
Received 29 May 2023, accepted 13 July 2023, date of publication 19 July 2023, date of current version 31 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296741

Reinforcement Learning-Based Control Strategy
for Multi-Agent Systems Subjected to Actuator
Cyberattacks During Affine Formation Maneuvers
SAMI EL-FERIK 1,2, MUHAMMAD MAARUF 1,2, FOUAD M. AL-SUNNI1,
ABDULWAHID ABDULAZIZ SAIF 1,2,
AND MUJAHED MOHAMMAD AL DHAIFALLAH 1,3, (Member, IEEE)
1Control and Instrumentation Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3Research Center for Renewable Energy and Power Systems, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Corresponding author: Sami El-Ferik (selferik@kfupm.edu.sa)

This work was supported by the Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals,
under Project INML2300.

ABSTRACT In this research, we investigate the reinforcement learning-based control strategy for second-
order continuous-time multi-agent systems (MASs) subjected to actuator cyberattacks during affine
formation maneuvers. In this case, a long-term performance index is created to track the MASs tracking
faults using a leader-follower structure. In order to approximate the ideal solution, which is challenging to
find for systems vulnerable to cyberattacks during time-varying maneuvers, a critical neural network is used.
The distributed control protocol is obtained, and the long-term performance index is minimized, using an
actor neural network strengthened with critic signals. The actor-critic neural networks calculate unknown
dynamics and the severity of attacks on the MAS actuators. The Nussbaum functions are applied to address
this issue since attacks can result in a loss of control direction. The stability of the closed-loop system has
been emphasized with the use of a Lyapunov candidate function. The performance of the suggested strategy
is then supported by a numerical simulation.

INDEX TERMS Reinforcement learning, actor-critic neural networks, multi-agent systems, affine formation
maneuver, actuator attacks, Nussbaum functions.

I. INTRODUCTION
Over the years, the formation control of MASs continued to
garner remarkable interest from researchers because of their
potential applications in several areas [1]. The application
areas include unmanned aerial vehicles, sensor network
localization, robotic transportation in smart factories, satellite
clusters, traffic flow control, monitoring of sensors, and so
on [2], [3]. Formation control ofMASs is broadly categorized
into two classes: formation geometric shape control and
formation maneuver (FM) control [4]. The objective of
the formation shape control is to steer a group of agents
to achieve a prescribed geometric shape given any initial
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geometry. On the other hand, the FM control drives the
agents to establish the desired formation, and then control the
entire formation such that it can translate, rotate, and scale
continuously [5]. One important merit of FM control is that
it can avoid obstacles.

To drive a group of mobile agents to converge to the
desired formation with maneuvers, various formation control
strategies have been developed. These approaches are catego-
rized into three groups, namely position-based [6], distance-
based [7], [8], and bearing-based [9], [10]. The required for-
mation is formed by specifying several constant constraints
on the inter-agent position, distance, and orientation. Due to
the invariance of the inter-agent constraints of the desired
formation, the position-based scheme can achieve translation
maneuvers. However, applying the scaling maneuver to the
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target formation is difficult because the displacement has to
be altered. For distance-based schemes, the control laws can
accomplish both orientation and translation maneuvers, but it
is difficult to realize time-varying scales. In the case of the
bearing-based schemes, the control laws are able to realize
both scaling and translationmaneuvers but have difficulties in
following time-varying orientations. It is clear that these FM
schemes cannot accomplish rotation, scaling, and translation
concurrently.

To carry out the rotation, scaling, and translation
maneuvers simultaneously, several consensus-based con-
trol techniques using complex Laplacian matrices have
been developed for single-integrator systems [11], [12],
two-integrator systems [13], and nonlinear systems [14].
However, this approach is restricted to two-dimensional
systems. This limitation motivated new research that led
to the establishment of a new technique based on stress
matrix [15], [16]. The entries of the stress matrix which cor-
respond to the weights of the edges can be positive, negative,
or zero in contrast to the complex Laplacian matrix [16].
The stress matrix-based technique can realize FMs in all
dimensions, unlike the complex Laplacian matrix. Moreover,
the stress matrix is invariant to any affine transformation of
the formation determined by the leaders. The sufficient and
necessary conditions for realizing time-varying maneuvers
using the stress matrix have been explained in detail in [16].

Based on the properties of the stress matrix, various
leader-follower AFM control approaches have been studied
for different classes of MASs. For instance, Shiyu [16] devel-
oped a generalized approach for AFM of single-integrator
and double-integrator MASs. In this scheme, the agents are
divided into two groups; the leaders and the followers. The
affine transformation of the followers is uniquely obtained
from the coordinates of the leaders. A distributed control
law makes the followers track the maneuvers of the leaders
and ensure the global stability of the whole formation.
In [17], an AFM control framework is formulated for
single-integrator MASs considering the optimal geometric
pattern. To improve the convergence of the single-integrator
followers to the affine positions localized by the leaders,
a prescribed convergence time function is integrated into the
distributed controller [18], [19], [20]. In [21], an AFM con-
trol of double-integrator MASs with external disturbances.
An adaptive component is added to the controller to estimate
and suppress external disturbances. In [22] and [23], the
authors designed an affine formation algorithm for linear
systems governed by triple-integrator dynamic equations
in both continuous-time and sampled-data modes. In [24],
a proportional-integral (PI) controller is used to achieve
the AFM of high-order-integrator MASs with time-varying
communication delays. In [25], The authors investigated the
distributed AFM control problem of general linear MASs
with dynamic coupling gains and dynamic uncertainties.
Then, robust adaptive control protocols have been presented
to take care of the dynamic coupling gains and uncertainties.

