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ABSTRACT Depth estimation for light field (LF) images is the cornerstone of many applications of light
field cameras, such as 3D reconstruction, defects inspection, face liveness detection, and so forth. In recent
years, convolutional neural network (CNN) has dominated the primary workhorse for depth estimation.
However, the interpretability of the network and the accuracy of the depth estimation results still need to
be improved. This paper uses the conditional random field (CRF) theory to explain and model the LF depth
estimation. Further, from the perspective of sequence analysis, we extract the sequence features of epipolar
plane image (EPI) patches with recurrent neural network (RNN) and serve as the unary term of the energy
function in the CRF. Then, a unified neural network (called as LFRNN) is designed to solve the CRF and
get the disparity map. Our LFRNN builds upon two-stage architecture, involving a local depth estimation
and a depth refinement. In the first part, we design an RNN to analyze the vector sequences in EPI patches
and obtain local disparity values. There are two thinking behind the design of this part. The first is the
general principle that the slope of the straight line in the EPI is inversely proportional to the depth; the
second is our unique observation that those straight lines are distributed in vector sequences. In the second
part, continuous CRF is used to optimize the output of the first part. We train LFRNN on a synthetic LF
dataset and test it on both synthetic and real-world LF datasets. Quantitative and qualitative results validate
the superior performance of our LFRNN over the state-of-the-art methods.

INDEX TERMS Computer vision, depth estimation, light field imaging, deep learning, sequence analysis.

I. INTRODUCTION
Depth information is vital in computer vision applications
such as 3D reconstruction, robot vision, and semantic seg-
mentation [1]. With the availability of light field (LF) cam-
eras in the consumer market, estimating depth from LF
has attracted significant interest from both academia and
industry [2], [3]. LF camera captures rich spatial-angular
data of 3D scenes by its distinct imaging structure, placing
a microlens array after the main lens. Those data can be
reconstructed into refocusing images, sub-aperture images
(SAIs), and epipolar plane images (EPIs). EPIs render regular
line patterns with different slopes, and there is a geometry
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relationship between the straight-line slope and the depth
value [4].

Researchers have proposed many LF depth estimation
methods using the above property of EPIs. Classic methods
estimate depth with manual features. Structural tensor [5],
[6], [7], [8], parallelogram [9], [10], sparse representa-
tion [11], [12], and other operators are designed to measure
the line slopes and further compute depth value with opti-
mization technology. Recently, LF depth estimation has made
remarkable achievements that benefited from the rising of
deep learning. In order to use the multi-view information
in LF, some learning-based methods [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22] integrate multi-directional
EPIs by multi-stream network architecture [17], [18], [21],
[22]. Furthermore, the visual attention mechanism is also
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introduced into LF depth estimation to improve the sharpness
of the edge [20], [21]. Through these means to improve the
structure of the neural network, the learning-based meth-
ods are superior to the classic methods in the accuracy and
robustness of depth estimation. However, the network model
also has shortcomings, such as weak interpretability, difficult
generalization, and occlusion processing. Significantly, the
existing methods pay more attention to the texture of LF
images while ignoring LF’s sequence characteristics. Hence,
convolutional neural networks (CNNs) are generally utilized
as the backbone. Such CNN frameworks may become a fetter
for scholars to improve the accuracy of depth estimation,
especially in occlusion processing.

This paper proposes a novel two-stage light field depth esti-
mation network from the perspective of sequence analysis.
The first stage is to get a local depth map by a recurrent neural
network (RNN). The local depth map is subsequently refined
in a conditional random field (CRF) framework. The main
contributions of this paper are two-fold:

(1) We utilize CRF theory to model the problem of LF
depth estimation and design a unified network framework by
deep learning. The theory of CRF is highly interpretable and
has long been a cornerstone in traditional computer vision
methods. In recent years, there has been a growing trend
towards integrating CRFs with deep learning techniques,
leading to exciting new developments. In the context of
light field image processing, this paper aims to construct a
depth estimation model by leveraging the power of CRFs
and proposes a comprehensive solution framework based on
deep learning. By combining the interpretability of CRFs and
the representation learning capabilities of deep learning, this
work strives to advance the state-of-the-art in depth estima-
tion for LF images.

(2) We notice a notable pattern that the straight lines
within EPI are arranged in the vector sequence. Consequently,
we put forth the concept of local estimation through sequence
analysis, employing RNN for implementation. While it has
been proven that the slope of the straight lines in the EPI is
inversely proportional to the corresponding depth value, our
method takes a fresh approach by learning this relationship
through sequence analysis.

The remainder of this paper is organized as follows.
After reviewing related works in Section II, we detail in
Section III the geometry principle of LF imaging and indicate
the sequence characterization in the EPI patch. In Section IV,
we propose a novel depth estimation method based on the
CRF model and the idea of sequence analysis. To com-
pare with the state-of-the-art methods of depth estimation,
we carry out extensive experiments in both synthetic and
real light field datasets in Section V, respectively. Finally,
Section VI concludes this paper.

