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ABSTRACT Explainable Artificial Intelligence is a recent research direction that aims to explain the results
of the Deep learning model. However, many recent research need to go into depth in evaluating the effective-
ness of deep learning models in classifying image objects. For that reason, the research proposes two stages in
the process of applying Explainable Artificial Intelligence, including: (1) assessing the accuracy of the deep
learning model through evaluation methods, (2) using Grad-CAM for model interpretation aims to evaluate
the feature detection ability of an image when recognized by deep learning models. The deep learning models
included in the evaluation included VGG16, ResNet50, ResNet50V2, Xception, EfficientNetV2, Incep-
tionV3, DenseNet201, MobileNetV2, MobileNet, NasNetMobile, RegNetX002, and InceptionResNetV2 on
our updated VegNet dataset is available at: https://www.kaggle.com/datasets/enalis/tomatoes-dataset. The
results show that the MobieNet model has high accuracy but less reliability than EfficientNetV2S and
Xception. However, MobileNetV2’s accuracy is the highest when considering the ratio match rate. The
research results contribute to the construction of intelligent agricultural support systems (using automatic
fruit-picking robots, removing poor-quality fruits,...) from the results of the Explainable Al model to be
able to use the optimal deep learning model in processing.

INDEX TERMS Explainable artificial intelligence, XAl, agriculture, grad-CAM, deep learning, explainable
Al

I. INTRODUCTION In recent times, artificial intelligence (AI) has become

Explainable Artificial Intelligence (XAI) is a new branch of
artificial intelligence. XAl sets of methods and tools that
can make machine learning models easier to understand
for humans. The purpose of XAl is to explain the results
produced by constructing machine learning models [1]. How-
ever, the question arises about the reliability of Deep learning
models (DL) for the features used for classification. There-
fore, XAl is used to evaluate the accuracy of the DL model
on the VegNet dataset [2] with the Gradient-weighted Class
Activation Mapping (Grad-CAM) technique [3].
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increasingly popular and supports people a lot in life, espe-
cially in medicine, agriculture, and decision support,...In
the medical field, research related to the medical image
registration process [4], cancer diagnosis [5], disease detec-
tion [6], [7],...Meanwhile, the agricultural field has also had
much research related to identification and detection, such as
diseases in poultry [8], [9], diseases on crops [10], diseases
in shrimp [11].... All this research shows that Al systems are
essential and save more time in classification and diagnosis
than humans. However, research [12], [13] shows that the
critical issue of Al is decision support and data transparency
in statistics, which makes for easy decision-making, and the
first step towards remedy is an essential aspect of account-
ability. Although the DL model is strongly developed, the
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internal architecture is nested, making it difficult to explain
or visualize the problem, often called a “black box”. In the
research [14], the authors suggested that deep learning mod-
els can be easily fooled by attacks in the physical world, such
as environmental conditions, input data dependence, black
and white labels,...This makes the development of XAl in
the recent period [15]. XAl was born to meet the system’s
transparency, interpretability and explainability, known as the
“white box” [16]. XAI shows a strong impact through much
research using different techniques such as CAM [17], LPR
[18], Grad-CAM [19], Guided backpropagation [20],... All
show the need for XAl in decision support and transparency
in data interpretation.

Research on XAI implementation in agriculture is little,
but it shows the effectiveness of data processing in agricul-
ture. Research [21] shows the importance of food security in
the Sustainable Development Goals of the United Nations.
Research [22] used XAI to explain tomato leaf diseases.
Research [23] estimates nitrogen in wheat from proximal
hyperspectral data using XAl and machine learning. Research
shows the importance of XAl not only in medical and military
research and agriculture and contributes to a certain develop-
ment. In particular, according to statistics, few research uses
XAl in agriculture.

In summary, through the survey, the contribution of the
research is obtained through:

o Determine the accuracy of the DL model in classifying
data on the VegNet dataset. The dataset used evaluates
the data set regarding the severity of food safety in
agriculture.

o Use Grad-CAM to visualize diagnostic data on the Veg-
Net dataset with existing DL models.

« Re-evaluate the accuracy and propose the construction
of XAI models for the agricultural sector in the future.

