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ABSTRACT Increasingly, automation helps to minimize human involvement in many mundane aspects of
life, especially retail. During the pandemic it became clear that shop automation helps not only to reduce
labor and speedup service but also to reduce the spread of disease. The recognition of produce that has no
barcode remains among the processes that are complicated to automate. The ability to distinguish weighted
goods is necessary to correctly bill a customer at a self checkout station. A computer vision system can be
deployed on either smart scales or smart cash registers. Such a system needs to recognize all the varieties of
fruits, vegetables, groats and other commodities which are available for purchase unpacked. The difficulty of
this problem is in the diversity of goods and visual variability of items within the same category. Furthermore,
the produce at a shop frequently changes between seasons as different varieties are introduced. In this
work, we present a computer vision approach that allows efficient scaling for new goods classes without
any manual image labelling. To the best of our knowledge, this is the first approach that allows a smart
checkout system to recognize new items without manual labelling. We provide open access to the collected
dataset in conjunction with our methods. The proposed method uses top-view images of a new class, applies
a pseudo-labelling algorithm to crop the samples, and uses object-based augmentation to create training
data for neural networks. We test this approach to classify five fruits varieties, and show that when the
number of natural training images is below 50, the baseline pipeline result is almost random guess (20%
for 5 classes). PseudoAugment can achieve over 92% accuracy with only top-view images that have no
pixel-level annotations. The substantial advantage of our approach remains when the number of original
training images is below 250. In practice, it means that when a new fruit is introduced in a shop, we need
just a handful of top-view images of containers filled with a new class for the system to start operating. The
PseudoAugment method is well-suited for continual learning as it can effectively handle an ever-expanding
set of classes. Other computer vision problems can be also addressed using the suggested approach.

INDEX TERMS Fruits recognition, retail automation, computer vision.

I. INTRODUCTION
Automation supports us in many aspects of daily life,
from manufacturing to consumption [1]. Its goal is to
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reduce labor intensity and required time while increasing
the accuracy of completed tasks. For instance, in healthcare,
automated systems have become increasingly important and
are constantly developing [2]. Studies on self-driving cars and
their integration into traffic have opened up new possibilities
in logistics. The use of smart city technologies, including
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video analytics and action localization, can greatly enhance
coordination and process management [3]. In the field
of precision agriculture, significant transformations have
taken place over the last decade, with many manual tasks
now being performed automatically [4]. Automated systems
also enable us to monitor natural resources and support
environmental sustainability [5]. These significant results are
made possible by the rapid advancements in technologies,
including machine learning methods [6], data processing
approaches [7], control algorithms [8], and fast computation
algorithms [9].

Retail in particular benefits from many of the latest
advances in automation, as employees are relieved from
especially mundane or strenuous tasks. Already, machine
learning has produced models that automate market analysis,
product pricing, and logistics [10]. The implementation of
Internet of Things (IoT) systems facilitates the automation
of both human [2] and industrial monitoring processes [11],
[12], [13]. The ability of e-commerce companies to rapidly
adopt these technologies has led to a rapid growth of the
industry and a pronounced shift in customer habits and
expectations. [14]. For instance, people prefer to spend less
time in lines. Additionally, the COVID-19 pandemic created
a strong demand for low contact ordering and customer
service. This increased the prevalence of automated checkout
systems [15] and non-contact systems in general [16]. Self-
service shopsmeet the above demands and, therefore, become
widespread today [17].

We can split computer vision algorithms into classical
computer vision and deep learning approaches. Classical
recognition algorithms consist of two independent steps:
feature selection and classification. Feature selection uses
a hand-crafted algorithm such as SIFT (scale-invariant
feature transform) [18] or statistical feature extraction [19].
Classification usually uses a classical machine learning
algorithm such as SVM (support-vector machine) [20] or
KNN (K-nearest neighbors) [21].

Deep learning approach, on the contrary, extracts features
and learns to classify objects in a single step. Neural
networks consist of cells that perform simple operations and
recognize simple patterns. When we combine many cells,
models can learn more complex relationships in a set of
training data. This makes deep learning universal for the
variety of tasks in different domains [22], [23]. However,
to train an accurate and robust model, we need many training
examples [24].

While in domains such as autopilot design, there are
large-scale datasets available, and the analyzed objects lack
variation [25], in agriculture-related problems, we lack fine-
grained datasets with objects that differ significantly within
a class [26]. Moreover, this problem is complicated because
the appearance of the same object can vary with time [27].

In practical cases, it is very expensive and time-consuming
to collect more training data [28]. Therefore, to increase
the number of training samples artificially, we apply image
augmentation. Image augmentation is a technique that makes

transformed copies of the original image during the model
training [29]. The basic transformations include image
flipping, rotating, shifting, adding noise, changing brightness
and contrast. We almost always apply simple transformations
if they do not alter the essence of the image [30]. It ensures
that, in every training iteration, the model sees slightly
different samples, which increases data variability and makes
the model more robust [31].

For the small datasets, basic image augmentation is usually
not enough. A potential way to improve augmentation is to
transform separate objects instead of the whole image [32].
It is referred as object-based augmentation, and results in
more diverse scenes [33], [34]. The features of this approach
allow for background substitution and object alteration.
However, the limitation is that one needs instance-level
annotations to crop objects from original images [35].
This paper proposes a pseudo-labeling approach to obtain
instance-level annotations from only image-level annotations
for weight goods in retail. PseudoAugment capitalizes upon
the current delivery scheme, where different fruits and
vegetables are delivered to stores in separate boxes. Thus,
if we use a top-view image of a single box, all the objects
in it will share the same class label. If we decompose an
image into instances, we can further use them for object-
based augmentation. In the result, PseudoAugment enables
considerable image dataset augmentation with no manual
instance-level annotations. For this practical application,
it means that when a shop has a new fruit or vegetable variety,
it is possible to expand smart scales system within minimal
time and labor.

Below we summarize our main contributions:
• We introduce the novel concept PseudoAugment that
combines instance-level pseudo-labeling and object-
based augmentation;

• We provide open access to the dataset we collected,
enabling the replication of our research and facilitating
the conduct of similar experiments;

• We propose approaches to utilize PseudoAugment in
both learning from scratch and incremental learning
scenarios;

• We provide detailed explanation for each step of
our approach, enabling the selection of the optimal
implementation for a given computer vision problem;

• We implement and thoroughly evaluate the performance
of PseudoAugment with different amount of training
data to show the limitations.

II. RELATED WORK
A product recognition in retail is an essential problem in
computer vision that includes particular challenges. In a
number of studies, attempts are made to create an effective
system [36].

In [37], they assess the computer vision algorithms
for packaged products identification in vending machines
applying a transfer learning technique. The authors open
sourced the dataset with 300 annotated images. They
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FIGURE 1. Smart Checkout System Principal Scheme.

study the problem of sparse label data and achieve the
accuracy of 90% using as little as six images per class for
product classification. Transfer learning approach for grocery
product recognition is also presented in [38] and for fruits
classification in [39].