Even though the above AFM control techniques are
effective, they are only applicable to linearMAS. Considering
the fact that many physical systems are inherently nonlinear,
Hui et al. [26] investigated the AFM control of general
second-order uncertain nonlinear MASs. The nonlinearities
of the agents were parametrized and adaptive laws were used
to estimate the uncertain parameters. Moreover, proportional-
integral controllers are employed to guarantee that the
followers attained the required affine formation localized
by the leaders. Thus, the AFM control of general nonlinear
MASs is not well studied and requires enormous attention.

MASs are increasingly connected to wireless networks
where information transmission is facilitated for remote
supervision and control. As such, they are prone to
malicious cyber attacks such as deception attacks, denial
of service attacks, false data injection, integrity attacks,
malware attacks, replay attacks, and so on [27]. These
attacks mostly inject misleading signals into the sys-
tems’ sensors, actuators, or communication channels, which
may lead to the deterioration of the performance of the
systems [28]. There exist several control strategies for
detecting and mitigating various cyber attacks to secure
the consensus of MASs [29], [30], [31], [32], [33] or
to secure the geometrical formation acquired by the
agents [34], [35], [36], [37], [38], [39], [40], [41]. However,
a secure control against cyber attacks is yet to be investigated
with respect to AFM of MAS. A false data injection attack
on the actuators of the leaders or the followers will lead
to loss of collective maneuver and the agents may collide.
Therefore, how to secure the leaders as well as the followers
so that collective formation maneuvering is maintained in
adversarial environments is an interesting area to explore.

As an intelligent technique, a reinforcement learning (RL)
scheme has been widely employed for solving optimal
adaptive control problems by minimizing a prescribed
cost function to maximize a reward received from the
environment [42]. For continuous-time systems, integral
RL is utilized to compute the solution of the optimal
adaptive control problem using the actor-critic framework.
Considering the fact that it is difficult to obtain the solution
of the optimal adaptive control problem of continuous-time
systems using RL, neural networks are commonly used to
compute the approximate solution. Approximate RL-based
control has been applied to several classes of single agent sys-
tems [43], [44], [45], [46], [47], MAS [48], [49], [50], [51].
Recently, approximate RL is employed for formation acquisi-
tion control of MASs [52], [53], [54], [55], [56]. The problem
of AFM control of MASs using approximate RL deserves to
be investigated and related work is not reported yet.

In the existing RL control articles, the AFM control
problem of MASs has not been studied yet, let alone
simultaneous consideration of malicious cyber attack cases.
Motivated by this observation, this article proposes an RL
scheme using the actor-critic framework to achieve the
AFM control of general nonlinear MASs in an adversarial
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environment. Due to the difficulties in obtaining the optimal
solution of the long-term performance function for the AFM
of MASs with actuator cyber attacks, critic neural network is
used to obtain the approximate solution. The critic evaluates
the control performance and sends the reinforcement signals
to the actor. Then, the actor applies the control signals to
the actuators of the agents based on the critic evaluation.
Here, two actor networks are used: one for estimating the
uncertain nonlinear dynamics of the agents, and the other for
estimating the actuator attacks. The attacks on the actuator
may alter the control direction of the distributed control
protocols. This problem is addressed by using the Nussbaum
functions to estimate the control direction. To the authors’
best knowledge, the proposed control problem has not been
investigated by anyone yet. This work differs from existing
AFM control methods as follows:

1) Unlike the leader-follower AFM control approaches
in [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], and [26], an RL control based on actor-critic
neural networks is proposed to achieve the AFM of the
leader-follower MAS in adversarial environments.

2) The control protocols in [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], and [26] will fail to maintain
the leader-follower AFM when subjected to cyber
attacks on the actuators. Here, this problem is tackled
by using the actor neural network to learn and counter
the actuator attacks.

3) In [26], the authors considered a class of second-order
uncertain nonlinear MAS that can be expressed in the
linear-in-the-parameter form, and adaptive laws were
used to estimate the uncertain parameters. However,
in this study, the uncertain nonlinear MAS doesn’t
need to be linear-in-the-parameter form since an action
neural network is used to approximate it. Moreover, the
action neural networkwhich receives reinforced signals
from the critic neural network enhances the learning
and optimization of the system.

4) The loss of control direction as a result of the actuator
attack is tackled using the Nussbaum function.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY
Define G = (V, E,A) as an undirected graph with N nodes.
V = {v1, . . . , vN } stands for the set of nodes. E ⊆ V × V
represents the set of edges. The set of neighbors of node i is
represented by Ni = {j ∈ V : (i, j) ∈ E}. The configuration
q = [qT1 qT2 . . . qTN ]

T
∈ RdN consists of the positions of

the agents with d being the dimension of the system. The
formation (G, q) is a communication graph together with the
corresponding configuration of the agents.

B. STRESS MATRIX
The stress matrix of the formation (G, q) is a set of scalar
weights {ωij}(i,j)∈E assigned to each edge such that ωij =

ωji ∈ R [2]. The stress matrix � ∈ RN×N can be defined

as:

[�]ij =


0, i ̸= j, (i, j) /∈ E
−ωij, i ̸= j, (i, j) ∈ E∑

k∈Ni
ωik , i = j.