To achieve the above objectives, the study proposes a model
consisting of 2 stages:

o Stage 1: Classifying the quality of tomatoes based on
images using the DL model and evaluating the model’s
effectiveness according to the scales in image classi-
fication. During this process, the research team added
additional datasets to the VegNet dataset to balance the
amount of trained/test/validation data.

o Stage 2: Local explainability of models using
Grad-CAM and compare the reliability of models with
each other. Based on the resulting visualization, the
research evaluates the accuracy of the prediction process
of the DL model based on image segmentation.

Il. RELATED WORK

DL models used in research can learn, recognize, classify and
detect objects in images. They can vary in structure, number
and type of deep neural network layers, model depth and
complexity. The general property of models is that deeper
and more complex models usually have higher accuracy on
large data sets, but they require more time and resources
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to train and use. Specifically, the models used include
VGG16 [24], ResNet50 [25], ResNet50V2 [26], Xception
[27], EfficientNetV2 [28], InceptionV3 [29], DenseNet201
[30], MobileNetV2 [31], MobileNet [32], NasNetMobile
[33], RegNetX002 [34], InceptionResNetV2 [35]. As men-
tioned above, the DL model provides accuracy, but the prob-
lem is that the processing consists of many layers, leading to
a transparency problem that needs to be explained.

For that reason, XAl has made strides in building and
developing tools to support interpreting the results of the DL
model, which makes XAl techniques in data processing after
the classification process more and more developed. XAl has
created many successes in various fields, such as transporta-
tion systems that help reduce vehicle accidents with severe
consequences [36]; The Healthcare system is based on clini-
cally interpretable predictions to avoid the process of giving
false support leading to deaths [37]; legal systems that reduce
costs, risk of recidivism or automated decision-making [38];
the financial system automatically makes decisions that aid in
interpretation, making it more audit-friendly, detecting illegal
transactions [39], [40]; The military system starting from the
DAPRA project demonstrates the development and reliability
of XAl in supporting important decisions in the military [41].
In the research, it is found that the prediction is wrong in
any field. Any sector will affect the cost [42]. Therefore, the
XAI approach that needs to be taken in the agricultural sector,
especially food-level classification, is fundamental.

With the development of XAlI, there are many possibilities
for developing research directions in applying XAl in the
agricultural field. In this context, based on the results and
success of XAlI, the research team proposes to develop and
apply the results of XAl in the agricultural sector, initially
using Grad-CAM to assess the accuracy of DL models in the
VegNet dataset.

lll. METHODOLOGY

A. OVERALL METHODOLOGY

The research process was divided into two different phases.
In phase 1, the research team began to collect data to add to
the VegNet dataset on the tomato damage data set. Designated
labels categorize the data, including Unripe, Ripe, Old and
Damaged. After that, the data is normalized to a standard
dataset form and divided the data set into 3 evaluators to serve
the training/testing of DL and X AI models. Through the train-
ing process, based on fundamental metrics, we will perform
tests on the trained model to evaluate the effectiveness of
the DL models (FIGURE. 1). Stage 2, uses the Grad-CAM
algorithm to explain the results of the DL model by identi-
fying image features in detected regions and the importance
of features. This is to evaluate the image recognition of DL
or black box models after detecting features to make accurate
predictions. In addition, to evaluate the completeness of the
model based on Grad-CAM, the research evaluates all the
image features in the test dataset on the models to clarify
the differences in the model’s learned features on each label
(FIGURE. 2).
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FIGURE 1. The process of identifying tomato state images by DL Models and evaluating the model with traditional metrics.
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FIGURE 2. The process of interpreting DL model and evaluating the effectiveness of the model b

B. DATA PREPARATION

The image dataset about the state of the tomato in the VegNet
[2] dataset has 4 states: Unripe, Ripe, Old and Damaged.
However, this data set significantly differs between classes,
so the research team collected more data sets. The results are
collected with more than 2000 images from many different
sources, such as 60% from the VegNet dataset, 30% from
Kaggle and 10% from other sources. Due to the heteroge-
neous data size, the research resized it to 256 x 256 pixels
(the standard size of the VegNet dataset) to create a stan-
dard dataset for future research. The research team creates
the characteristics of the current dataset to create a white
background. It divides the data set into 3 sets, including a
training set, validation set and testing set in the ratio 6:2:2.
The amount of data is detailed in TABLE 1.
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TABLE 1. The statistics of the number of images in each class of the
dataset.