In retail tasks, a common issue for new product launches
arises when a machine learning algorithm needs to be
retrained for a new previously unseen class. The research
question of efficient model training for new classes is
addressed in [40]. They highlight the importance of data
augmentation, fine-grained classification, and one-shot learn-
ing techniques to deal with the following challenges: data
limitations, intra-class variation, and flexibility. Another
powerful tool that the authors mention is incremental learning
when minimal retraining is required. It shows promising
results in the general domain [41]. Another approach to
prevent old classes being forgotten when a new one is
introduced is continual learning techniques [42]. The authors
use the generative adversarial network (GAN) model to
create a memory of the old tasks for agriculture applications.
However, this approach is very resource-intensive for on-edge
implementation.

The similar appearance of retail products motivates the
following research question: what is the best way to
distinguish between a large quantity of varying classes?
In [43], they propose an improved convolutional neural
network and adjust the model robustness using mosaic data
transformation.

An insufficient quantity of labelled datasets leads to
training from scratch in most fruit classification tasks
using custom collected samples [44]. Therefore, the authors
suggest focusing more on the unsupervised algorithms and
applying augmentation techniques to reduce expensive and
time-consuming manual labelling. The lack of labelled data
for fruits varieties in retail stores is also emphasized in [45].
They create a fruit dataset with three fruits types including

items in plastic bags to train a deep neural network. Although
promising results are obtained, the authors propose future
data augmentation exploration and minimum number of
training images estimation for sufficient prediction accuracy.

Algorithms onboard implementation is a required stage of
a real-world retail application developing. In [46], the authors
demonstrate a prototype for fruits classification system using
a deep neural network implemented using a RaspberryPi.
A RaspberryPi module for a neural network-based fruits
inspection system is also implemented in [47]. The system
enables accurate real time performance.

In scenarios where there is a dearth of training data, it is
essential to adopt a comprehensive approach that encom-
passes both model-centric and data-centric methodologies.
The latter focuses on optimizing data collection, annotation,
and processing, thereby enhancing the quantity and quality
of data. This approach entails the removal of irrelevant and
spurious samples, leading to an increase in the availability
of high-quality data that facilitates the training of generic
models. Consequently, this results in improved accuracy and
stable performance.

Data augmentation plays a central role in data-centric
methods, particularly with image datasets, where both images
and their annotations can be augmented. Annotation augmen-
tation involves adding noise to enhance model robustness
or creating different types of annotations to train different
models. Image augmentations encompass a range of generic
color and geometry transformations, imagemixing [48], [49],
[50], [51], neural network-based augmentations [52], [53],
and modeling [54], [55]. This study focuses on instance-
level augmentation, which augments individual objects rather
than the entire image, enabling background substitution
and greater flexibility. Existing instance-level augmentation
approaches either rely on costly and challenging manual
instance-level annotations [56] or perform coarse image
manipulations [57]. In contrast, this study proposes an
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FIGURE 2. PseudoAugment Principal Scheme. PseudoAugment finds object candidates in the single-class top-view image, filters defective candidates,
and uses the rest for object-based augmentation.

approach that identifies cases where instance-level augmen-
tation can be performed at high quality without manual
annotation. Although this is a specialized case, it has potential
applications in various fields, as demonstrated by the example
problem presented in this study.

III. METHODS
A. PSEUDOAUGMENT
In computer vision problems that we aim to solve with
deep learning tools, one of the main limitations is in
the inapproachability of large and well-annotated datasets.
In practical cases, we sometimes can have a big dataset,
but with several underrepresented classes. Despite the avail-
ability of numerous open source datasets tailored to specific
tasks, the data distribution typically varies from that of the
target problems, necessitating programmatic solutions [58].
The scaling of such systems in a very challenging task.
One of the solutions is to augment the original data.
Image augmentation applies various transformations to an
image that changes its visual representation, but preserves
that semantics. Since understanding image semantics is
a tough task itself, a generic solution is just to apply
small transformations. However, this approach limits possible
generated images significantly.

Another approach is to apply object-based augmenta-
tion (OBA) instead of image-based. It means that we want

to transform each object individually. OBA is very efficient
for data-poor data sets. However, the limitation of OBA is the
need for pixel-level annotation. Here, we describe a specific
case where one can obtain approximate pixel-level annota-
tions automatically. Further, we show that the approximate
pseudomask solution is good enough for image augmentation
purpose. Moreover, we show that OBA, even with inaccurate
annotations, can improve accuracy of the model sufficiently.

PseudoAugment is an improved OBA pipeline that is
suitable for the cases where it is possible to acquire
supplementary images with instances of a single class.
Usually, those are top-view images. PseudoAugment consists
of three steps: instance finding, instance filtering, and
OBA (Figure 2).

The PseudoAugment methodology offers multiple imple-
mentation options for each step. Practitioners may select and
replace any step with a model or algorithm that aligns with
their task requirements. The primary consideration lies in
balancing accuracy with computational resources.

B. INSTANCE FINDING
The goal of an instance finding algorithm is to extract
object proposals. The concept of object proposal pertains to
identifying image regions that are probable to encompass
a solitary pertinent object. Essentially, this stage involves
segmenting an image into subregions that solely comprise
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objects while discarding the surrounding background. The
attainment of spurious or erroneous objects is acceptable in
this step.

We explore the performance of PseudoAugment with
different algorithms that find instances. We provide a visual
comparison of several algorithms we use to retrieve instances
in Figure 3.

We can split such algorithms into two groups: DL-based
models that require GPU, and other algorithms that can
run fast on a CPU. In general, DL-based approaches have
better accuracy, but they are more computationally intensive.
Therefore, we compare results separately in these groups.
Depending on available resources for a project, one can
choose capitalizes upon the current delivery scheme, where
different fruits and vegetables are delivered to stores in
separate boxes.

Among classical computer vision algorithms, we test:
CompactWatershed [59],Morphological Snakes [60], Border
Following Algorithm [61], and Quick Shift [62].

The scientific concept of the watershed algorithm involves
the computation of catchment basins within an image that has
been flooded from specificmarkers. This process involves the
allocation of pixels into marked basins, utilizing a grayscale
gradient image as input, which represents the image as a
landscape. Bright pixels in the image indicate boundaries
between different regions, forming high peaks. The landscape
is then flooded from the given markers until different basins
meet at the peaks, resulting in the formation of distinct image
segments for each basin. We use the Compact Watershed
variant of the algorithm, which used to ensure that the
resulting regions are more localized and well-shaped.

The Morphological Snakes algorithm is a segmentation
technique used in image processing that involves the use of an
energy function to deform a contour or boundary of an object
in the image. This algorithm is based on the concept of active
contours, which are curves or boundaries that can move and
adjust their shape to fit the edges of an object in the image.
The energy function used in the Morphological Snakes
algorithm is composed of two terms: an internal energy term
that controls the smoothness and regularity of the contour,
and an external energy term that attracts the contour towards
the edges of the object in the image [63]. The external energy
term is calculated using a gradient or edge map of the image,
which provides information about the location and intensity
of edges in the image. The internal energy term is calculated
based on the curvature and length of the contour, ensuring that
it maintains a smooth and regular shape. The Morphological
Snakes algorithm iteratively updates the position and shape
of the contour based on the energy function until it converges
to the edges of the object in the image. This results in a
segmented image where the object is separated from the
background [64]. We set the smoothing parameter to one.