A stress matrix is said to be equilibrium stress when:∑
j∈Ni

ωij(qj − qi) = 0, i ∈ V (1)

Equation (1) can be transformed to a matrix as:

(� ⊗ Id )q = 0 (2)

The stress matrix � can be partitioned as

�̄ = � ⊗ Id =

[
�ll �lf
�fl �ff

]
⊗ Id =

[
�̄ll �̄lf
�̄fl �̄ff

]
. (3)

where �ll ∈ RdNl×dNl , �ff ∈ RdNf ×dNf and �fl ∈ RdNl×dNf

The geometric pattern that the agents are required to
form and keep is represented by the constant configuration
r = [rT1 rT2 . . . rTN ]

T
= [rTl rTf ]

T
=∈ RdN under a

nominal formation (G, r). The target formation with the
desired maneuver is given by:

q(t) = [IN ⊗ A(t)]r + 1N ⊗ b(t) (4)

where b(t) ∈ Rd stands for the translation maneuver of
the formation, A(t) ∈ Rd×d can be manipulated to achieve
the rotation, scaling, and shearing maneuvers of the whole
formation with respect to r .
Definition 1: [16] Affine span : For a given set of points

{qi}Ni=1 ∈ Rd , the affine span (S) of these points is defines as:

S =

{
N∑
i=1

aiqi : ai ∈ R for all i and
n∑
i=1

ai = 1

}
. (5)

The affine transformations of r are contained in the image
of r defined as follows:

A(r) = {q ∈ RdN
: q = (IN ⊗ A)r + 1N ⊗ b}. (6)

Definition 2: [23] Affine localizability : If the target
position of the followers qf can be uniquely calculated from
the position of the leaders ql for any q = [qTf qTl ]

T
∈

A(r), then the nominal formation (G, r) is affinely localizable
by ql .
Assumption 1: [26] For the design of the formation

maneuver control, the following assumptions are essential.
1) The nominal configuration r is affinely spanned in Rd

2) The equilibrium stress matrix � is semi-definite such
that rank(�) = N − d − 1

3) The position qf is affinely localizable by ql .
Considering Definition 2 and Assumption 1, for any

q = [qTf qTl ]
T

∈ A(r), qf can be uniquely calculated from
ql as follows:

qf = −(�−1
ff �fl ⊗ Id )ql . (7)
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where

ql = [qT1 q
T
2 . . . qTNl ]

T

qf = [qTNl+1 q
T
Nl+2 . . . qTNl+Nf ]

T

Definition 3: [57] Any continuous functionN (β) : R −→

R is a Nussbaum function if it satisfies the following
properties:

lim
θ→∞

sup
1
θ

∫ θ

0
N (β)dβ = +∞ (8)

lim
θ→∞

inf
1
θ

∫ θ

0
N (β)dβ = −∞ (9)

For example, the functions β2cos(β) and β2sin(β) are
Nussbaum functions. In this work, we choose β2cos(β).
Lemma 1: Let β(t) be a smooth function on [0, tf ), L(t)

be non-negative smooth function, and N (β) be a smooth
Nussbaum function. If the following inequality is valid.

L(t) ≤ a0 + e−a1τ
∫ t

0
[g(.)N (β) + 1]β̇ea1τdτ (10)

where a0 > 0, a1 > 0 are constants, g(.) is a time-
varying function, then, L(t), β(t), and

∫ t
0 g(.)N (β)β̇dτ must

be bounded on [0, tf ]
Consider second-order nonlinear multi-agent systems

consisting of Nl leaders and Nf = N−Nl followers. The
nonlinear dynamics of the Nf followers can be described as:{

q̇i = vi
v̇i = fi(qi, vi) + uci (t) + ϕi(qi, vi), i ∈ Vf

(11)

where qi ∈ Rd and vi ∈ Rd denote the position and velocity
of the ith agent, uci (t) ∈ Rd is the compromised actuator
output of agent i, fi(qi, vi) ∈ Rd is a smooth nonlinear
function, ϕi(qi, vi) ∈ Rd , Vf = {Nl +1,Nl +2, . . . ,Nl +Nf }
is the group of followers.

The trajectories of the Nl leaders are given by:

qi = A(t)ri + b(t), i ∈ Vl (12)

where Vl = {1, 2, . . . ,Nl} is the group of the leaders.
The position of the leaders ql = [qT1 qT2 . . . qTNl ]

T is
known in advance and various maneuvers can be obtained by
manipulating A(t) and b(t).

C. NEURAL NETWORK APPROXIMATIONS
Owing to the function approximation property of the radial
basis function neural network (RBFNN), it has been widely
deployed to estimate unknown nonlinear functions. The
estimation of continuous nonlinear function with RBFNN is
expressed as:

ζnn = W T9(X ) + ϵ(X ) (13)

where W = [w1 w2 . . .wm]T ∈ Rm is the ideal
with vector with m number of neurons, ϵ(X ) is the
function estimation error satisfying ∥ϵ(X )∥ ≤ ϵ̄,

9(X ) = [91(X ) 91(X ) . . . 9m(X )]T is the Gaussian basis
function vector and 9i(X ) is

9i(X ) = exp

(
−
(X − ci)(X − ci)

η2i

)
, i = 1, 2, . . . ,m

(14)

where ci is the center of the receptive field, ηi is the width of
the Gaussian function.

D. ACTUATOR ATTACKS
Themalignant cyber attacks considered here are the false data
injection attacks into the actuator. These attacks could corrupt
the control command of the ith follower. The actuator attacks
can be modelled as a state-dependent function as follows:

uci (t) = gi(qi, vi)ui(t) + δi(t, qi, vi) (15)

where uci (t) is the corrupted actuator output, ui(t) is the
control signal, δi(t, qi, vi) is the time-varying state-dependent
injected attack, gi(qi, vi) is a state-dependent unknown gain
causing loss of effectiveness of the actuator as a result of the
attack.