Classes Training Set | Validation Set | Testing Set
Unripe 296 94 93
Ripe 357 114 114
Old 317 103 103
Damaged 250 98 97
Total 1220 409 407

C. DATA PREPROCESSING

During the training in stage 1, the data is processed according
to the following steps: (1) the data is resized to the standard
size of the DL models, respectively 224 x 224 or 299 x
299 pixels; (2) For the training set, the data is applied aug-
mentation to increase the image size such as random flip,
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TABLE 2. Information about the DL models used by us.

DL model Params | Memory Size | Publication Year
VGG16 (VG16) 15.2 62.3 2014
ResNet50 (RES1) 25.6 115 2015
ResNet50V2 (RES2) 25.6 114 2017
Xception (XCEP) 22.9 104 2017
EfficientNetV2 (EFN2) 21.6 93.9 2021
InceptionV3 (INV3) 23.9 108 2015
DenseNet201(D201) 20.2 94.3 2016
MobileNetV2 (MON2) 3.57 24.1 2018
MobileNet(MONI) 4.28 24.6 2017
NasNetMobile(NANM) 5.35 30.8 2018
RegNetX002(REN2) 2.71 13.7 2020
InceptionResNetV2(IRN2) 239 108 2016

TABLE 3. Invariant hyperparameter for training model.

Hyperparameters Setting
Learning Rate 10%
Algorithm Optimization | Adam
Epoch 100
Batch size 32

rotate and zooming (FIGURE. 3); (3) Image data is converted
to vector and scaled again with the ratios [-1;1], [0,1] or keep
[0;255]. After being processed, the data will be fed into the
DL model to train and check the accuracy of the model. For
Stage 2, the research uses the test data set to process and
put the explanatory process by Grad-CAM technique into the
evaluation model. The processing is illustrated in FIGURE. 4.

D. FINE-TUNING DEEP LEARNING MODELS AND
TRAINING PROGRESS

The DL model in computer vision is evaluated more effec-
tively than the traditional machine learning model [43], [44].
Therefore, in this research, the research team decided to use
some outstanding DL models to train the state recognition of
tomatoes based on image processing. On the other hand, these
models were published mainly from 2014 to 2021 with the
latest model being applied EfficientNet version 2. The param-
eters of the models are listed in TABLE 2. On the other hand,
before the training process takes place, these models will be
set up with a fixed number of hyperparameters to ensure the
efficiency between the models. At the same time, the model
will be fine-tuned, retaining the entire structure of the original
layer and changing the output with Global Average Pooling,
Dense and Dropout layers to limit overfitting and achieve fast
results. The fixed parameters are shown in TABLE 3, and the
model’s basic structure is illustrated in FIGURE. 5.

E. GRAD-CAM APPROACH

In this research, the training phase and classification of
objects in the image are used the entire DL models. As dis-
cussed in the previous section, the DL model is considered
a “black box” model because it is impossible to dig into
how the network structure works in image classification.
Therefore, the research team uses Grad-CAM [3] to visualize
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and understand how a model predicts objects or features in
an image based on the classification results of DL models.
This technique is based on computing the gradient of the last
convolution layer according to the feature maps of the model
based on the specified class. Then, the model averages the
gradient values to obtain a matrix representing the interest of
the model for each position of that class feature in the image.
In three steps, compute the gradient of output before softmax
activation concerning the last convolution activation layer
of the model, Average Alpha, by Averaging the gradients,
performing a weighted combination of activation maps and
following by ReLU to get the matrix from the equation (1).
The resulting matrix will be combined with the original image
data to represent the features of the image prominently. Illus-
trate the matrix constituting the heatmap with Viridis-toned
feature regions in FIGURE. 6 and FIGURE 7.