The Border Following Algorithm is a technique used in
image processing to extract the boundary or contour of an
object in an image. This algorithm works by starting at a

known point on the boundary of the object and following the
edges of the object to trace its outline. In theMoore-Neighbor
Tracing implementation, the algorithm starts at a known
point on the boundary and moves in a clockwise direction,
checking neighboring pixels to determine the next direction
to follow [61].

Quickshift is a fast and efficient algorithm used for image
segmentation. It works by grouping pixels that have similar
color and texture characteristics into regions, which can then
be used to identify objects or boundaries within an image.
Quickshift uses a hierarchical approach to clustering, starting
with small regions and gradually merging them together
to form larger regions [65]. We set the sigma to one for
smoothing, and choose fifty for a cut-off point for data
distances.

Among deep learning models, we test: Feature Pyramid
Network with ResNet101 backbone (ResNet101-FPN) [66],
MaskRCNN [67], and DeepLabv3 [68]. Currently, these
architectures are widely used and show high performance
in various computer vision domains, such as medical imag-
ing [69], precision agriculture [70], and remote sensing [71].

Feature Pyramid Network (FPN) is a neural network
architecture used for object detection in images. It consists
of a bottom-up pathway that extracts features from the input
image at different scales, and a top-down pathway that
combines these features to generate a pyramid of feature
maps. The FPN architecture uses lateral connections to
merge features from different scales, and a top-down pathway
to propagate high-level information to lower scales. This
allows the network to detect objects at different scales and
resolutions, making it more robust to variations in object
size and location [66]. We set the hyperparameners for the
FPN as follows: 5 feature maps (FMs) with the smallest FM
resolution of 32, and 256 channels for each FM. Max pooling
to downsample FMs, and nearest-neighbor interpolation to
upsample them. Learning rate is 0.01. Learning rate decay
is polynomial. Weight decay is 0.0001.

MaskR-CNNbuilds upon the Faster R-CNN framework by
adding a branch for predicting object masks in parallel with
the existing branch for bounding box detection. This allows
the network to not only detect objects, but also segment
them at the pixel level. The Mask R-CNN architecture uses
a Region Proposal Network (RPN) to generate candidate
object regions, and then applies a series of convolutional
layers to extract features from these regions. These features
are then used to predict the class label, bounding box
coordinates, and mask for each object instance [67]. We set
the hyperparameners for the Mask R-CNN as follows: initial
learning rate: 0.001. Learning rate decay is linear. Weight
decay: 0.0005, Stochastic Gradient Descent (SGD) optimizer
with Nesterov momentum of 0.9.

DeepLabv3 is a deep neural network architecture used for
semantic image segmentation. It uses a modified version of
the ResNet architecture as a backbone, and adds atrous spatial
pyramid pooling (ASPP) modules to capture multi-scale
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FIGURE 3. Examples of the extracted instances before filtering. Compact Watershed algorithm (a) , Border Following algorithm (b), MaskRCNN
model (c), ResNet101-FPN model (d).

contextual information. The ASPP modules use dilated
convolutions at different rates to extract features at different
scales, which are then combined to generate a final segmen-
tation map. DeepLabv3 also uses a decoder module to refine
the segmentation map and produce sharper boundaries [68].
We set the hyperparameners for the DeepLabv3 as follows:
initial learning rate: 0.007. Learning rate decay is linear.
Weight decay: 0.0005, Stochastic Gradient Descent (SGD)
optimizer with Nesterov momentum of 0.9.

To measure the results of the instance finding stage
quantitatively, we manually count the number of instances on
all top-view images separately for each class. For the practical
application, this manual work is not required. In Table 1 we
compare the performance of different algorithms for instance
finding task. We use recall metrics calculated as 1 [72].

Recall =
Nfound
NGT

, (1)

where Nfound is the number of object candidates found by
algorithm, NGT is the number of ground truth objects. This
metric shows the percent of the objects that an algorithm

successfully found. Note that this metric is approximate
because, for this step, we ignore false objects. We evaluate
recall per class, and then apply macro-averaging to aggregate
the result. The higher the value, the better. As one can see,
deep learning approaches work better with the best result of
97.2% with ResNet101-FPN. The best method among ones
that do not require a GPU to run is Compact Watershed with
80.6% recall.

C. INSTANCE FILTERING
Some of the found object candidates have very poor shapes,
hence we apply instance filtering to eliminate them. For this
purpose, wemanually checkwhether a cropped object is good
or not. To show the results quantitatively, we make a small
dataset of good and bad crops. For the practical application,
this manual work is not required. Note that for the training we
use only good and bag samples for apples. No manual work
is required for the new classes.

We compare the performance of two classification models
for the instance filtering stage. The features that we use to
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TABLE 1. Pseudo-instance detection recall.

TABLE 2. Instance filtering false negative rate.

train a classifier are based on the contours of the found objects
and include: contour perimeter, contour area, the ration
between the area and the perimeter, the ‘roundness’ of the
contour approximated with circular Hough transform [73].
One can find the results in Table 2. We use the metric
calculated with equation 2 [74].

FNR =
Nbad
Nfound

, (2)

where FNR is false negative rate, Nbad is the number of
bad-looking object candidates after the filtering algorithm.
The lower the value, the better.We evaluate the FNRper class,
and then apply macro-averaging to aggregate the result.

D. OBJECT-BASED AUGMENTATION
Object-based augmentation (OBA) is the general image
augmentation concept where we crop object from original
image and paste to the new background.

In our work, we try several approaches. First of all, we can
choose different sources of the background images. We can
use uniform white background, backgrounds with random
patterns, and background images from the same domain as
the test images have. Also, we can paste either one or multiple
instances per image. Moreover, we can mix OBA-generated
with natural images if any are available. The results of
the experiments with different approaches are reflected in
section V.

IV. SMART SELF CHECKOUT USE CASE
A. USE CASE DESCRIPTION
In this work, we showcase how PseudoAugment can be
applied in smart checkout systems. Smart checkout allows
customers to pay in shops with no human cashier required.
The advantages of such a system is that it lowers labor
cost, speeds up the checkout process, and eliminates human
interaction during pandemics.

To function, a smart checkout system must be able to all
goods, including bulk goods missing barcodes. Recall that we

do not cover the recognition of barcodes in this work because
this problem is already solved with high accuracy [75].

Although several solutions for smart checkout systems
exist, their common bottleneck is in the ability to adopt to
the new classes. We show how an existing solution can be
improved to work in a data-poor environment and to learn
new classes rapidly. The main feature that we utilize is that
top-view images of the delivered containers with fruits and
vegetables are easy to collect, and they contain many class
instances which we can retrieve automatically.

B. DATASET
Our dataset consists of five classes. They are:

• Pirum ‘Duchesse’ (Duchesse pear).
• Malum ‘Orlik’ (Orlik apple).
• Malum ‘Zhigulevskoe’ (Zhigulevskoe apple).
• Prunus persica ‘Golden Jubilee’ (Golden Jubilee peach).
• Prunus persica ‘Vladimir’ (Vladimir peach).