The system (11) under the actuator attacks (15) is rewritten
in the following form:{
q̇i = vi
v̇i = fi(qi, vi) + gi(qi, vi)ui(t) + δi(t, qi, vi) + ϕi(qi, vi)

(16)

Assumption 2: [1] The unknown diagonal matrix
gi(qi, vi) ∈ Rd×d resulting from the false data injection
satisfies g

i
< λ1(gi(qi, vi)) < λ2(gi(qi, vi) < ∞, with g

i
being a constant lower bound of gi(qi, vi), and λ1 and λ2 are
the Eigen values of gi(qi, vi).
Assumption 3: [58] The disturbance vector ϕi is unknown

and satisfies ∥ϕi∥ ≤ ρi, with ρi being an unknown constant.
Remark 1: The false data injectionmodel in [59], [60], and

[61] is of the form uci = ui + δi, i.e gi = 1. This article
extends the results to the situation where the unknown gain
gi is bounded, which can accurately highlight the severity of
the attacks on the actuator.
Remark 2: It is worth noting that assumption 1 ensures

that �̄ff is positive definite and invertible. Then, the position
of the followers qf can be obtained from the position of the
leaders ql for any q = [qTf qTl ]

T [21], [26]. Assumption 2
is widely used in the literature to simplify the complexity
of the control law [1], [3]. Instead of formulating a complex
algorithm to estimate the unknown gi(qi, vi), using its known
upper bound in the control law simplifies the control design
process. Assumption 3 is a standard and common assumption
in the robust control literature [58], [62]. This assumption
is necessary because unbounded disturbances will grow and
make the state trajectories of a system explode, i.e. approach
infinity.
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III. CONTROL DESIGN
The target positions of the followers relative to the leaders
can be expressed as:

q∗
f (t) = −(�−1

ff �fl ⊗ Id )ql . (17)

The control objective of the followers under the actuator
attacks is thus:

lim
t→∞

(qf (t) − q∗
f (t)) = (18)

lim
t→∞

(qf (t) + (�−1
ff �fl ⊗ Id )ql) = 0 (19)

Define the following error variables for the followers:

ξi =

N∑
j=1

ωij(qi − qj) + λ

N∑
j=1

ωij(vi − vj), i ∈ Vf (20)

Let ei =
∑N

j=1 ωij(qi − qj). Therefore, one has ξi = ei +
λėi, i ∈ Vf . Taking the time-derivatives of ξi, i ∈ Vf , one
can gets:

ξ̇f = ėf + λëf

= ėf + λ
{
�̄ff

(
f (q, v) + g(q, v)u(t) + δ(t, q, v)

+ ϕ(q, v)
)
+ (�fl ⊗ Id )v̈l

}
(21)

where ξf = [ξTNl+1 ξTNl+1 . . . ξTNl+Nf ]
T ,

ef = [eTNl+1 eTNl+1 . . . eTNl+Nf ]
T ,

f = [f TNl+1 f
T
Nl+2 . . . f TNl+Nf ]

T , u = [uTNl+1 u
T
Nl+2 . . . uTNl+Nf ]

T ,
δ = [δTNl+1 δTNl+2 . . .

δTNl+Nf ]
T , ϕ = [ϕTNl+1 ϕTNl+2 . . . ϕTNl+Nf ]

T .

A. CRITIC DESIGN
A binary utility function p(ξi(t)), which is the current system
performance index is set as [47]:

p(ξi(t)) =

{
0 if ξi(t)2 ≤ thr
1 if ξi(t)2 > thr

∀ξ ∈ [t − T , t) (22)

where thr > 0 is a designed threshold. p(ξi(t)) = 0 indicates
acceptable tracking accuracy whereas p(ξi(t)) = 1 indicates
unacceptable tracking performance.
The long-term performance index is described by:

I(t) =

∫
∞

t
α

−π+t
τ p(ξ (π ))dπ (23)

where α ∈ (0, 1) is a constant that discounts the future
cost, and τ is a small integral reinforcement interval, p(ξ ) =

[p(ξNl+1)T p(ξNl+2)T . . . p(ξNl+Nf )
T ]T . If ξi is within the

allowable threshold, then the control objective is realized
and I (t) will not increase. However, if ξi(t) is outside the
allowable threshold, then the controller should be fine-tuned
to make ef , ėf , and I (t) smaller.
From (23), the continuous time Bellman error equation can

be constructed as:

I (t − τ ) =

∫
∞

t−τ

α
−π+t−τ

τ p(ξ (π ))dπ

=α−1I (t) +

∫ t

t−τ

α
−π+t−τ

τ p(ξ (π ))dπ

≜α−1 (I (t) + pc) (24)

where pc =
∫ t
t−τ

α
−π+t−τ

τ p(ξ (π ))dπ is the cost value for
[t − τ, t), pc = [pTc1 p

T
c2 . . . pTcNl ]

T with

pci =

∫ t

t−τ

α
−ξ+t

τ p(ξi(π ))dπ (25)

=

 0 if ξi(t)2 ≤ cpi
τ

ln(α)
(α − 1) if ξi(t)2 > cpi

(26)

Therefore, 0 < pci < τ (α − 1)/ln(α).
Given that I (t) contains the future information of the

system with actuator attacks, it is difficult to obtain its
solution. A critic RBFNN is introduced to approximate it.

I (t) = Wc
T9c(Xc(t)) + ϵc(Xc(t)) (27)

The real-time approximation of I (t) is thus:

Î (t) = Ŵ T
c 9c(Xc(t)) (28)

Similar to (28), real-time approximation of I (t − τ ) is:

Î (t − τ ) = Ŵ T
c 9c(Xc(t − τ )) (29)

From (28) and (29), the temporal difference error is defined
as:

ec = Î (t) − αÎ (t − τ ) + pc
= W̃ T

c 19c(t) + pc
= W̃ T

c 19c(t) + pc +W T
c 19c(t) (30)

where W̃c = Wc − Ŵc is the weight error for critic RBFNN,
19c(t) = [9c(Xc(t))−α9c(Xc(t−τ ))]. Define the objective
function Oc as:

Oc =
1
2
eTc ec (31)

The aim is to find Ŵc that will minimize (31). Using the
gradient-decent algorithm, the weight update law is designed
as follows:

˙̂W c = γc19c(t)
[
Ŵ T
c 19c(t) + pc

]T
− θcγcŴc (32)

where γc = diag{γcNl+1 γcNl+2 . . . γcNl+Nf } is a positive
definite diagonal matrix, θc > 0 is a small constant.