Léyaa—cam = ReLU (D afA") M
k

[ —
linearcombination

F. ASSESSMENT MEASURES

In Stage 1, the research team used basic metrics to evaluate
the image recognition models of the DL models. First, Pre-
cision and Recall were used to evaluate the model’s correct
predictions based on the positive prediction rate according to
(2) and (3). However, we used the F1-Score metric to evaluate
the completeness and reliability of the model while limiting
the correlation between the two Precision and Recall param-
eters and providing the most objective evaluation among the
models (4). In addition, accuracy was used to measure the
effectiveness of an image classification model. It is calculated
as the ratio of correctly predicted points to the total number
of points in the test dataset (5). Finally, during the prediction
process on the training and validation datasets, we also used
the loss function parameter to evaluate(6).

o TP
Precision = —— )
TP + FP
TP
Recall = —— 3)
TP + FN
Precision % Recall
F1 — Score =2 — “)
Precision + Recall
TP+ TN
Accuracy = ©)
TP+ TN + FN + FP
outputsize
Loss = — Z v; - logy; (6)
i=1

In which:

o True Positive (TP): the number of points of the positive
class that are correctly classified as positive.

o True Negative (TN): the number of points of the negative
class that are correctly classified as negative.

« False Positive (FP): the number of points of the negative
class that were mistakenly classified as positive.

83755



IEEE Access

L.-D. Quach et al.: Explainable DL Models With Gradient-Weighted Class Activation Mapping

256 x 256

o

224 % 224

200 200

(b)

FIGURE 3. lllustrate the image in the dataset when the image is resized and argumentation is performed. (a) The original image in the dataset is 256 x

256 pixels. (b) Images are generated from image rotations and reduced to
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FIGURE 4. lllustrate the process of image data processing.
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FIGURE 5. lllustrate the basic network structure of each model after applying Fine-tuning technique. With Frozen layer is the entire structure of the

original model except for the output layer.

« False Negative (FN): the number of points of the positive
class that were mistakenly classified as negative.

IV. RESULTS

A. COMPARISION PERFORMANCE OF DL MODELS
BASED-ON RESULT OF TRADITIONAL METRICS

The results shown in FIGURE. 8 show that most of the
models have very high accuracy, with more than 90% on both
training and testing sets with epoch = 100. The accuracy
of MobileNet and ResNet50 achieved almost 99% with the
training set, and the accuracy of MobileNet and RegNetX002

83756

reached 98%. However, the VGG16 model achieved rela-
tively lower results than other models in about 100 epochs,
with the accuracy achieved on the raining and validation set
of 87% and 85%, respectively. This shows the effectiveness
of the predictive model on the current dataset.

For the Loss Function parameter, the models all achieved
similar results to the accuracy parameter. FIGURE. 9 shows
the training and validation process between models quite
well. When the parameters reach well at the threshold epoch =
100.Besides, models with the lowest loss function value in
both training and validation progression are InceptionV3 and
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FIGURE 6. The image data is applied Grad-CAM to identify the display area of the feature on the Ripe label feature. (a) Original input image. (b) The
matrix is made up of the gradient of the Grad-CAM algorithm. (c) lllustrate the Saliency from the matrix (b) onto the original image.
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FIGURE 7. The feature matrix is calculated from the weight of each class based in FIGURE. 6a: (a) Damaged label features. (b) Characteristic of the Old

label. (c) Characteristic of the Ripe label. (d) Features of the Unripe label.

Resnet50. In addition, during training, the chart shows that
the two models learn features of the dataset well and are not
biased and affected by different batch sizes of images. The
valued line of the Accuracy or Loss Function graph does not
change direction too profoundly after each epoch.

For accuracy evaluation, precision, recall and F1-Score
parameters are shown in TABLE 4. The obtained results
are relatively good on the unseen data dataset. At the same
time, the remaining models achieved more than 90% of all
parameters, and the lowest result is 91% with InceptionV3
model. The four models showing the most efficient, includ-
ing ResNet50, EfficientNetV2, DenseNet201 and MobileNet
model, have achieved more than 97% measurement parame-
ter values. The traditional metrics for the image recognition
model prove that MobileNet has the best results on all
3 datasets

B. LOCAL EXPLAINABILITY MODEL AND COMPARISON
WITH GRAD-CAM

The research’s main objective is to evaluate the reliabil-
ity of the recognition model. Therefore, the research team
uses Grad-CAM on feature-by-feature random image data to
create 4 feature matrices, as shown in FIGURE. 7. Based
on this result, the research team displays the Saliency Map
on the original image. The result is an image of a dam-
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aged tomato with a damaged feature detected by Grad-CAM
(FIGURE. 10). Based on each trained model, the models learn
the features of the damaged area, except for the DenseNet201
and NasNetMobile models, which recognize the background
and the intact part of the tomato. This result shows that these
models achieve certain reliability for the feature of the Dam-
age label. However, for the feature of Old label, Grad-CAM
displays untrusted features because the regions identified by
the DL are confused and coincide with the damaged area. The
results of MobileNet, ResNet50, Xception, InceptionV3 and
EfficientNetV2 models do not detect image features on the
damaged fruit region (FIGURE. 10).