We collect two types of images. Images in which several
objects are present under normal conditions, we call natural.
One or several objects appear in every image. The images
were taken in a variety of locations: in a garden, at a local
grocery store, and in a lab setting. The location of each
image is present in the dataset. It allows us to calculate
the metrics for each location type separately, and compare
the performance with different background types. We have
1000 natural images per class, and a total of 5000 natural
images.

Another type of images contains top-view container
images. Many objects are present in every top-view image.
It makes them both very informative and easy to collect.
We use 70 top-view images per class with 7.1 objects per
image on average. That gives us approximately 500 auxiliary
objects per class. Note that by combining different images
and backgrounds and applying various transformations,
we can generate more training images than the number of
cropped objects.
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FIGURE 4. Experimental deployment.

We have also collected images without any objects of
interest to use them as a background for object-based
augmentation.We use 100 images with artificial patterns, and
100 natural images that correspond to the backgrounds of the
main dataset.

C. IMPLEMENTATION
The principal scheme of the system is shown in Figure 1.
As one can see, it consists of two nodes. We call them a data
collection node and a smart checkout node.

The purpose of the data collection node is to collect new
training data. It requires only a camera that sends images to
the smart checkout node. In our design, we use the fact that
fruits and vegetables are delivered to shops in big boxes, and
each box is filled with a single variety. This implies that a
top-view image of a single box contains instances of a single
fruit or vegetable variety. The data collection node can be
deployed in shops’ warehouse. If we embed it to the goods
reception pipeline, we can automatically update our dataset
with new images. We can use one or many imaging stations
in a warehouse.

The smart checkout node is a node that interacts with
customers. In our implementation (Figure 4), it consists of
Jetson AGX Xavier board with Logitech C920s PRO HD
Webcam attached. The system can be integrated to a regular

self checkout hardware. Also, an existing smart checkout
system can be used. The only requirement is that it needs to
have a GPU onboard.

The smart checkout node solves two tasks. The primary
task is to recognize customers’ goods. In the inference mode,
a nodemakes imageswhen anything is placed in the dedicated
area, and runs a trained neural network to recognize an item.
The model must be trained to recognize all the goods that
are available for purchase. However, it is not possible to
recognize a variety directly if it was not present in a training
set. In this case, a model can predict a class from the training
set that is visually close to the desired one.

But to be able to predict the exact class, we need to retrain a
model. The complication with adding a new class to a model
appears in data management steps. Usually, one needs to
collect new training images and manually label them. Recall
that, to obtain a robust model, it is vital to have many training
samples.

In our solution, we improve the pipeline described above.
Our smart checkout node is able to retrain itself for the new
classeswithoutmanual annotations. First, it receives top-view
images from a data collection node. Then, it sequentially
applies algorithms described in sections III-B and III-C.
In our system, we choose a DL-based approach, for the
instance finding, more precisely ResNet101-FPN. However,
if computational resources are limited, one can choose
another method.

After extracting instances for new classes, we generate
new training images, and fine-tune our model. We freeze
the backbone of the model, and update only four last layers
to reduce the training time. Our main solution takes only
20 minutes to tune for 5 new classes on Jetson AGX Xavier.
Due to our observations, this is fast enough for the described
use case because it usually takes more time to place new
goods on shelves after their delivery.

We can use one or multiple inference stations in a shop.
That is possible to use only one node for model fine tuning.
After the training, models can share the weights.

For the pipeline implementation we have used: Scikit-
image [76] and OpenCV [77] for classical computer vision
algorithms, Scikit-learn [78] for machine learning algo-
rithms, Pytorch [79] for deep learning models training,
TensorRT [80] for models inference acceleration.

V. RESULTS
A. BASELINE
For the baseline solution, we use ResNet50 model [81].
We train it with the batch size of 64, SGD optimizer, cross
entropy loss function and the learning rate of 0.001. The
number of training samples is specified for every experiment
individually. The model is pre-trained with the ImageNet
dataset [82]. For the baseline, image augmentations include
image horizontal flipping, random cropping, color jittering.

The baseline model does not use any auxiliary data from
the top-view images. The result is shown as a dotted line on
Figure 5.
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FIGURE 5. The comparison of the baseline accuracy with the accuracy of
PseudoAugment algorithm using different substitution backgrounds.

We calculate accuracy according to Equation 3 [72].

Accuracy =
1
N

N∑
i=1

I [Ci == Ĉi], (3)

where N is the number of images in the dataset, Ci is the
correct class of the ith sample in the dataset, Ĉi is the predicted
class of the ith sample in the dataset, I [. . . ] is the indicator
function, which returns 1 if the value inside is true and zero
otherwise.

As one can see, the accuracy of the baseline model
drops dramatically when only few learning samples are
available.

B. LEARNING FROM SCRATCH
In the learning from scratch scenario, we learn a model
only once. It uses all five classes. The model and its
hyperparameters are the same that we use for the baseline.

In Figure 5, we compare the accuracy of the baseline
with several variations of PseudoAugment. More precisely,
we show how the resulting accuracy depends on the type of
the substituted background. For this experiment, all available
objects from 35 top-view images were used. It is clear
that even no background (uniform white background) OBA
performs much better than the baseline.

Random patterns improve the results because a model has
to learn how to distinguish an object from the background.
If one can find images similar to the locations where the
system is deployed, it is possible to improve the result even
further. For the purpose of utilizing ‘‘natural’’ backgrounds,
we employ images acquired within the confines of the same
room where the system under development is employed.
Although it is not imperative to utilize images exclusively
from the same location, it is often convenient to do so in
numerous practical scenarios. Specifically, this holds true for

FIGURE 6. The performance comparison with ML-based (Compact
watershed) and DL-based (R101-FPN) algorithms for instances extraction.

FIGURE 7. PseudoAugment performance comparison with different
strictness of instance filtering.

situations involving stationary cameras. These images require
nomanual annotation. In the event that acquiring such images
proves unfeasible, they may be substituted with other similar
images. For instance, if the system is intended for use in
a warehouse, it is possible to utilize images sourced from
other warehouses available within open access datasets. Note
that PseudoAugment gives us reasonable result even with no
natural images at all.

In Figure 6, we show the difference in accuracy when
different instance finding algorithms are used. As expected,
we see that the DL-based approach has a better result.
However, if computational resources are limited, one can
still use a classical computer vision approach, and get an
improvement.
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In Figure 7, we show the effect of instance filtering. While
training a model with badly shaped objects still gives an
improvement, it is beneficial to screen them out.

Our findings indicate that the optimal outcome measure-
ments for pseudo-labeling are achieved using ResNet101-
FPN, while instance filtering is most effectively accom-
plished with Random Forest.

Our primary conclusion is that PseudoAugment represents
a viable few-shot learning algorithm, which is particularly
useful when the available training samples are limited.
However, if the training dataset is sufficiently large, Pseu-
doAugment may not be necessary. The frequent scenario is
when certain classes have an abundance of samples, while
others are underrepresented, such as when new classes are
introduced. We delve into this specific case in greater detail
in the subsequent section.