B. ACTOR DESIGN
Due to the fact that the continuous-time nonlinear model
(16) is uncertain, accurate information about f (q, v) is
unavailable. Furthermore, the false data δ(t, q, v) injected into
the actuators of the followers is unknown. Then, f (q, v) is
approximate with RBFNN as follows:

f (q, v) = Wa1
T9a1(Xa1) + ϵa1(Xa1) (33)
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The time-varying state-dependent attack δ(t, q, v) is
approximated by the action RBFNN as follows:

δ(t, q, v) = Wa2
T9a2(Xa2) + ϵa2(Xa2) (34)

The real-time approximation of f (q, v) and δ(q, v) are given
as:

f̂ (q, v) = Ŵ T
a19a1(Xa1) (35)

δ̂(t, q, v) = Ŵ T
a29a2(Xa2) (36)

In the actor network, it is desired that qf and q̇f track q∗
f

and q̇∗
f with reasonable accuracy, and minimize Î (t) to the

required cost value Id = 0. The actor error is defined as:

ea1 = ξf + Î (t) − Id = ξf + Ŵ T
c 9c) (37)

The actor objective function is set as:

Oa1 =
1
2
eTa1ea1 (38)

According to the gradient-decent algorithm, (38) can be
minimized by

˙̂W a1 = γa19a1(Xa1)
[
ξ + Ŵ T

c 9c(Xc)
]T

− θa1γa1Ŵa1 (39)

where γa1 = diag{γa1Nl+1 γa1Nl+2 . . . γa1Nl+Nf } is a positive
definite diagonal matrix, θa1 > 0 is a small constant.
Similarly, the weight update law for Ŵa2 is

˙̂W a2 = γa29a2(Xa2)
[
ξ + Ŵ T

c 9c(Xc)
]T

− θa2γa2Ŵa2 (40)

where γa2 = diag{γa2Nl+1 γa2Nl+2 . . . γa2Nl+Nf } is a positive
definite diagonal matrix, θa2 > 0 is a small constant.

The RL-based control laws for the nonlinear MAS (16)
subjected to actuator attacks are proposed as follows:

ū = Kξf + g−1Ŵ T
a19a1(Xa1) + g−1Ŵ T

a29a2(Xa2)]

− g−1(�̄−1
ff �fl ⊗ Id )v̈l

u = N (β)ū

β̇ = λξTf [Kξf + Ŵ T
a19a1(Xa1) + Ŵ T

a29a2(Xa2)] (41)

Remark 3: The essence of theNussbaum gainN (β) in (41)
is to determine the control direction that is lost as a result of
the actuator attacks.
Theorem 1: Consider the second-order nonlinear MAS

(11) with actuator attacks (15). If assumptions (1-4) are
satisfied, given the critic neural network (27) and actor neural
networks (33) and (34), then the control law (41) with neural
network update laws (39), (34) and (32) guarantees that
all the closed-loop error signals are semiglobally uniformly
ultimately bounded and the leader-follower AFM can be
achieved. Moreover, the closed-loop error signals are trapped
within a compact set defined as follows:

S1 =

ef
∣∣∣ ∥ef ∥ ≤

√√√√2
(
D2
D1

+D3 + L(0)
)

λmin(�̄ff )−1

 (42)

S2 =

{
ξf

∣∣∣ ∥ξf ∥ ≤

√
2
(
D2

D1
+D3 + L(0)

)}
(43)

S3 =

W̃a1

∣∣∣ ∥W̃a1∥ ≤

√√√√√2
(
D2
D1

+D3 + L(0)
)

λmin(γ
−1
a1 )

 (44)

S4 =

W̃a2

∣∣∣ ∥W̃a2∥ ≤

√√√√√2
(
D2
D1

+D3 + L(0)
)

λmin(γ
−1
a2 )

 (45)

S5 =

W̃c

∣∣∣ ∥W̃c∥ ≤

√√√√2
(
D2
D1

+D3 + L(0)
)

λmin(γ
−1
c )

 (46)

Proof: A candidate Lyapunov function is constructed as

L =
1
2
eTf �̄−1

ff ef +
1
2
ξTf �̄−1

ff ξf +
λ

2

(
W̃ T
a1γ

−1
a1 W̃a1

)
+

λ

2

(
W̃ T
a2γ

−1
a2 W̃a2

)
+

λc

2

(
W̃ T
c γ −1

c W̃c

)
≜ L1 + L2 + L3 (47)

where

L1 =
1
2
eTf �̄−1

ff ef +
1
2
ξTf �̄−1

ff ξf

L2 =
λ

2

(
W̃ T
a1γ

−1
a1 W̃a1

)
+

λ

2

(
W̃ T
a2γ

−1
a2 W̃a2

)
L3 =

λc

2

(
W̃ T
c γ −1

c W̃c

)
It follows that:

L̇1 = eTf �̄−1
ff ėf + ξTf �̄−1

ff ξ̇f = eTf �̄−1
ff ėf + ξTf �̄−1

ff ėf

+ λξTf

{(
f (q, v) + g(q, v)u(t) + δ(t, q, v)

+ ϕ(q, v)
)
+ (�̄−1

ff �fl ⊗ Id )v̇l
}

+ β̇ − β̇

= eTf �̄−1
ff ėf +(ef +λėf )T �̄−1

ff ėf + λξTf g(q, v)u(t)

+ λξTf

{(
f (q, v) + δ(t, q, v) + ϕ(q, v)

)
+ q̈∗

}
+ β̇ − λξTf

[
Kξf + Ŵ T

a19a1(Xa1) + Ŵ T
a29a2(Xa2)

]
= eTf �̄−1

ff ėf + (ef + λėf )T �̄−1
ff

(
ėf +

ef
λ

−
ef
λ

)
+ λg(q, v)N (β)β̇ + β̇ − λξTf W̃

T
a19a1(Xa1)