In the feature of the Ripe label, these models were correct
when identifying most of the background and border regions
of the tomato, similar to the Unripe labels(FIGURE. 11).
The image illustrated shows that the best-performing models
are Xception, InceptionV3, MobileNet and EfficientNetV2.
In which the features modelled EfficientNetV2 and Xception
are modelled accurately and are not affected much by other
features on the image. Thereby, it can be seen that, although
the MobileNet model achieves the highest results, the most
reliable models are EfficientNetV2 and Xception

In TABLE 5, the research performs statistics on each image
based on correctly predicting the features after using DL with
the region displayed from Grad-CAM called Match Ratio
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FIGURE 9. Comparison chart of loss function values of DL models based on Training and Validation datasets.

(MR). In case the data representation matches, the prediction
is considered correct, else is false. With the statistical value
in TABLE 5, we can see that the MR rate of MobileNetV2
is relatively high when the exact weight is from 97.09%
to 100%. Meanwhile, MobileNet predicts the indexes to be
relatively high, but the results show that choosing the right

83758

feature area still needs to be improved. However, in statistics,
it can be seen that the Old and Damaged class does not have
several 100% MR rates, and the average MR is smaller than
Unripe and Ripe, which shows this feature is hard for the
model can be learned clearly than other feature labels. For
Ripe and Unripe, the MR ratio is 100% achieved by some
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TABLE 4. Result table of the fine-tuning model on testing set.

DL model Accuracy(%) | Precision(%) | Recall(%) | F1-Score
VGGI16 (VG16) 63.00 75.8 63.0 58.00
ResNet50 (RES1) 97.32 97.39 97.34 97.34
ResNet50V2 (RES2) 95.16 95.00 94.84 94.88
Xception (XCEP) 97.24 96.88 96.84 96.83
EfficientNetV2 (EFN2) 97.11 96.67 96.58 96.62
InceptionV3 (INV3) 91.12 91.32 93.32 91.11
DenseNet201(D201) 97.10 96.71 96.66 96.66
MobileNetV2 (MON2) 96.00 96.10 95.57 95.73
MobileNet(MON1) 98.00 97.60 97.50 97.50
NasNetMobile(NANM) 95.40 95.38 95.00 95.15
RegNetX002(REN2) 96.41 96.00 95.85 95.91
InceptionResNetV2(IRN2) 96.60 95.86 95.61 95.71

MobileNat ResNetS0

EfficiontNetv2 DensaNet201 MshiloNotv2

n

RegNetX002 InceptionResNetV2

IncoptionVa

VGG16 NasNetMobile

(@)

e
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MobileNet ResNet50 ResNetSOV2

EfficlentNetv2 DensaNet201 MahlleHeivz

VGGG NasNetMabile

RegNetx002

InceptionResNetv2

(b)

FIGURE 10. The Saliency Map based on the Grad-CAM matrix is displayed on the original image of the DL models: (a) Damaged feature, (b) Old feature.

TABLE 5. Statistical table of the ratio of displaying correctly predicted feature area when using grad-cam on each class and DL models (%).

Class MON1 | VG16 | RES1 | XCEP | NANM IRN2 | REN2 | D201 | RES2 | EFN2 | INV3 | MON2
Damage 5326 | 97.85 | 79.35 81.72 77.42 | 100.00 9247 | 47.31 | 96.77 97.85 | 97.85 | 100.00
Old 91.26 | 66.99 | 85.44 98.06 93.20 97.09 | 100.00 | 54.37 | 99.03 98.06 | 94.17 97.09
Ripe 80.00 | 73.04 | 56.52 99.13 31.30 | 100.00 96.52 | 9391 | 86.09 | 100.00 | 94.78 | 100.00
Unripe 100.00 | 67.71 | 98.96 95.83 47.92 98.96 96.88 | 97.92 | 97.92 98.96 | 98.96 | 100.00

models, Grad-CAM detects the features, but these features
still match the feature matrices from the other labels.