II. RELATED WORKS
A. DEPTH ESTIMATION BASED ON EPIS
Since an EPI contains patterns of oriented lines and the slope
of these lines is related to the depth values [3], [4], many

methods estimate depth from the LF based on EPIs, which can
be roughly divided into two categories: conventional methods
and deep learning methods.

Conventional methods were widely used in early studies
and performed depth estimation through geometry analysis
and consistency measurement. Tao et al. [5], [6] shear the
EPI perform refocusing and combine the defocus and cor-
respondence cues to produce high-quality depth estimation.
Wanner and Goldluecke [7] applied the 2D structure ten-
sor to estimate the slope of lines on EPIs. Li and Jin [8]
propose a novel tensor, Kullback-Leibler Divergence (KLD),
to analyze the histogram distributions of EPI’s window. Then,
depths calculated from vertical and horizontal EPIs’ ten-
sors are fused according to the tensors’ variation scale for
a high-quality depth map. Zhang et al. [9] divided an EPI
into some regions using a spinning parallelogram operator
(SPO) and located the lines by maximizing the distribu-
tion distance of the regions. The distance measure can keep
the correct depth information, even if occluded or noisy.
Subsequently, Sheng et al. [10] designed a modified SPO
method that embedded SPO into multi-orientation EPIs.
Johannsen et al. [11] build a dictionary for sparse light field
coding and lift the trained patches to the higher dimensional
epipolar space to produce a depth map. Schilling et al. [12]
integrate occlusion processing into a depth model to maxi-
mize the use of the available data and obtain general accuracy
and quality of object borders.

Recently, deep learning-based methods have achieved
state-of-the-art performances in LF depth estimation. Heber
and Pock [13] introduced deep learning technology to the
application of LF depth estimation for the first time. They
designed an end-to-end network to predict the depth and
refined it with high-order regularization. Immediately after-
ward, Heber et al. [14] presented a U-shaped regression net-
work involving two symmetric parts: encoding and decoding.
This network unifies ideas from 2D EPI analysis with spatial
matching-based approaches by learning 3D filters for dispar-
ity estimation based on EPI volumes. Using the idea of divide
and conquer, Guo et al. [15] proposed an occlusion-aware
network. This network consists of several subnetworks (such
as ORDNet, CDENet, and RDENet), each of which com-
pletes a subtask of a complex task. From the perspective of LF
representation, Alperovich et al. [16] designed a fully convo-
lutional autoencoder for LF images and obtained a depth map
by decoding the results of the autoencoder. Shin et al. [17]
first introduced multi-stream network architecture to LF
depth estimation and proposed a data augmentation method
to address the issue of the lack of training data. For utilizing
the texture feature of EPI, Han et al. [18] fed the synthetic
EPIs and a central view image into the multi-stream network.
They made a good trade-off between the efficiency and per-
formance of the depth estimation. Tsai et al. [19] proposed an
attention-based view selection network to more effectively
and efficiently incorporate all angular views for depth esti-
mation. Chen et al. [20] exploited the attention mechanism
and built a multi-level fusion network to handle the occlusion
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problem for depth estimation. Ma et al. [21] designed an end-
to-end neural network based on atrous convolution to estimate
the depth of reflective and texture-less areas. Zhou et al. [22]
proposed a simple and fast cost constructor to construct
matching costs for LF depth estimation.

B. RECURRENT NEURAL NETWORKS
RNN is a potent neural network model for processing
and predicting sequence data. It has an excellent perfor-
mance in speech recognition, machine translation, text clas-
sification, etc. The landmark achievement in this field is
the long-short time memory (LSTM) network proposed by
Hochreiter et al. [23], which effectively solves the problem
of long-term dependence. Then, various variants, such as
Gated Recurrent Unit (GRU) [24], and Bi-directional LSTM
(BLSTM) [25], appeared one after another.

RNN also performs well in image and video process-
ing. For object recognition, Visin et al. [26] proposed an
RNN-based network architecture called ReNet, which uses
four recurrent networks to sweep the image in both horizon-
tal and vertical directions instead of the traditional feature
extraction mode of ‘‘convolution+pooling’’. Shuai et al. [27]
proposed Directed Acyclic Graph-Recurrent Neural Net-
works (DAG-RNN) for scene segmentation. DAG-RNN
aggregates context over locally connected feature maps and
demonstrates noticeable performance superiority over Fully
Convolution Networks (FCNs).

For depth prediction from a monocular video,
Kumar et al. [28] proposed a convolutional LSTM
(convLSTM)-based network architecture. Similarly,
Kreuzig et al. [29] exploit a recurrent convolutional neural
network to estimate the traveled distance from monocular
images. The CNNpart of thismodel is used to extract geomet-
ric features, which are subsequently input into the RNN part
to learn dynamics and temporal information. Wang et al. [30]
proposed an unsupervised learning model for monocular
video visual odometry by using the temporal correlation
properties among the input frames.