− λξTf W̃
T
a29a2(Xa2) − λξTf Kξf + λξTf q̈

∗

+ λξTf ϕ(q, v) + λξTf (ϵa1 + ϵa2)

= λξTf q̈
∗

− λξTf Kξf −
1
λ
eTf �̄−1

ff ef

+
1
λ2 (ef +λėf )T �̄−1

ff (ef +λėf ) + [N (β) + 1]β̇

− λξTf W̃
T
a119a1(Xa1) − λξTf W̃

T
a219a2(Xa2)

+ λξTf ϕ(q, v) + λξTf ϵa1 + λξTf ϵa2 (48)

L̇2 = λ
(
W̃ T
a1γ

−1
a1

˙̃W a1

)
+ λ

(
W̃ T
a2γ

−1
a2

˙̃W a2

)
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= λ
(
W̃ T
a1γ

−1
a1

˙̂W a1

)
+ λ

(
W̃ T
a2γ

−1
a2

˙̂W a2

)
= −θa1λW̃ T

a1Ŵa1 − θa2λW̃ T
a2Ŵa2

+ λξTf W̃
T
a119a1(Xa1) + λξTf W̃

T
a219a2(Xa2)

+ λW̃ T
a119a1(Xa1)

[
Ŵ T
c 19c(Xc)

]T
+ λW̃ T

a219a2(Xa2)
[
Ŵ T
c 19c(Xc)

]T (49)

L̇1 + L̇2 = λξTf q̈
∗

− λξTf Kξf −
1
λ
eTf �̄−1

ff ef

+
1
λ2 ξTf �̄−1

ff ξf + [N (β) + 1]β̇ + λξTf ϕ(q, v)

+ λξTf ϵa1 + λξTf ϵa2

− θa1λW̃ T
a1[W̃a1+Wa1] − θa2λW̃ T

a2[W̃a2+Wa2]

+ λW̃ T
a119a1(Xa1)

[
[W̃c +Wc]T19c(Xc)

]T
+ λW̃ T

a219a2(Xa2)
[
[W̃c +Wc]T19c(Xc)

]T
≤ −

(
λλmin(K ) − 2λ −

λmin(�̄ff )−1

λ2

−
µ1 + µ2

2
λ
)
∥ξf ∥

2
−

1
λ

λmin(�̄ff )−1
∥ef ∥2

− λ

(
θa1

2
−

µ1

2
− µ1µ2

)
∥W̃a1∥

2

− λ

(
θa2

2
−

µ2

2
− µ1µ2

)
∥W̃a2∥

2

+
µ1µc + µ2µc

2
λ∥W̃c∥

2
+ [N (β) + 1]β̇ +Da

(50)

where ∥.∥ is the Frobenius norm, ∥19a1∥ ≤ µ1, ∥19a2∥ ≤

µ2, ∥19c∥ ≤ µc, ∥Wa1∥ ≤ wa1, ∥Wa2∥ ≤ wa2, ∥Wc∥ ≤

wc, ϵa1 ≤ ϵ̄a1, ϵa2 ≤ ϵ̄a2, Da =
λϵ̄2a1
2 +

λϵ̄2a2
2 +

λ∥ρ∥
2

2 +

λq̈∗2

2 +
µ1µc+µ2µc

2 λ∥wc∥2 +
λθa1
2 ∥wa1∥2 +

λθa2
2 ∥wa2∥2, wa1,

wa2, wc, µ1, µ2, µc, ϵ̄a1, and ϵ̄a2 are bound constants. Then,
the derivative of L3 with respect to time gives:

L̇3 = λc

(
W̃ T
c γ −1

c
˙̃W c

)
= λc

(
W̃ T
c γ −1

c
˙̂W c

)
= −λcW̃ T

c 19c(t)
[
Ŵ T
c 19c(t) + pc

]T
− θcλcW̃ T

c Ŵc

= −λcW̃ T
c 19c(t)

[
W̃ T
c 19c(t) +Wc

T19c(t) + pc
]T

− θcλcW̃ T
c W̃c − θcλcW̃ T

c Wc

≤ −λc

{
θc + ∥19c(t)∥2

}
∥W̃c∥

2
−

{
∥Wc∥∥19c(t)∥2

+ ∥19c(t)∥∥pc∥ + θc∥Wc∥

}
λc∥W̃c∥

≤ −θcλc∥W̃c∥
2
+Dc∥W̃c∥

≤ −

{
θcλc + λc∥19c(t)∥2 −

1
2

}
∥W̃c∥

2
+
D2
c

2
(51)

where Dc = −λc(wcµ2
c + µcµpc + θcwc), with ∥pc∥ ≤ µpc .

The derivative of L with respect to time is thus:

L̇ ≤ −

(
λλmin(K ) − 2λ −

λmin(�̄ff )−1

λ2

−
µ1 + µ2

2
λ
)
∥ξf ∥

2
−

1
λ

λmin(�̄ff )−1
∥ef ∥2

− λ

(
θa1

2
−

µ1

2
− µ1µ2

)
∥W̃a1∥

2

− λ

(
θa2

2
−

µ2

2
− µ1µ2

)
∥W̃a2∥

2

−

(
λcθc + λcµ

2
c −

1
2

−
µ1µc + µ2µc

2
λ

)
∥W̃c∥

2

+ [N (β) + 1]β̇ +Da +
D2
c

2
≤ −D1L + [N (β) + 1]β̇ +D2 (52)

where D2 = Da +
D2
c
2 ,

D1 = min
{(

λλmin(K ) − 2λ −
λmin(�̄ff )−1

λ2

−
µ1 + µ2

2
λ
)
,
1
λ

λmin(�̄ff )−1,

λ

(
θa1

2
−

µ1

2
− µ1µ2

)
, λ

(
θa2

2
−

µ2

2
− µ1µ2

)
,(

λcθc + λcµ
2
c −

1
2

−
µ1µc + µ2µc

2
λ

)}
(53)