C. CONTINUAL LEARNING
In this section, we show our results in a continuous learning
scenario. We train a baseline model with an incomplete set
of classes and 1000 natural images per class. We choose the
Naïve Continual Learning approach [83] that uses only new
images for fine tuning and freeze the model backbone to
minimize computational resources.

Then we apply PseudoAugment to fine tune the model to
the new classes using top-view images only. Recall that it
means that no manual annotation is used for the new classes.

Upon freezing a majority of the layers within our model,
the resultant learning process is streamlined to solely
incorporate final feature map representations. This approach
yields expedited results, as backpropagation through fewer
layers incurs less computational overhead and parameter
convergence is achieved more rapidly. Our fine-tuning
methodology involves utilizing augmented images generated
by our algorithm, wherein objects belonging to the designated
class are randomly selected and superimposed onto a novel
background.

In Figure 8, one can see how the accuracy drops when we
add new classes and fine tune the model. PseudoAugment
prevents accuracy degradation. However, it still needs
top-view training samples. If not enough auxiliary instances
are provided, the model is not as efficient. For the fruits
classification use case we achieve 98.3% accuracy without
any natural images, and with only 70 top-view images per
class.

D. ABLATION STUDY
In this section, we show some additions results. In Figure 9,
one can see the results of the experiment with two approaches
for object-based augmentation. We compare the accuracy of
the model trained with only a single object per generated
image and the accuracy of the model trained with several
objects per generated image. We see no significant differ-
ence between these approaches for the classification task.
However, it worth to further research the performance of

FIGURE 8. PseudoAugment performance comparison with different
number of crops of new classes. Initial classes are trained with
1000 images per class. New classes are trained with generated samples
only.

FIGURE 9. PseudoAugment performance comparison with single and
multiple instances per generated image.

such computer vision problems as object detection as instance
segmentation. Also, we do not overlap objects on generated
images. A prospective research direction is to use a dynamic
change of OBA for curriculum learning. The adaptive
change of samples difficulty can provide a more robust
model.

In Figure 10, we separate our original dataset according
to the background and compare the results with different
backgrounds of training samples. The colors in the legend
represent the type of training data. Blank means the baseline
approach. Colors correspond to the OBA with different
backgrounds.

There are several conclusions from this figure. First,
we see that it is beneficial to have background images for
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FIGURE 10. The examination of the PseudoAugment sensitivity for different backgrounds. Different holdout set backgrounds are used for accuracy
calculation, and different substitution backgrounds are compared for training samples generation.

augmentation that are similar to the testing conditions. This
allows a model to learn the context. Often, in practical
applications, it is easy to make a dozen of plain images in
the area where the system will be deployed. Moreover, these
images do not require any annotations.

Second, as we see that the accuracy on generated test
samples is considerably higher that the accuracy on natural
images when we use generated train samples, it is essential
to use only natural images for test leaderboard.

Moreover, the proposed approach can be integrated with
other advanced augmentation methods that address various
spectral bands [51] and sensing techniques [84].

VI. CONCLUSION
Deep learning shows high results in computer vision prob-
lems. It allows us to automate many routine tasks. In the agri-
food domain, the main bottleneck that limits DL application
is in the low availability of well-annotated training data.
Training samples usually do not cover the diversity of the
studied objects. Another challenging problem is to adopt a
model to new classes.

In this paper, we describe a novel approach to image
augmentation that aims to solve the above problems.
Our PseudoAugment algorithm uses top-view images of
containers with fruits or vegetables to extract pseudo-labelled
instances without manual annotation. Then, we use object-
based augmentation to generate new training images.

Our pipeline can be easily embedded into an existing smart
checkout system to increase its performance. There is no
need to chance model architecture or training procedure.
We show that on fruit classification problem, our solution
can reach 98.3% accuracy with no natural training images.
If we have only 14 top-view images for a single new
class, we can reach 95% accuracy. It is possible to combine
natural images and generated images to achieve better
results.

We also show that PseudoAugment can efficiently work in
a continuous learning environment. Our system is able to fine
tune to a new class in under 20 minutes on a Jetson Xavier
board with no manually annotated images.

The utilization of the PseudoAugment algorithm is not
constrained to smart checkout systems, as it can be effica-
ciously employed for any task that involves the acquisition
of top-view images featuring readily distinguishable target
objects. This algorithm has potential applications in industrial
automation scenarios where objects are transported on
conveyors with uniform backgrounds.

DATA AVAILABILITY
The dataset analysed during the current study is available to
download via the following link: https://drive.google.com/
drive/folders/1AohWL3j3Y1LbboaYKUVPsTVeE2BCNo
CE.

VOLUME 11, 2023 76879



S. Nesteruk et al.: PseudoAugment: Enabling Smart Checkout Adoption

REFERENCES
[1] P. Fröhlich, M. Baldauf, T. Meneweger, M. Tscheligi, B. de Ruyter, and

F. Paternó, ‘‘Everyday automation experience: A research agenda,’’ Pers.
Ubiquitous Comput., vol. 24, no. 6, pp. 725–734, Dec. 2020.

[2] W. Qi and A. Aliverti, ‘‘A multimodal wearable system for continu-
ous and real-time breathing pattern monitoring during daily activity,’’
IEEE J. Biomed. Health Informat., vol. 24, no. 8, pp. 2199–2207,
Aug. 2020.

[3] G. Burdukovskaya, G. Ovchinnikov, M. Fedorov, and D. Shadrin,
‘‘Improving of action localization in videos using the novel feature
extraction,’’ in Proc. IEEE 30th Int. Symp. Ind. Electron. (ISIE), Jun. 2021,
pp. 1–6.

[4] L. Lemikhova, S. Nesteruk, and A. Somov, ‘‘Transfer learning for few-shot
plants recognition: Antarctic station greenhouse use-case,’’ in Proc. IEEE
31st Int. Symp. Ind. Electron. (ISIE), Jun. 2022, pp. 715–720.

[5] S. Illarionova, D. Shadrin, P. Tregubova, V. Ignatiev, A. Efimov,
I. Oseledets, and E. Burnaev, ‘‘A survey of computer vision techniques
for forest characterization and carbon monitoring tasks,’’ Remote Sens.,
vol. 14, no. 22, p. 5861, Nov. 2022.

[6] B. Mahesh, ‘‘Machine learning algorithms—A review,’’ Int. J. Sci. Res.
(IJSR), vol. 9, pp. 381–386, Jan. 2020.

[7] O. Voynov, G. Bobrovskikh, P. Karpyshev, S. Galochkin, A.-T. Ardelean,
A. Bozhenko, E. Karmanova, P. Kopanev, Y. Labutin-Rymsho, and
R. Rakhimov, ‘‘Multi-sensor large-scale dataset for multi-view 3D
reconstruction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2023, pp. 21392–21403.