III. GEOMETRIC PRINCIPLE
A. LIGHT FIELD IMAGING AND REPRESENTATION
As shown in Fig. 1, a micro lens array (MLA) is placed
between the sensor and the main lens in the LF camera.
The light in different directions emitted by an object point
is focused on a microlens in the MLA through the main
lens, and then a micro image is captured on the sensor.
The micro-image pixels record the light directions, and the
microlens is the position where the light passes. Therefore,
the LF camera can record the position and direction of light,
while the traditional camera loses the direction information
of light.

Although the raw image captured by an LF camera is
two-dimensional, it can be decoded into 4D LF data and
represented by the two-plane parameterization (2PP) method.
2PP method models a 4D light field as a collection of pinhole

FIGURE 1. Imaging model of a light field camera.

FIGURE 2. Light field representation using 2PP.

views from several viewpoints parallel to a common image
plane. As shown in Fig.2, 5 and � are two parallel planes.
5 contains the viewpoints expressed in (s, t) coordinates, and
� is the image plane parameterized by the coordinates (x, y).
Each ray not parallel to the two planes can be uniquely iden-
tified by its two intersections with the two planes. Therefore,
a 4D LF can be formulated as a map from the coordinates
determined by 5 and � to the ray space R, that is

(x, y, s, t) 7→ L(x, y, s, t). (1)

In other words, this map is the process of assigning an
intensity value to the ray Rx,y,s,t passing through (x, y) ∈ �

and (s, t) ∈ 5.

B. EPI FEATURES
In computer vision applications, it is more popular to restrict
a 4D LF to a 2D slice. For the map L(x,y,s,t), if the coordinates
t and y are assigned to constants t∗ and y∗ respectively, then
we get a 2D slice of the 4D LF, which is called an EPI and
noted as Sy∗,t∗ . Formally, EPI is a map from a 4D LF to a 2D
image, and can be described as

Sy∗,t∗ : (x, s) 7→ L(x, y∗, s, t∗). (2)
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FIGURE 3. EPI examples. (a) is a central view of a light field, and (b) and
(c) are EPIs corresponding to the positions of the blue vertical line and
the red horizontal line in the central view, respectively.

Similarly, if the coordinates s and t are set to s∗ and t∗,
respectively, that is, the viewpoint fixed at the point (s∗, t∗)
on the plane 5, we can observe a view image Is∗,t∗ , also
known as the sub-aperture image. If (s∗, t∗) is the center of
all viewpoints, Is∗,t∗ is named the central view (CV). Here
Is∗,t∗ can be formalized as

Is∗,t∗ : (x, y) 7→ L(x, y, s∗, t∗). (3)

For visualization, Fig.3 illustrates an example of a central
view and two EPIs, where (a) is a central view of a light
field, and (b) and (c) are EPIs corresponding to the positions
of the blue vertical line and the red horizontal line in (a),
respectively. EPIs in the example show obvious linear texture
features. Behind this phenomenon is the geometric principle
of LF imaging. Let us review the geometry of Fig.2, a point P
in the epipolar plane with the invariant coordinate values of y∗

and t∗ projects different image points (C or D) depending on
the chosen viewpoints (A or B), respectively. According to the
triangular similarity, the relationship between the viewpoint
shifts (1s) and the change (1x) of the image point can be
formulated as Equation (4). Here1s = s2−s1,1x = x2−x1;
Z represents the depth of the point P, and l denotes the
distance between two planes,5 and �.

1s
1x

= −
Z
l

(4)

As a result, the pixels corresponding to point P have sim-
ilar gray levels and are arranged in a straight line in EPI,
and the slope of the straight line is related to the depth of
point P.
To further analyze the texture features of EPI, we enlarge

the EPI and draw a schematic diagram (Fig. 4). Each square
marked with r , g, b or p in the figure represents a pixel, and
each letter indicates the gray value of the pixel. It is evident
that a straight line in EPI is composed of several pixels. For
instance, the pixels in the green area in Fig. 4 are arranged in
a straight line (Lg).

FIGURE 4. Schematic diagram of vector sequences in EPI. Each small grid
corresponds to a pixel, with the letters ‘r’, ‘g’, and ‘b’ indicating its
grayscale value. The pixels labeled with ‘g’ are used to fit a straight line,
represented as Lg.

In Fig.4, if we regard each column pixel of EPI as a vector,
e.g., the 0th and 3rd columns are expressed as (r , r , r , r , r ,
r , r , r , r) and (b, g, r , r , r , r , r , r , r) respectively, then the
straight line Lg is included in the vector sequence from the
second to 15th columns. Due to the existence of Lg, there is
a certain correlation among these 14 vectors. Based on this
observation, it may be a feasible scheme to make good use
of a neural network to learn the correlation features in this
vector sequence and predict the slope of the straight line or
the corresponding depth.