To guarantee that D1 > 0, the parameters λc, λ, θa1, θa2,
θc, and the matrix K are selected such that the following
conditions are satisfied:

λc > 0; λ > 0; θa1 > 0; θa2 > 0; θc > 0

× λmin(K ) > 0; λmin(�̄ff )−1 > 0; λmin(K ) > λ

×

(
λλmin(K ) − 2λ −

λmin(�̄ff )−1

λ2 −
µ1 + µ2

2
λ
)

> 0

×

(
θa1

2
−

µ1

2
− µ1µ2

)
> 0

×

(
θa2

2
−

µ2

2
− µ1µ2

)
> 0

×

(
λcθc + λcµ

2
c −

1
2

−
µ1µc + µ2µc

2
λ

)
> 0

Having D1 > 0 will guarantee the convergence
of the closed-loop tracking errors into the compact
sets (42)-(46).

By multiplying both sides of (53) by e−D1t , it can be
rewritten as follows:

eD1t L̇ ≤ −D1LeD1t + [N (β) + 1]β̇eD1t +D2eD1t (54)

The inequality (54) further yields:

d
dt
(eD1tL(t)) ≤ [N (β) + 1]β̇eD1t +D2eD1t (55)

Computing the integral of (55) over [0, t), we get:

L(t) ≤
D2

D1
+ L(0)e−D1t

+ e−D1t
∫ t

0
[N (β) + 1]β̇eD1ιdι (56)
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FIGURE 1. The nominal formation showing the inter-agents
communications.

Based on Lemma 1, β(t),
∫ t
0 [N (β) + 1]β̇eD1ιdι and and

L(t) are bounded. It follows that all the closed-loop error
signals, ξf , W̃a1, W̃a2 and W̃c are bounded. Let D3 be the
upper-bound of e−D1t

∫ t
0 [N (β) + 1]β̇eD1ιdι, then (56) can

be simplified as:

L(t) ≤
D2

D1
+ L(0)e−D1t +D3

≤
D2

D1
+D3 + L(0) (57)

From the Lyapunov function (47) and the inequality (57),
it can be obtain that:

∥ef ∥ ≤

√
2

λmin(�̄ff )−1

(
D2

D1
+D3 + L(0)

)
(58)

∥ξf ∥ ≤

√
2
(
D2

D1
+D3 + L(0)

)
(59)

∥W̃a1∥ ≤

√
2

λmin(γ
−1
a1 )

(
D2

D1
+D3 + L(0)

)
(60)

∥W̃a2∥ ≤

√
2

λmin(γ
−1
a2 )

(
D2

D1
+D3 + L(0)

)
(61)

∥W̃c∥ ≤

√
2

λmin(γ
−1
c )

(
D2

D1
+D3 + L(0)

)
(62)

From (53), it can be seen that D1 can be manipulated by
varying the parameters λc, λ, θa1, θa2, θc, and the matrix K .
Therefore, the tracking errors ξf , W̃a1, W̃a2 and W̃c can be
made arbitrarily small by carefully adjusting the parameters
λc, λ, θa1, θa2, θc, and the matrix K to increase D1. Large
enough D1 makes the ratio D2/D1 smaller and subsequently
reduces the error signals (58)-(62).
Remark 4: The problem of AFM control of MAS has

been studied in [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], and [26]. However, the authors did not consider
the possibility of cyber-attacks on the MAS. These attacks

FIGURE 2. Effects of attacks on the trajectories of the leader-follower
MAS under the control input proposed in [26].

FIGURE 3. The trajectories of the leader-follower MAS under the attack
mitigation control protocol (41).

FIGURE 4. The AFM tracking errors between the followers and the
leaders under the proposed scheme.

can disrupt the exchange of information among the agents
and subsequently leads to the collapse of the MAS. In this

VOLUME 11, 2023 77663



S. El-Ferik et al.: RL-Based Control Strategy for MASs Subjected to Actuator Cyberattacks

FIGURE 5. The RL control signals of the followers that mitigate actuator
attacks and maintain the AFM.

FIGURE 6. The update of the actor weights for the RBFNN approximation
of f (q, v ).

FIGURE 7. The update of the actor weights for the RBFNN approximation
of δ(q, v ).

article, for the first time, the secured AFM control of MAS is
investigated. The distributed control laws (41) for the MAS
(16) have attack estimation and suppression mechanisms via

FIGURE 8. The update of the critic weights for the RBFNN approximation
of I(t) .

FIGURE 9. The approximation errors between f (q.v ) and f̂ (q, v ).

the actor RBFNN contrary to [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], and [26].
Remark 5: In contrast to [16], [17], [18], [19], [20], [21],

[22], [23], [24], [25], and [26], the distributed control laws
(41) are formulated to minimize the long-term performance
index (23) using the actor-critic RL architecture.
Remark 6: The authors in [26] proposed an AFM control

of uncertain second-order nonlinear MAS similar to this
article. Nonetheless, the MAS in [26] belongs to the class
of nonlinear systems that can be expressed in linear-in-the-
parameter form. The uncertain parameters were estimated
using adaptive laws. In contrast, the nonlinear MAS in this
paper is not required to be in the linear-in-the-parameter form
since actor RBFNN are employed to estimate them as shown
in (41).

IV. SIMULATION RESULTS
This section presents a numerical simulation to demonstrate
the validity of the actor-critic RL scheme for achieving
the AFM control of the leader-follower MAS subjected to
actuator attacks. The MAS under this study consists of three
leaders and four followers. The nominal formation of the
agents is depicted in Fig. 1. The nominal configuration of the
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FIGURE 10. Trajectories showing various affine formation maneuvers of the leaders and followers.

agents is given in (63), as shown at the bottom of the page,
where r1 = [6 0], r2 = [3 3], r3 = [3 − 3], r4 = [0 3],
r5 = [0 − 3], r6 = [−3 3] and r7 = [−3 − 3]. Using the
method presented in [24], the matrix of the stresses among
the agents is computed as (64), shown at the bottom of the
page.