[8] G. Yang, ‘‘Asymptotic tracking with novel integral robust schemes
for mismatched uncertain nonlinear systems,’’ Int. J. Robust Nonlinear
Control, vol. 33, no. 3, pp. 1988–2002, Feb. 2023.

[9] J. Gusak, D. Cherniuk, A. Shilova, A. Katrutsa, D. Bershatsky, X. Zhao,
L. Eyraud-Dubois, O. Shlyazhko, D. Dimitrov, I. Oseledets, and
O. Beaumont, ‘‘Survey on large scale neural network training,’’ 2022,
arXiv:2202.10435.

[10] M. E. Isharyani, B. M. Sopha, M. A. Wibisono, and B. Tjahjono, ‘‘Smart
retail adaptation framework for traditional retailers: A systematical review
of literature,’’ in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manag. (IEEM),
Dec. 2021, pp. 143–147.

[11] C. Tian, Z. Xu, L. Wang, and Y. Liu, ‘‘Arc fault detection using artificial
intelligence: Challenges and benefits,’’ Math. Biosci. Eng., vol. 20, no. 7,
pp. 12404–12432, 2023.

[12] Y. Shi, H. Li, X. Fu, R. Luan, Y. Wang, N. Wang, Z. Sun, Y. Niu,
C. Wang, C. Zhang, and Z. L. Wang, ‘‘Self-powered difunctional
sensors based on sliding contact-electrification and tribovoltaic effects for
pneumatic monitoring and controlling,’’ Nano Energy, vol. 110, Jun. 2023,
Art. no. 108339.

[13] S. Nesteruk and S. Bezzateev, ‘‘Location-based protocol for the pairwise
authentication in the networks without infrastructure,’’ in Proc. 22nd Conf.
Open Innov. Assoc. (FRUCT), May 2018, pp. 190–197.

[14] B. Ratchford, G. Soysal, A. Zentner, and D. K. Gauri, ‘‘Online and offline
retailing: What we know and directions for future research,’’ J. Retailing,
vol. 98, no. 1, pp. 152–177, Mar. 2022.

[15] F. Fortuna, M. Risso, and F. Musso, ‘‘Omnichannelling and the predomi-
nance of big retailers in the post-COVID era,’’ Symphonya. Emerg. Issues
Manag., vol. 2, pp. 142–157, Nov. 2021.

[16] W. Qi, S. E. Ovur, Z. Li, A. Marzullo, and R. Song, ‘‘Multi-sensor
guided hand gesture recognition for a teleoperated robot using a recurrent
neural network,’’ IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 6039–6045,
Jul. 2021.

[17] P. Sharma, A. Ueno, and R. Kingshott, ‘‘Self-service technology in
supermarkets—Do frontline staff still matter?’’ J. Retailing Consum.
Services, vol. 59, Mar. 2021, Art. no. 102356.

[18] S. Purohit, R. Viroja, S. Gandhi, and N. Chaudhary, ‘‘Automatic plant
species recognition technique using machine learning approaches,’’
in Proc. Int. Conf. Comput. Netw. Commun. (CoCoNet), Dec. 2015,
pp. 710–719.

[19] A. Nosseir and S. E. A. Ahmed, ‘‘Automatic identification and classifi-
cations for fruits using k-NN,’’ in Proc. 7th Int. Conf. Softw. Inf. Eng.,
May 2018, pp. 62–67.

[20] M. T. Habib, A. Majumder, A. Z. M. Jakaria, M. Akter, M. S. Uddin, and
F. Ahmed, ‘‘Machine vision based papaya disease recognition,’’ J. King
Saud Univ.-Comput. Inf. Sci., vol. 32, no. 3, pp. 300–309, Mar. 2020.

[21] S. R. Dubey and A. S. Jalal, ‘‘Species and variety detection of fruits and
vegetables from images,’’ Int. J. Appl. Pattern Recognit., vol. 1, no. 1,
pp. 108–126, 2013.

[22] P. Ongsulee, ‘‘Artificial intelligence, machine learning and deep learning,’’
in Proc. 15th Int. Conf. ICT Knowl. Eng., Nov. 2017, pp. 1–6.

[23] S. Illarionova, D. Shadrin, V. Ignatiev, S. Shayakhmetov, A. Trekin, and
I. Oseledets, ‘‘Estimation of the canopy height model from multispectral
satellite imagery with convolutional neural networks,’’ IEEE Access,
vol. 10, pp. 34116–34132, 2022.

[24] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, ‘‘Revisiting unreasonable
effectiveness of data in deep learning era,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 843–852.

[25] J. Janai, F. Guney, A. Behl, and A. Geiger, ‘‘Computer vision for
autonomous vehicles: Problems, datasets and state of the art,’’ Found.
Trends Comput. Graph. Vis., vol. 12, pp. 1–308, Jul. 2020.

[26] Y. Lu and S. Young, ‘‘A survey of public datasets for computer vision tasks
in precision agriculture,’’Comput. Electron. Agricult., vol. 178, Nov. 2020,
Art. no. 105760.

[27] S. Nesteruk, D. Shadrin, V. Kovalenko, A. Rodríguez-Sánchez, and
A. Somov, ‘‘Plant growth prediction through intelligent embedded sens-
ing,’’ in Proc. IEEE 29th Int. Symp. Ind. Electron. (ISIE), Jun. 2020,
pp. 411–416.

[28] S. Nesteruk, D. Shadrin, M. Pukalchik, A. Somov, C. Zeidler, P. Zabel,
and D. Schubert, ‘‘Image compression and plants classification using
machine learning in controlled-environment agriculture: Antarctic sta-
tion use case,’’ IEEE Sensors J., vol. 21, no. 16, pp. 17564–17572,
Aug. 2021.

[29] C. Shorten and T. M. Khoshgoftaar, ‘‘A survey on image data aug-
mentation for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48,
Dec. 2019.

[30] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, ‘‘Bag of
tricks for image classification with convolutional neural networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 558–567.

[31] S. Wu, H. Zhang, G. Valiant, and C. Ré, ‘‘On the generalization effects
of linear transformations in data augmentation,’’ in Proc. Int. Conf. Mach.
Learn., 2020, pp. 10410–10420.

[32] S. Nesteruk, I. Zherebtsov, S. Illarionova, D. Shadrin, A. Somov,
S. V. Bezzateev, T. Yelina, V. Denisenko, and I. Oseledets, ‘‘CISA: Context
substitution for image semantics augmentation,’’ Mathematics, vol. 11,
no. 8, p. 1818, Apr. 2023.

[33] S. Nesteruk, S. Illarionova, T. Akhtyamov, D. Shadrin, A. Somov,
M. Pukalchik, and I. Oseledets, ‘‘XtremeAugment: Getting more from
your data through combination of image collection and image augmen-
tation,’’ IEEE Access, vol. 10, pp. 24010–24028, 2022.

[34] S. Illarionova, S. Nesteruk, D. Shadrin, V. Ignatiev, M. Pukalchik,
and I. Oseledets, ‘‘Object-based augmentation for building seman-
tic segmentation: Ventura and Santa Rosa case study,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2021,
pp. 1659–1668.