IV. METHODOLOGY
We begin by utilizing CRF to model the process of estimating
depth in light fields. Building upon this, we design a novel
deep network that leverages the principles of geometry and
observations to accurately estimate depth. The unique frame-
work is shown in Fig. 5 and explained in the subsequent
sections, i.e., local depth estimation and depth refinement.
As the disparity value of a pixel is inversely proportional to
the depth value, our LF depth estimation model’s final output
is the LF image’s disparity map.

A. FORMULATION FOR DEPTH ESTIMATION
The method for LF depth estimation involves obtaining
a disparity map for the central view through statistical
analysis of light field data. Markov Random Field (MRF)
or CRF models have been commonly applied to solving
dense prediction problems, such as monocular depth esti-
mation and image semantic segmentation. In this section,
we introduce CRF into the depth estimation of light
field.

Consider the central view image (CV) as a random field
defining over a set of variables {I1, I2, · · · , IN }. The disparity
map associated with the CV can also be defined a random
field over a set of variables {d1, d2, · · · , dN }. Ij is the color
vector of pixel j and dj is the disparity value assigned to
pixel j. N indicates the number of pixels in the CV. The pair
(I,d) can be modeled as a CRF characterized by a Gibbs
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FIGURE 5. Our network architecture. We call this network LFRNN. It takes the conditional random field as the theoretical
model, and achieves accurate depth estimation through local depth estimation and depth refinement.

distribution of the form

P(d|I) =
1
Z (I)

exp{−E(d, I)}, (5)

where Z (I) =
∫
d exp{−E(d, I)}dd is a partition function, and

the energy function E(d, I) is defined as Eq. (6). Generally,
the energy function consists of two components: the unary
energy component and the pairwise energy component. The
unary energy component ψu(di) is computed independently
for each pixel by the classifier, described as local depth esti-
mation. Furthermore, pairwise energy component ψp(di, dj)
measures the cost of assigning disparity values di and dj to
pixels i and j, respectively.

E(d, I) =

∑
i

ψu(di) +

∑
i<j

ψp(di, dj) (6)

We continue to define the unary energy component ψu(di)
and the pairwise energy component ψp(di, dj) as shown in
Eqs. (7) and (8), respectively. In Eq. (7), oi is the regress
disparity value at pixel i. In Eq. (8), wm(i, j, I) is a weight that
specifies the relationship between the estimated disparity of
the pixels i and j; M is the number of kernels.

ψu(di) = (di − oi)2 (7)

ψp(di, dj) =

M∑
m=1

βmwm(i, j, I)(di − dj)2 (8)

As mentioned above, the unary potential component mea-
sures the inverse likelihood of the pixel j take the disparity dj.
The current methods compute the unary potential component
for each pixel by a deep network predictor according to the
image features such as shape, texture, location, color and so
on. Considering the rich information contained in the light
field data, we construct a unary component based on EPI
synthetic image instead of a simple central view. The pairwise

component provide an image data-dependent smoothing term
that encourages assigning similar disparity values to pixels
with similar properties. We will describe the implementation
of Eq. (8) in the depth refinement subsection.

B. NETWORK ARCHITECTURE
In general, our network includes two parts: a local depth esti-
mation part and a refinement part. The local depth estimation
takes the EPI synthetic image as the input and outputs the
local disparity map. The EPI synthetic image is composed of
EPI corresponding to each row of the CV. Concretely, EPIs
are first generated from the LF data for each row of pixels in
CV (see Fig.3), and then those EPIs are spliced from top to
bottom to form an EPI synthetic image, as shown in the input
image diagram in Fig.5.

After receiving the EPI synthetic image, the local depth
estimation part obtains a local disparity map through the
sliding window processing layer, sequence analysis module,
and reshape layer. The sliding window processing layer is
similar to the sliding process of the convolution kernel in
CNNs. This layer’s purpose is to provide the EPI patches
for the sequence analysis layer and facilitate parallel process-
ing. The sequence analysis module is the key to extracting
local features from each EPI patch, which will be expanded
in detail in subsequent subsection. Next, we transform the
output of the sequence analysis layer into a two-dimensional
matrix (feature map) with the exact resolution as the CV. This
feature map is used as the initial disparity map and then input
to the refinement part.

The refinement part is to optimize the initial disparity map
based on the spatial and color information of the CV. We uti-
lize the CRF theory to model this optimization problem.
Therefore, this network module has two inputs, one is the
featuremap from the local depth estimation part, and the other
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FIGURE 6. Illustration of sequence analysis module. The module first
uses bidirectional GRU to extract the sequence features, and then
regresses the disparity value through the full connection layer.

is the CV. The feature map is used as the unary term of the
CRF model. Moreover, the pairwise term of the CRF model
takes into account the pixel position and color information of
the CV.

C. LOCAL DEPTH ESTIMATION
As shown in Fig.5, the local depth estimation includes three
components: sliding window processing, sequence analy-
sis module, and reshape layer. This subsection focuses on
the sequence analysis module. Section III has described an
important observation: the pixels of a straight line in EPI are
arranged in vector sequences, and the slope of the straight line
determines the relationship between the vector sequences.
Moreover, RNN has been successfully applied in sequence
analysis [28], [29]. Therefore, we exploit RNN to design a
sequence analysis module suitable for local depth estimation,
as illustrated in Fig.6.