The nonlinear dynamic equations of the four followers are
given as:

q̇i = vi

v̇i =

[
q2i1 + 2vi1cos(qi1)vi1
q2i2 + 2vi2cos(qi2)vi2

]
+

[
uci1
uci2

]
+

[
ϕi1(qi1, vi1)
ϕi2(qi2, vi2)

]
(65)

where ϕi1(qi1, vi1) = 0.22vi1cos(0.7qi1t), ϕi2(qi2, vi2) =

0.43vi2cos(2qi2t).
The MAS encountered two false data injection attacks on

the actuators of the followers. The first attack targeted the
actuator of the fourth follower for 40s ≤ t < 80s, whereas
the second attack targeted the actuator of the first follower
for 210s ≤ t < 240s. The comprised actuators of the
fourth and the first followers as a result of the attacks are
expressed as uc41 = (1.2 + 0.45cos(q41)u41 − 62cos(20π t),
uc42 = (1.2 + 0.45cos(q42)u42 − 62sin(20π t), uc11 =

(1.2 + 0.45sin(q11)u11 + 62cos(20π t), and uc12 = (1.2 +

0.45sin(q12)u12 + 62cos(20π t),

The initial positions of the agents are set as r1(0) = [6 0]T ,
r2(0) = [3 3]T , r3(0) = [3 − 3]T , r4(0) = [1 4]T ,
r5(0) = [0 − 2]T , r6(0) = [−4 4]T , r7(0) = [−5 − 4]T .
The integral reinforcement interval is set as τ = 0.2, The
gains of the controllers are carefully chosen as, λ = 2,
K = 25I . The parameters of the critic neural network are
set as γc = 0.2I , θc = 0.1, the width of the Gaussian
function ηc = 3, the center of the receptive field cc is chosen
between −2, −1.5, −1, . . . , 2, number of hidden nodes is
chosen as 10, the initial critic weight vector is selected as
Wc0 = [0, 0, . . . , 0]T . The parameters of the actor neural
network are set as γa1 = 6I , γa2 = 6I , θa1 = 0.1,
θa2 = 0.1, the width of the Gaussian function ηa1 = 3,
ηa1 = 3, the center of the receptive field ca1 and ca2 are
chosen between −1, −0.5, . . . , 2, number of hidden nodes
for the first and second actor neural networks are chosen
as 30 and 15, respectively, the initial actor weight vectors
are selected as Wa10 = [0.2, 0.2, . . . , 0.2]T and Wa20 =

[0.2, 0.2, . . . , 0.2]T .
It is worth noting that the AFM control method presented

in [26] did not take into account the impact of cyber-attacks
on the MAS. In order to demonstrate the failure of the AFM
control approach proposed in [26] in the event of false-data
injection attacks, it is applied to the MAS (11). Fig. 2 depicts
the distorted trajectories of the followers q4 and q7 for 40s ≤

t < 80s and 210s ≤ t < 240s, respectively as a result of
the attacks on their actuators. In practical applications, the

r =
[
rT1 rT2 rT3 rT4 rT5 rT6 rT7

]T (63)

� =



−0.2741 0.2741 0.2741 −0.1370 −0.1370 0 0
0.2741 −0.6852 0 0.5482 0 0 −0.1370
0.2741 0 −0.6852 0 0.5482 −0.1370 0

−0.1370 0.5482 0 −0.7537 0.0685 0.2741 0
−0.1370 0 0.5482 0.0685 −0.7537 0 0.2741

0 0 −0.1370 0.2741 0 −0.2741 0.1370
0 −0.1370 0 0 0.2741 0.1370 −0.2741


(64)
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attacks will lead to the collision of the followers. Therefore,
the AFM control approach proposed in [26] is not suitable
for application in adversarial environments. As shown in
Fig. 3, the trajectories of the agents are smooth because the
proposed control technique is able to detect and mitigate the
attacks on the actuators of the followers unlike [26]. The
AFM tracking errors of the followers under the proposed
scheme are depicted in Fig. 4. The responses of the RL-based
distributed control protocols that mitigate the actuator attacks
and maintain the AFM of the leader-follower system MAS is
depicted in Fig. 5. The evolution of the norm-2 of the RBFNN
weight vectors of the two actors and the critic networks is
presented in Fig. 6, Fig. 7, and Fig. 8, respectively. It can
be observed that the weights are automatically adjusted to
adapt to the new collective maneuvers of the agents. In order,
to show the accuracy of the RBFNN in approximating the
unknown function f (q, v), the approximation errors

(
f (q, v)−

f̂ (q, v)
)
are presented in Fig. 9. It can be observed that the

approximation errors vary between -0.04 and 0.04 during the
steady states. Fig. 10 shows the collective maneuvering of
the formation of the agents such as translation, collinearity,
scaling, shearing, and rotation.

V. CONCLUSION
This article investigated the AFM control problem of MASs
under actuator attacks. A reinforcement learning control
technique based on the actor-critic architecture is proposed
to achieve the affine formation transformation and collective
maneuvering of the leader-follower system. Critic neural
networks have been utilized to approximate the prescribed
long-term performance index which evaluates the control
performance of the leader-follower network. Two actor
neural networks reinforced with the critic neural network’s
signals have been used to generate control protocols that
minimize the performance index and counter cyber attacks.
The closed-loop system has been proven to be semiglobally
uniformly and ultimately bounded. Simulation results have
shown that the proposed control approach is able to neutralize
the effects of the actuator attacks on the followers and
maintain the leader-following affine collective maneuvering.
Future research will incorporate event-triggered mecha-
nisms into the control laws to lessen the computational
burden.
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