[35] S. Illarionova, D. Shadrin, V. Ignatiev, S. Shayakhmetov, A. Trekin, and
I. Oseledets, ‘‘Augmentation-based methodology for enhancement of trees
map detalization on a large scale,’’ Remote Sens., vol. 14, no. 9, p. 2281,
May 2022.

[36] B. Santra and D. P. Mukherjee, ‘‘A comprehensive survey on computer
vision based approaches for automatic identification of products in retail
store,’’ Image Vis. Comput., vol. 86, pp. 45–63, Jun. 2019.

[37] K. Fuchs, T. Grundmann, and E. Fleisch, ‘‘Towards identification of
packaged products via computer vision: Convolutional neural networks for
object detection and image classification in retail environments,’’ in Proc.
9th Int. Conf. Internet Things, Oct. 2019, pp. 1–8.

[38] W. Geng, F. Han, J. Lin, L. Zhu, J. Bai, S. Wang, L. He, Q. Xiao,
and Z. Lai, ‘‘Fine-grained grocery product recognition by one-shot
learning,’’ in Proc. 26th ACM Int. Conf. Multimedia, Oct. 2018,
pp. 1706–1714.

[39] R. Verma and A. K. Verma, ‘‘Fruit classification using deep con-
volutional neural network and transfer learning,’’ in Proc. Int. Conf.
Emerg. Technol. Comput. Eng. Cham, Switzerland: Springer, 2022,
pp. 290–301.

[40] Y. Wei, S. Tran, S. Xu, B. Kang, and M. Springer, ‘‘Deep learning for
retail product recognition: Challenges and techniques,’’ Comput. Intell.
Neurosci., vol. 2020, pp. 1–23, Nov. 2020.

76880 VOLUME 11, 2023



S. Nesteruk et al.: PseudoAugment: Enabling Smart Checkout Adoption

[41] M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and
A. Rahimi, ‘‘Constrained few-shot class-incremental learning,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 9047–9057.

[42] Y. Li and X. Chao, ‘‘ANN-based continual classification in agriculture,’’
Agriculture, vol. 10, no. 5, p. 178, May 2020.

[43] J.Wang, C. Huang, L. Zhao, and Z. Li, ‘‘Lightweight identification of retail
products based on improved convolutional neural network,’’ Multimedia
Tools Appl., vol. 81, no. 22, pp. 31313–31328, 2022.

[44] C. C. Ukwuoma, Q. Zhiguang, M. B. Bin Heyat, L. Ali, Z. Almaspoor, and
H. N. Monday, ‘‘Recent advancements in fruit detection and classification
using deep learning techniques,’’ Math. Problems Eng., vol. 2022,
pp. 1–29, Jan. 2022.

[45] J. L. Rojas-Aranda, J. I. Nunez-Varela, J. C. Cuevas-Tello, and
G. Rangel-Ramirez, ‘‘Fruit classification for retail stores using deep
learning,’’ in Proc. Mex. Conf. Pattern Recognit. Cham, Switzerland:
Springer, 2020, pp. 3–13.

[46] M. Sugadev, K. Sucharitha, I. R. Sheeba, and B. Velan, ‘‘Computer
vision based automated billing system for fruit stores,’’ in Proc.
3rd Int. Conf. Smart Syst. Inventive Technol. (ICSSIT), Aug. 2020,
pp. 1337–1342.

[47] N. Ismail andO. A.Malik, ‘‘Real-time visual inspection system for grading
fruits using computer vision and deep learning techniques,’’ Inf. Process.
Agricult., vol. 9, no. 1, pp. 24–37, Mar. 2022.

[48] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, ‘‘mixup: Beyond
empirical risk minimization,’’ in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–13.

[49] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, ‘‘CutMix:
Regularization strategy to train strong classifiers with localizable fea-
tures,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6022–6031.

[50] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[51] S. Illarionova, S. Nesteruk, D. Shadrin, V. Ignatiev, M. Pukalchik, and
I. Oseledets, ‘‘MixChannel: Advanced augmentation for multispectral
satellite images,’’ Remote Sens., vol. 13, no. 11, p. 2181, 2021.

[52] L. A. Gatys, A. S. Ecker, and M. Bethge, ‘‘A neural algorithm of artistic
style,’’ 2015, arXiv:1508.06576.

[53] C.-T. Lin, S.-W. Huang, Y.-Y. Wu, and S.-H. Lai, ‘‘GAN-based day-to-
night image style transfer for nighttime vehicle detection,’’ IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 2, pp. 951–963, Feb. 2021.

[54] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, ‘‘Building generalizable agents
with a realistic and rich 3D environment,’’ 2018, arXiv:1801.02209.

[55] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkhin, and Y. Artzi,
‘‘Mapping instructions to actions in 3D environments with visual goal
prediction,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.,
2018, pp. 2667–2678.

[56] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le,
and B. Zoph, ‘‘Simple copy-paste is a strong data augmentation method
for instance segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 2917–2927.

[57] D. Dwibedi, I. Misra, and M. Hebert, ‘‘Cut, paste and learn: Surprisingly
easy synthesis for instance detection,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1310–1319.

[58] Y. Shi, L. Li, J. Yang, Y. Wang, and S. Hao, ‘‘Center-based transfer feature
learning with classifier adaptation for surface defect recognition,’’ Mech.
Syst. Signal Process., vol. 188, Apr. 2023, Art. no. 110001.

[59] P. Neubert and P. Protzel, ‘‘Compact watershed and preemptive
SLIC: On improving trade-offs of superpixel segmentation algo-
rithms,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014,
pp. 996–1001.

[60] L. Alvarez, L. Baumela, P. Henriquez, and P. Marquez-Neila, ‘‘Morpho-
logical snakes,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2010, pp. 2197–2202.

[61] S. Suzuki and K. Be, ‘‘Topological structural analysis of digitized binary
images by border following,’’ Comput. Vis., Graph., Image Process.,
vol. 30, no. 1, pp. 32–46, Apr. 1985.

[62] B. Fulkerson and S. Soatto, ‘‘Really quick shift: Image segmentation on
a GPU,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2010, pp. 350–358.

[63] V. Caselles, R. Kimmel, and G. Sapiro, ‘‘Geodesic active contours,’’ Int. J.
Comput. Vis., vol. 22, no. 1, p. 61, 1997.

[64] L. Alvarez, L. Baumela, P. Márquez-Neila, and P. Henríquez, ‘‘A real time
morphological snakes algorithm,’’ Image Process. Line, vol. 2, pp. 1–7,
Mar. 2012.

[65] A. Vedaldi and S. Soatto, ‘‘Quick shift and kernel methods for mode
seeking,’’ in Computer Vision—ECCV. Marseille, France: Springer,
Oct. 2008, pp. 705–718.

[66] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, ‘‘Feature pyramid networks for object detection,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 936–944.

[67] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[68] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethink-
ing atrous convolution for semantic image segmentation,’’ 2017,
arXiv:1706.05587.

[69] X. Chen, X. Wang, K. Zhang, K.-M. Fung, T. C. Thai, K. Moore,
R. S. Mannel, H. Liu, B. Zheng, and Y. Qiu, ‘‘Recent advances and clinical
applications of deep learning in medical image analysis,’’ Med. Image
Anal., vol. 79, Jul. 2022, Art. no. 102444.