In Fig. 6, Gated Recurrent Unit (GRU) is a typical unit
of the RNN, which has similar performance to the unit of
the Long Short-Term Memory (LSTM) network but is much
simpler to compute and implement. Fig.7 shows the structure
of a GRU cell. There exist two kinds of gates, i.e., reset gate rt
and update gate zt . The reset gate is used to combine the new
input with the previous memory, and the update gate checks
how much of the information from the previous state flows to
the current hidden state. The general equations of GRU cell
are shown in Eqs. (9)-(12). Herein, xt represents the layer’s
input as an m-dimensional vector, and ht−1 is the hidden
state of the time step of t−1. h̃t and ht are the candidate
hidden state and the new state, respectively. Wr , Wz, and
Wh are weight parameters. σ () and tanh() denote sigmoid and
hyperbolic tangent functions, respectively.

rt = σ (Wr · [ht−1, xt ]) (9)

zt = σ (Wz · [ht−1, xt ]) (10)

h̃t = tanh(Wh · [rt × ht−1, xt ]) (11)

ht = (1 − zt ) × ht−1 + zt × h̃t (12)

As shown in Fig.6. Each column of the EPI patch is
regarded as a vector and input into the network. After analyz-
ing the vector sequence through the bidirectional GRU layer

FIGURE 7. Structure of GRU cell. GRU associates the current input with
the historical state through some gates to form a new output.

and full connection layers, the disparity value corresponding
to the EPI patch is obtained. In practice, we set the EPI patch
size to 9×16 and divide the EPI patch into 16 9-dimensional
vectors.

Considering that the sequence feature is related to the
forward and backward vectors at the analysis point, we design
a bidirectional RNN with GRU cells as the hidden state
layer of the sequence analysis module. Then we flatten the
output of bidirectional GRUs into a 1-dimensional vector as
the input of the full connection layers. The bi-GRU layer con-
sists of two directional GRU cells with a dimension of 256 in
each direction, and each GRU cell is set to a non-sequential
mode of operation, which receives 16 vector inputs and pro-
duces an output value. In total, the bi-GRU layer generates
512 output values.

The next components of the sequence analysis module are
the two full-connection layers. The first full-connection layer
achieves a nonlinear transform from 512 to 16 dimensions
through the activation function ReLU. In contrast, the second
full-connection layer without activation function completes
the mapping of 16-dimensional vectors to a disparity value.

D. DEPTH REFINEMENT
So far, we have predicted disparity values for pixels using
regression. Now our goal is to refine the predicted disparity
values from EPI patches.

In order to quickly solve the fully connected CRFs model,
Krähenbühl and Koltun [31] defined the pairwise energy
component as a linear combination of Gaussian kernels.
They reduced the computational complexity of message pass-
ing from quadratic to linear in the number of variables by
employing efficient approximate high-dimensional filtering.
In recent years, some schemes based on a neural network to
solve the CRF model have appeared. Zheng et al. [32] inter-
preted dense CRFs as RNNs and indicated that the parameters
of CRFs can be learned during the backward propagation
process of training the deep neural network. Based on these
works, Xu et al. [33] utilized a clever approach of extracting
multi-scale features from a single image and then fusing
them using a CRF. In our method, we employ the sequence
features obtained from the local depth estimation module as
a unary potential component within the CRF. Nevertheless,
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FIGURE 8. Iterative process of depth refinement.

Xu’s C-MF module presents valuable insights and is worth
considering for further application. Following the work of
Xu et al. [33], we use Eqs. (13) and (14) to update the vari-
ance and mean of the approximate distribution, respectively.

γi = 2(1 + 2
M∑
m=1

βm
∑
j,i

wm(i, j, I)) (13)

µi =
2
γi
(oi + 2

M∑
m=1

βm
∑
j,i

wm(i, j, I)µj) (14)

We also use two features proposed by [31] to define the
weights wm(i, j, I) as follows:

w1(i, j, I) = exp(−
|pi − pj|2

2θ2α
−

|Ii − Ij|2

2θ2β
), (15)

w2(i, j, I) = exp(−
|pi − pj|2

2θ2γ
). (16)

here, Ii and Ij are the color vectors of pixels i and j, and pi and
pj are the positions associatedwith pixels i and j. θα , θβ and θγ
are user-defined bandwidth parameters. w1(i, j, I) is usually
called appearance kernel, which takes into account the prior
knowledge that nearby pixels with similar colors are likely
to be of a similar depth. w2(i, j, I) is also named smoothness
kernel because it can filter out some outliers.

