ship between the pixel and real-world dimensions or if the
image was taken with a device able to measure the distance
to the wall (such as the DJI Matrice 300 RTK used in this
experiment). The crack length is a useful metric that can assist
inspectors in getting a better assessment of the state of the
building and if the crack needs urgent repairing or not (also,
it would be useful information to generate preliminary repair
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FIGURE 18. (a) Original dimensions of cracks on the mockup wall and (b)
corresponding predictions.

scopes and cost estimates); therefore, it is a valuable asset to
be included in the final report generated by ABECIS. In order
to test the effectiveness and robustness of the estimations
calculated by ABECIS, the controlled lab environment with
the mockup wall was used. The ground-truth measurements
and the predicted lengths of the cracks present in the mockup
wall can be seen in Figure 18.

The length estimations computed for each of the 14 images
can be seen in Appendix C (Table 8). The results in the
Appendix correspond to the sum of the estimated lengths
for all the successfully detected cracks on each image. The
computed error is the difference between this value and the
sum of all the ground-truth distances. The error median is
8.2%, which is an acceptable margin to provide qualitative
assessments of the crack lengths.

C. REPORT GENERATION
After the crack detection is completed and all the measure-
ments have been computed, the results are automatically
gathered into a comma-separated values (csv) file format. The
generated report contains information such as the image file-
name, type of cracks detected, date and time extracted from
the image metadata, the types of cracks present in the image,
and some metrics such as the Number of Confident Cracks
and their Average Confidence Score, as well as the number of

TABLE 4. Summary statistics for the Intersection over Union of the three
experiments.

Possible Cracks and their Confidence Scores. Moreover, the
total crack length in pixels is also provided. From here, the
estimated total crack length in centimeters can be calculated
provided that a reference object with known length is avail-
able in the photo (like in the case of the images taken using the
drone. For the images taken using a smartphone, a reference
should be added when taking each photo). An excerpt of a
report generated is shown in Table 4.

D. LIMITATIONS
One of the limitations of ABECIS is the impact of clut-
tered and unstructured environments. Images with a cluttered
and non-uniform background present a specially challenging
scenario when it comes to object detection, making the per-
formance more susceptible to false positives in the detection
process. Nonetheless, it is expected that the main use of
ABECIS would be in the maintenance stage of the lifecycle
of a building, inspecting exterior façades that present a clear
and uniform background for the most part. From the results
obtained, ABECIS performs best under those conditions.

Another limitation is that estimating the length of the
cracks identified (i.e., providing measurements in metric
units) is only available if the image contains enough data
(or a reference) to establish a proportional relation between
pixel and real-world distances. That means that for pictures
taken with a smartphone, a metric scale needs to be present
in every image (which, in real conditions, might not be
practical). However, most modern smartphone models have
multiple cameras and even small LiDARs that would allow
the software to extract enough metadata from the image to
compute the required reference to estimate the length of the
detected cracks.

The current implementation has only been tested in
concrete-like façades. Although concrete is still themost used
material in construction, modern buildings include different

VOLUME 11, 2023 77111



P. Ko et al.: Developing a Free and Open-Source Semi-ABECIS

TABLE 5. Summary of different papers identified during the literature
review (in reverse chronological order).

types of materials on their exterior façades, which could
lead to different results in the segmentation process due to
the different nature of the material. Other issues (beyond
cracks) also manifest in the exterior of buildings (e.g., water
stains/infiltration, sealant deterioration, thermal leaks, etc.),
which can accelerate the deterioration of the building and
compromise the efficiency of the different building systems.
Although ABECIS only focuses on cracks, the algorithm can
easily be expanded to identify other issues.

Finally, Detectron2 has been the algorithm selected for
ABECIS. However, other instance segmentation algorithms
could provide different performances or advantages. It was
beyond the scope of this study to do a comparison/evaluation
of different algorithms, but this could be considered in future
studies.

VIII. CONCLUSION AND OUTLOOK
This study proposes an open-source Automated Building
Exterior Crack Inspection Software (ABECIS) for construc-
tion and facility managers and building inspectors. The soft-
ware uses an instance segmentation Artificial Intelligence
model developed and trained by the authors using a custom
dataset. The system was tested and evaluated in a labora-
tory (i.e., a controlled environment) and real-world scenarios

TABLE 6. Intersection over union scores of laboratory drone images.

using different ways to collect images (e.g., cameras on a
commercial drone and a smartphone).

ABECIS allows the operation to verify the output pro-
vided (i.e., human-in-the-loop). From the raw output of the
algorithm without the human verification, the median IoU is
greatest for the outdoor crack detection experiments using
a drone, followed by the indoor crack detection experiment
in a controlled lab environment using a drone and lastly,
for the indoor crack detection at a construction site using a
smartphone. This indicates that ABECIS performs best for
outdoor drone images with minimal human verification. Very
often, false positives arise when the environment has too
many obstacles and other objects in addition to the wall to
be analyzed.

However, these IoU results improve significantly (to over
0.8) when a human operator selectively removes the false
positives through the ABECIS user interface. Therefore,
combining the ABECIS’ predictions and human verification
can offer very accurate crack detection for all cases (indoor
and outdoor scenarios).

Interested readers can easily install and use our method by
visiting the GitHub repository of ABECIS [5].

Ongoing work by the authors includes improving the qual-
ity of crack detection of ABECIS software by using a larger
training dataset and obstacle detection systems to reduce false
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TABLE 7. Intersection over union scores of outdoor construction site
images.

positives. Future work includes expanding the dimensioning
of the cracks (e.g., width, deep).

APPENDIX A
SUMMARY OF PAPERS FROM LITERATURE REVIEW
The descriptions of categories in Table 4 are summarized as
follows:

• Column A: Reference ID.
• Column B: The year the paper was published.
• Column C: Indicates if the technique proposed uses AI
or traditional image processing (such as Canny Edge
Detection [70]).

• Column D: The technique used to collect images for
processing. UAV indicates a drone with a camera to
collect images. Camera indicates a camera other than the
one in the UAV.

• Column E: The type of structure (e.g., buildings,
bridges) and/or the material the surface is made of (e.g.,
concrete, steel).

• Column F: The type of defect/item detected (e.g., cracks,
absence of paint).

• Column G: Indicates if the paper provides a qualitative
evaluation of the method proposed.

TABLE 8. ntersection over union scores of outdoor – campus - drone
images.

TABLE 9. Length estimation of cracks in laboratory drone images (ground
truth 182.5 cm).

• Column H: Degree of autonomy of the proposed
method. FA means fully autonomous, and no human
intervention is required for the system to function.
SA means semi-autonomous, and a significant amount
of manual labor (e.g., manually collecting the input
data and tweaking thresholds during the processing) is
required for the proposed method. M means a fully
manual approach with no level of automation involved.

The main elements from Table 4 are broken down in
Figure 19.
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FIGURE 19. Graphical representation of the most representative columns
from Table 4. (a) Level of automation – blue, orange, and grey for
SA-semi-autonomous, FA-fully autonomous and M-manual, respectively.
(b) Percentage of papers that provide a quantitative evaluation – blue:
yes, orange: no. (c) Classification according to the type of structure –
blue, orange, grey and yellow for concrete, asphalt, metal, and other,
respectively.

APPENDIX B
INTERSECTION OVER UNION SCORES
The processed data and images from this appendix can
be accessed in [69]. Interested readers may download the
high-resolution result images from that reference.

APPENDIX C
LENGTH ESTIMATION OF CRACKS
See Table 9.
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