[70] E. K. Raptis, G. D. Karatzinis, M. Krestenitis, A. C. Kapoutsis,
K. Ioannidis, S. Vrochidis, I. Kompatsiaris, and E. B. Kosmatopoulos,
‘‘Multimodal data collection system for UAV-based precision agriculture
applications,’’ in Proc. 6th IEEE Int. Conf. Robotic Comput. (IRC),
Dec. 2022, pp. 1–7.

[71] S. Illarionova, D. Shadrin, I. Shukhratov, K. Evteeva, G. Popandopulo,
N. Sotiriadi, I. Oseledets, and E. Burnaev, ‘‘Benchmark for building
segmentation on up-scaled Sentinel-2 imagery,’’ Remote Sens., vol. 15,
no. 9, p. 2347, Apr. 2023.

[72] D. M. W. Powers, ‘‘Evaluation: From precision, recall and
F-measure to ROC, informedness, markedness and correlation,’’ 2020,
arXiv:2010.16061.

[73] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, ‘‘Comparative study of
Hough transform methods for circle finding,’’ Image Vis. Comput., vol. 8,
no. 1, pp. 71–77, Feb. 1990.

[74] D. S. Burke, J. F. Brundage, R. R. Redfield, J. J. Damato, C. A. Schable,
P. Putman, R. Visintine, and H. I. Kim, ‘‘Measurement of the false
positive rate in a screening program for human immunodeficiency virus
infections,’’ New England J. Med., vol. 319, no. 15, pp. 961–964,
Oct. 1988.

[75] R. Wudhikarn, P. Charoenkwan, and K. Malang, ‘‘Deep learning in
barcode recognition: A systematic literature review,’’ IEEE Access, vol. 10,
pp. 8049–8072, 2022.

[76] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, ‘‘Scikit-image: Image
processing in Python,’’ PeerJ, vol. 2, p. e453, Jun. 2014.

[77] G. Bradski, ‘‘The OpenCV library,’’ Softw. Tools Prof. Programmer,
vol. 25, no. 11, pp. 120–123, Nov. 2000.

[78] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
no. 10, pp. 2825–2830, Jul. 2017.

[79] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 8024–8035.

[80] O. Shafi, C. Rai, R. Sen, and G. Ananthanarayanan, ‘‘Demystifying
TensorRT: Characterizing neural network inference engine on Nvidia edge
devices,’’ in Proc. IEEE Int. Symp. Workload Characterization (IISWC),
Nov. 2021, pp. 226–237.

[81] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[82] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[83] V. Lomonaco, D. Maltoni, and L. Pellegrini, ‘‘Rehearsal-free con-
tinual learning over small non-i.i.d. batches,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 1–3.

[84] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and
A. Haworth, ‘‘A review ofmedical image data augmentation techniques for
deep learning applications,’’ J. Med. Imag. Radiat. Oncol., vol. 65, no. 5,
pp. 545–563, Aug. 2021.

VOLUME 11, 2023 76881



S. Nesteruk et al.: PseudoAugment: Enabling Smart Checkout Adoption

SERGEY NESTERUK received the B.S. and M.S.
degrees in information security from the Saint
Petersburg University of Aerospace Instrumenta-
tion, in 2018 and 2020, respectively, and the M.S.
degree in information science and technology from
the Skolkovo Institute of Science and Technology
(Skoltech), Russia, in 2020, where he is currently
pursuing the Ph.D. degree. His research are related
to monitoring systems and applying machine
learning methods to the collected data. He is

involved in the development of the Precision Agriculture Laboratory,
Skoltech, and is responsible for the development of greenhouse image
collecting systems, the development of image augmentation framework, and
computer vision research.

SVETLANA ILLARIONOVA received the bach-
elor’s and master’s degrees in computer sci-
ence from Lomonosov Moscow State University,
Moscow, Russia, in 2017 and 2019, respectively,
and the Ph.D. degree in computer science from
the Skolkovo Institute of Science and Technol-
ogy (Skoltech), Moscow, in 2023. Her research
interests include computer vision, deep neural
networks, and remote sensing.

ILYA ZHEREBZOV pursuing the B.S. degree with
the Voronezh State University of Engineering
Technology. His research interests include data
processing, machine learning, deep learning, and
computer vision.

CLAIRE TRAWEEK received the bachelor’s degree in mechanical engineer-
ing and computation from MIT. She is currently pursuing the Ph.D. degree
in materials science and mechanical engineering. She is the Head of Product
with AuraBlue Corporation, a biosensor startup.

NADEZHDA MIKHAILOVA received the Ph.D.
degree from the Saint Petersburg Mining Institute.
She is currently an Expert with the Skolkovo
Institute of Science and Technology (Skoltech).
Her research interests include waste management,
AI for circular economy and waste treatment, and
LCA.

ANDREY SOMOV received the degree in infor-
mation and communication technology and the
Diploma degree in electronics engineering from
Russian State Technological University (MATI),
Moscow, Russia, in 2004 and 2006, respectively,
and the Ph.D. degree from the University of
Trento, Trento, Italy, in 2009, with a focus on
power management in wireless sensor networks
(WSN). He is currently an Associate Professor
with the Skolkovo Institute of Science and Tech-

nology (Skoltech), Russia. Before joining Skoltech in 2017, he was a
Senior Researcher with the CREATE-NET Research Center, Trento, Italy,
from 2010 to 2015; and a Research Fellow with the University of Exeter,
Exeter, U.K., from 2016 to 2017. He has published more than 100 papers
in peer-reviewed international journals and conference proceedings. His
current research interests include machine learning, precision agriculture,
and associated proof-of-concept implementation. He holds some awards
in the fields of WSN and the IoT, including the Google IoT Technology
Research Award, in 2016, and the Best Paper Award from the IEEE Internet
of People (IoP) Conference, in 2019.

IVAN OSELEDETS received the degree from the
Moscow Institute of Physics and Technology,
in 2006, and the Candidate of Sciences and D.Sc.
degrees from the Marchuk Institute of Numerical
Mathematics of Russian Academy of Sciences, in
2007 and 2012, respectively. In 2013, he joined
the Skolkovo Institute of Science and Technology,
(Skoltech), where he is currently the Director of
the Center for Artificial Intelligence Technology.
His research covers a broad range of topics.

He proposed a new decomposition of high-dimensional arrays (tensors)—
tensor-train decomposition and developed many efficient algorithms for
solving high-dimensional problems. His current research interests include
the development of new algorithms in machine learning and artificial
intelligence, such as the construction of adversarial examples, theory of
generative adversarial networks, and compression of neural networks.
It resulted in publications in top computer science conferences, such as
ICML, NIPS, ICLR, CVPR, RecSys, ACL, and ICDM. He is an Associate
Editor of SIAM Journal on Mathematics of Data Science, SIAM Journal
on Scientific Computing, and Advances in Computational Mathematics
(Springer).

76882 VOLUME 11, 2023