As for the iterative process of solving the CRF, our main
idea is to modify the multi-scale continuous mean field

(C-MF) in [33] to a single-scale mean field. Our iterative
process is shown in Fig.8. Inputs of iteration t include the
output µt−1 at iteration t-1, the central view image I, the
output feature map o of the local depth estimation network,
and an identity matrix J . First, we use Eqs. (15) and (16)
to calculate w1 and w2 of each pixel of the CV and then
form kernel matrices K1 and K2. On the two input paths,
µt−1 and J, the kernel matrices K1 and K2 are used for
bilateral and spatial filtering. And then, the unary term is
added to the processing result of path µt−1. At the same
time, J is superimposed on that of the path J . Finally, the
two processing results on the two paths are divided element
by element to get the output of this iteration.

The processing depicted in Fig. 8 can be interpreted as a
single-scale C-MFmodule. By interconnecting multiple such
modules with shared parameters, we construct an RNN for
solving the CRF. That is, the outputµt at iteration t is used as
the input at iteration t+1. This way, an RNN similar to [32] is
built, but our network outputs are continuous disparity values.

Usually, we take the feature map captured by the local
depth estimation network as the initial value of µt−1 at the
first iteration. No more than 10 iterations can output the ideal
result in the experiment. Our network training goes through
two stages. The first stage is to train the local depth estimation
network by using the ground truth value of disparity, and
the whole network is trained in the second stage. In order to
improve the training efficiency, the parameters of the local

VOLUME 11, 2023 74663



L. Han et al.: Exploiting Sequence Analysis for Accurate Light-Field Depth Estimation

depth estimation network can be locked in the second stage,
and only the weighted parameters in the iterative optimization
network are trained.

V. EXPERIMENTS AND ANALYSIS
A. IMPLEMENTATION
This paper uses the HCI dataset train and test our network
model LFRNN [34]. The dataset includes 28 scenes and is
divided into four categories: structured, test, training, and
additional. The dataset designer fully considered common
visual problems such as materials, lighting conditions, and
occlusion. They used Blender software to render the LF
images with a spatial resolution of 512 × 512 and angular
resolution of 9 × 9. Like most current LF depth estimation
methods, we use 16 scenes in additional for training, and
12 scenes in structured, test and training for verification and
testing.

We implement the proposed LFRNN network based on the
Pytorch framework and the i9 CPU and P100 GPU platform.
First, we generate the CV image and EPI synthetical image
from the 4D LF data of the scene and input them into our
LFRNN. Second, using the idea of space for time, we exploit
the Unfold layer in Pytorch to convert EPI synthetical images
into EPI patches analyzed by the local depth estimation mod-
ule. Moreover, the CRF module follows the internal iteration
implementation methods of [32] and [33], and the number of
iterations is empirically set to 6.

Our LFRNN is trained in two stages. In the first stage, the
local depth estimation part is regarded as an independent neu-
ral network with the EPI synthetical image as the input and
the feature map as the output. Thus, the training is conducted
under the supervision of the ground truth provided by the
HCI dataset. Our loss function is the Mean Absolute Error
(MAE), and the learning rate of the first 1000 epochs is set to
10−3 and then to 10−4. After each epoch, the model effect is
evaluated on the verification set to decide whether to preserve
the current model parameters. We use Visdom to visualize the
training process and end the local depth estimation network
training when the loss function is stable. The second stage is
to train the CRF optimization part. We freeze the parameters
of the local depth estimation part so that the whole LFRNN
forms an end-to-end network. β1 and β2 are the key param-
eters to learn at this stage. After 6 rounds of iteration in the
experiment, the network can achieve stable performance.

B. EVALUATION METRICS
In the training process, we employ MAE, that is, L1 loss
in Pytorch, to evaluate the difference between the currently
estimated disparity and the ground truth. Although the con-
vergence speed of MAE is slow, it can better reflect the
actual situation of prediction error and is suitable for synthetic
datasets with relatively few outliers.

In comparison with similar methods, we adopt the widely
used evaluation standards recommended by the HCI dataset,
namely MSE and Badpix. For the sake of clarity, we report

this as follows. Given an estimated disparity map d, the
ground truth disparity map gt and an evaluation mask M,
MSE and Badpix are defined as Eqs. (17) and (18), respec-
tively. In (18), t is a disparity error threshold, usually set to
one value of 0.01, 0.03, and 0.07.

MSEM =

∑
x∈M (d (x)− gt (x))2

|M|
× 100 (17)

BadPixM (t) =
|{x ∈ M : |d (x)− gt (x)| > t}|

|M|
(18)

It can be seen from Eqs (17) and (18) that MSE measures
the average error of the disparity values, and BadPix reflects
the proportion of pixels that reach the error threshold. In the
following experimental evaluation, we set maskM as a single
pixel area to see the disparity error at each pixel and observe
the method’s robustness to occlusion.

C. ABLATION INVESTIGATION
As previously mentioned, the first half of the LFRNN net-
work is local depth estimation, and the second half is the
CRF optimization module. The former can independently
estimate the disparity, while the latter is optimizing the former
results. In order to verify the effectiveness of the CRFmodule,
we designed an ablation experiment, that is, to compare the
estimation results of the local depth estimation module with
that of the whole network LFRNN.