V. DISCUSSION

The research proposes two stages in implementing the XAI
model with Grad-CAM, showing relatively optimistic results
in evaluating DL models in image classification, namely
the evaluation of tomato fruit quality with images. In phase
1, the results show that the MobileNet model achieves the
highest efficiency on the proposed dataset. This result is
because the architecture of the MobileNet model uses spe-
cial techniques such as depthwise convolution and point-
wise convolution, which significantly reduces the number of
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parameters in the model, thereby reducing the computational
complexity. Training speed is increased, and efficiency is
demonstrated. However, in phase 2, Grad-CAM use shows
that MobileNet is less reliable than EfficientNetV2, Xception
and MobileNetV?2 despite the higher recognition results. This
can confirm that the accuracy assessment has the best results,
but it is not necessarily the most complete and adequate
model. In addition, using XAl to clearly explain what happens
in the black box so that they become clearer is essential
for making in-depth assessments and ensuring reliability in
practice. FIGURE. 12 shows that with the InceptionRes-
NetV2 model, although the testing indexes are over 95%, the
learned features do not have certain reliability. From there,
the model can misjudge in reality if the image is incomplete
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FIGURE 11. The Saliency Map based on the Grad-CAM matrix is displayed on the original image of the DL models: (a) Ripe feature, (b) Unripe feature.
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FIGURE 12. Saliency Map features 4 classes on Damaged image based on Grad-CAM matrix explained from InceptionResNetV2 model.

or the background becomes different. For example, removing
the background and focusing only on the model object will
misjudge from Damaged to Unripe because the image has
only Unripe features. Through Grad-CAM, it is possible to
compare the performance of the models clearly and ensure
that the model learns essential features from the XAI based
on which can improve the model and complete the datasetin a
particular direction to ensure the model has higher reliability
in the research.

VI. CONCLUSION

In this research, the research team compared the performance
of DL models in the Image Classification task on the tomato
images dataset. In the first stage, MobileNets demonstrated
the highest efficiency in processing and grading tomatoes
with 97.5% to 98% accuracy on the evaluation metrics and
an average of 1% more than the models remaining. In the
second stage, as mentioned above, the MobileNetsV2 model
has the highest reliability through the Grad-CAM technique,
with the proportion of vital features found by the model
reaching 97% in the Damaged class and 100% in the Dam-
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aged class and 18.14% more than MobileNet model in each
class. These results show that EfficientNetV2, Xception and
MobileNetV2 models have higher reliability than MobileNet,
although MobileNet is more efficient in the first stage of train-
ing. The results show that MobileNetV2 is the most effective
of the models used for evaluation when the data is considered
by segmentation. However, the reliability of a model is not
based solely on the results of the test set but should be further
evaluated using XAI to explain the model’s decisions. The
research team encourages using XAl in research and practice
to ensure the model’s reliability, especially in agriculture.
At the same time, the study also proves that using XAl or
Grad-CAM to evaluate the entire black box model to develop
the most reliable model is essential. This proposal will help
improve the model and complete the dataset in a particular
direction for a more reliable model in future research.

VIl. FUTURE WORK

Although this research has contributed valuable results on the
effectiveness of DL models in Image Classification, as well as
partially solved the problem of tomato fruit state recognition
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in the agricultural field. It also gives the importance of XAl to
Computer Vision in completing and evaluating the black box
model. In the future, a further direction could be to expand
the research’s object by increasing the dataset’s specific com-
plexity. This work will pose many challenges regarding the
speed and accuracy of DL models. In addition, when devel-
oping a DL model or system, finding ways to optimize its
performance is necessary. In addition, XAl systems need to
research methods of evaluating Grad-CAM algorithm results,
such as model-based evaluations instead of relying solely on
human-based evaluations, to move from local explainability
to global explainability is also a potential future research
direction. This method will help improve the reliability of DL
models in real-world tasks across the entire dataset.
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