We call the local depth estimation part LDE and the whole
network LFRNN. The two networks are tested on Cotton,
Dino, Pyramids, and Stripes. According to the ground truth
provided by the HCI dataset, we calculate the MSE and
Badpix metrics obtained by the two networks in each scene.
As shown in Table 1, the test results of LFRNN in all scenes
are better than those of LDE, indicating that the CRF opti-
mization module can indeed improve the accuracy of depth
estimation. Taking the scenes of Cotton and Pyramids as
examples, Fig. 9 intuitively shows the depth estimation results
of LDE and LFRNN, where the first column is the two central
views, and the second and third columns are the disparity
maps of LDE and LFRNN respectively. LFRNN’s result is
smoother in the forehead area of Cotton and more explicit in
the boundaries of the Cotton’s right ear and cape than those
in LDE’s result. On the other hand, The Pyramids scene is
specifically created to evaluate the algorithm’s performance
in handling slanted, convex, or concave scenes. When com-
paring the results of the LFRNNwith LDE, it is observed that
LFRNN produces sharper object boundaries. This means that
the disparities between objects are more precisely estimated,
resulting in a clearer distinction between different objects in
the scene. Additionally, LFRNN demonstrates an improved
ability to capture depth changes on convex or concave sur-
faces. Disparity values on these surfaces are estimated more
accurately, and the transitions from one depth level to another
are more clearly defined. The above phenomena may be
because CRF module adjusts the local disparity estimation
from a global perspective.
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TABLE 1. Results of ablation experiment.

FIGURE 9. Examples of ablation results. The first column is the central view image of the scene Cotton,
the second column is the disparity map estimated by LDE, the third column is the disparity map
estimated by LFRNN.

D. SYNTHETIC DATASET
We have submitted the experimental results of the LFRNN
to the HCI benchmark for testing. Currently, the benchmark
evaluates a total of 115 methods, and our LFRNN ranks 17th

and 15th in terms of median and average Badpix metrics,
respectively. However, when considering the MSE metrics,
our LFRNN achieves first place in terms of median and ninth
place in terms of average.

Table 2 presents the results of LFRNN along with four
other methods: EPINet [17], VommaNet [21], and Fusion-
Net [22]. The evaluation includes 12 scenes, out of which
8 scenes have publicly disclosed disparity ground truth, while
4 scenes have unpublished disparity ground truth. In the table,
the bold numbers indicate the best MSE or Badpix values
among the five methods for a particular scene. It is worth
noting that the LFRNN consistently achieves optimal values
in most scenes, indicating its strong performance compared
to the other methods. Overall, the LFRNN algorithm demon-
strates favorable results in terms of both MSE and Badpix
metrics across the majority of the evaluated scenes in the HCI
benchmark.

In order to visualize the metric results of each method,
we have drawn a percentage radar chart of the experimen-
tal results. Fig. 10 shows the percentage radar chart of

these methods in eight scenes, such as Boxes, Cotton, Dino,
Sideboard, Backgammon, Dots, Pyramids, and Stripes. Each
radial axis in the figure corresponds to a scene, and each
method is marked as a point on the axis. Among them, the
method with the maximum MSE value is marked as 100%,
and other methods draw points according to the percentage of
theirMSE values in themaximumMSE value. In this way, the
points marked by the samemethod on each axis are connected
to form a polygon. The polygon is in the inner or outer layer,
indicating the advantages and disadvantages of the method.
Similarly, the percentage value distribution of these methods
regarding the Badpix metric is illustrated in Fig. 11.

As shown in Fig. 10, theMSE polygon of LFRNN is almost
at the innermost level and has the smallest area, so the MSE
average of LFRNN is the smallest in all scenes. Specifically,
LFRNN achieves optimal MSE values in almost all scenes
except Dots and Backgammon. Although LFRNN’s MSE is
not as good as VommaNet’s inDots and Backgammon scenes,
LFRNN’s BadPix is much better than VommaNet’s. Over-
all, LFRNN’s BadPix metrics also perform exceptionally,
showing optimal or sub-optimal performance in all scenes.
Combined with Fig. 10 and Fig. 11, LFRNN has the optimum
values of the twometrics for complex occlusion scenesBoxes,
Cotton, Dino, and Sideboard, which shows that our method
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TABLE 2. Results of relevant methods on the hci synthetic dataset.

FIGURE 10. Percentage radar chart of MSE metric.

FIGURE 11. Percentage radar chart of Badpix metric.

has better average performance and has some advantages in
occlusion processing.

Fig. 12 shows the CVs of the scenes of Boxes, Dino
and Backgammon. On the other hand, Fig. 13 illustrates the

pixel-by-pixel distribution of MSE and Badpix obtained by
the respective methods on the three scenes. Each column
in Fig.13 corresponds to the results of a method: LFRNN,
EPINet, FusionNet, andWommaNet. Each scene is presented
in two rows, showcasing the errors of Badpix and MSE
metrics separately. Color rulers are attached at the end of each
row. The Badpix ruler uses red and green colors. Specifically,
the pixels with small Badpix errors are represented in green,
but red means large Badpix. The MSE metric charts show
positive deviation in red and negative deviation in blue. The
lighter the color, the smaller the MSE. The number above
each image represents the overall score of the metric.

On the whole, LFRNN achieves the minimum Badpix
values in both scenes compared with other methods. From
the Badpix distribution map (Fig.13), the pixels in the smooth
area are all green, and the individual occlusion boundary is
red. Especially in the case of complex occlusion in the scene
Boxes, the red area of the LFRNN map is relatively sparse,
indicating that LFRNN has good performance in dealing with
occlusion.

For MSE metrics, VommaNet achieved the best results in
the scene of Backgammon. However, from the perspective
of error distribution, its results show red and green in many
areas; that is to say, there is a large area of positive and
negative deviation, which offsets the overall MSE. On the
contrary, LFRNN’s result is light in most areas, which means
the absolute error is small.

E. REAL-WORLD DATASET
We conducted experiments on two real LF datasets, namely
Lytro [35] and LytroIllum [36], respectively. Since the real
LF datasets do not include depth truth values, we only make
qualitative comparisons. According to the availability of
the implementation code, we choose SPO [9], EPINet [17],
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FIGURE 12. Central view images of three scenes. (a) , (b) and (c) are the central view images of the scenes
of Boxes, Dino and Backgammon, respectively.

FIGURE 13. Evaluation examples on the synthetic dataset.
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FIGURE 14. Examples of disparity results on Lytro dataset.

FIGURE 15. Examples of disparity results on LytroIllum dataset.
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LFattNet [19], and OACC [2] methods for comparative anal-
ysis. Among these methods, SPO [9] is a traditional method;
EPINet [17], LFattNet [19], OACC [2] and our LFRNN are
learning-based methods. Fig. 14 shows some examples of the
disparity results on Lytro dataset. The first column represents
the CVs of the testing scenes, and the following columns
are the disparity map obtained by the methods SPO [9],
EPINet [17], LFattNet [19], OACC [2] and our LFRNN in
turn. From top to bottom, the scenes corresponding to each
row are Cake, Cocktails, Dessert, Flat_toes, and Guitar.
From the example scenes in Fig. 14, the disparity noise and

rollover phenomena appear in the results of those methods.
For example, SPO has some disparity noise in the scenes of
Cake and Guitar and almost no perception of the disparity
level in Flat_toes; EPINet has the most significant disparity
noise and poor smoothness; LFattNet shows disparity rollover
phenomena in Cake and Guitar scenes; OACC improves
disparity smoothness, but performs poorly in the scene of
Dessert. Relatively speaking, our LFRNN achieves the best
disparity hierarchy and smoothness.

Similarly, Fig. 15 showcases examples of the results
obtained from the five aforementioned methods in five typi-
cal scenes (Bee_2, Building, Doves, Duck, Sculpture) of the
LytroIllum dataset. SPO and EPINet demonstrate good per-
formance in slightly closer scenes, specifically Bee_2,Doves,
and Duck. However, in slightly farther scenes like Building
and Sculpture, the discernible hierarchy in their disparity
maps diminishes. On the other hand, LFattNet and OACC
exhibit better performance in slightly distant scenes. Notably,
our LFRNN achieves relatively ideal disparity results in both
of these scene categories.

On real LF datasets, all five methods were run on the
same workstation, allowing for a fair comparison of their
computational time. The average computational time was
calculated for each method in different scenes using the two
datasets, and the results are as follows:

SPO exhibited the longest average computational time,
taking approximately 1100 seconds. This longer duration can
be attributed to its implementation in Matlab, which lacks
GPU utilization during the running process. LFattNet, uti-
lizing 3D convolution that involves extensive computations,
had an average computational time of 3.352 seconds. EPINet,
OACC, and LFRNN, on the other hand, exhibited average
computational time of 0.927 seconds, 0.034 seconds, and
0.026 seconds, respectively. It is evident that the computa-
tional time of LFRNN and OACC are quite similar, likely due
to the clear and straightforward nature of their models, which
enables efficient computations.

VI. CONCLUSION
EPI is a kind of computational image of LF data. The
slope of the straight line in EPI contains the depth infor-
mation of the corresponding object points, which has been
widely used in LF depth estimation. We further point out
that a line in EPI is composed of vector sequences, and the
slope of the line affects the sequence distribution. Given this

observation, we propose a depth estimation network LFRNN
based on sequence analysis, including local depth estimation
and depth refinement. In the first part, RNN analyzes the
vector sequence of EPI patches and gets a local disparity map.
The second part optimizes the results of the first part based
on CRF theory and outputs the final disparity map. We train
LFRNN on the synthetic dataset and test it on the synthetic
and real LF datasets, respectively. The experimental results
show that LFRNN achieves good performance. Our research
work verifies the feasibility of sequence analysis and provides
a new idea for LF depth estimation. In the future, we will
optimize the network and continue to improve the accuracy
of depth estimation.
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