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ABSTRACT Digital networks and systems are susceptible to malicious software (malware) attacks. Deep
learning (DL) models have recently emerged as effective methods to classify and detect malware. However,
DL models often relies on gradient descent optimization in learning, i.e., the Back-Propagation (BP)
algorithm; therefore, their training and optimization procedures suffer from several limitations, such as
high computational cost and local suboptimal solutions. On the other hand, ensemble methods overcome
the shortcomings of individual models by consolidating their strengths to increase performance. In this
paper, we propose an ensemble-based parallel DL classifier for malware detection. In particular, a stacked
ensemble learning method is developed, which leverages five DL base models and a neural network as a
meta model. The DL models are trained and optimized with a hybrid optimization method based on BP
and Particle Swarm Optimization (PSO) algorithms. To improve scalability and efficiency of the ensemble
method, a parallel computing framework is exploited. The proposed ensemble method is evaluated using
fivemalware datasets (namely, Drebin, NTAM, TOP-PE, DikeDataset, andML_Android), and high accuracy
rates of 99.2%, 99.3%, 98.7%, 100%, and 100%have been achieved, respectively. Its parallel implementation
also significantly enhances the computational speed by a factor up to 6.75 times. These results ascertain that
the proposed ensemble method is effective, efficient, and scalable, outperforming many other compared
methods in malware detection.

INDEX TERMS Ensemble method, malware detection, deep learning, parallel processing, backpropagation
algorithm, particle swarm optimization.

I. INTRODUCTION
In today’s digital era, while the rapid development of
computing technologies makes our lives convenient and
easy, they are always open to cyber-attacks. The number
of cyber-attacks and the associated damages have increased
significantly, which has become one of the major threats in
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recent years [1]. Cyber-attacks cause trillions of dollars in
damage to the global economy [2], [3]. Malicious software
(malware) is developed by cyber-criminals to carry out
unwanted activities on victims’ computers. There are various
types of malware, e.g. viruses, ransomware, worms, etc.,
which are capable of stealing important data, damaging
computer systems and making themselves unseen in the
target’s system. Furthermore, malware proliferates by using
users’ trust as an infection vector [2], [3]. Owing to serious
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and detrimental effects of malware, the malware detection
and security sector generates billions of dollars, and continues
to grow every year.

In malware detection, suspicious activities and files can
be classified as benign or malicious, depending on various
characteristics such as infection capability, malware struc-
ture, and speed rate [4]. Threats and malware attacks should
be quickly detected as soon as they infect the computing
systems, in order to protect legitimate users. For this
purpose, researchers have developed classification methods
for detecting malware [5]. In general, malware detection
techniques can be categorized into behavior, signature,
model-checking, and heuristic approaches [2]. Nonetheless,
many of the techniques perform poorly in detecting complex
variants of malware [3], [6].

In recent years, deep learning (DL) has beenwidely applied
to a variety of tasks, e.g., complex network analysis [7],
computer vision [8], emotion recognition [9]. Malware
detection is of no exception, as DL models have been
employed to address the limitations of existing malware
detection methods [10]. DL models offer several advantages
over traditional machine learning (ML) models, such as
the automatic generation of high-quality features and the
capability to handle large datasets [11]. On the other hand,
ensemble approaches can be used with ML/DL models
to enhance their performance in classification tasks [12],
[13]. The main principle is to merge multiple models
and leverage the strengths of each model to compensate
for individual disadvantages, thereby leading to improved
performance [12], [13].

In the literature, various DL models, such as Graph Con-
volutional Network (GCN) and Recurrent Neural Network
(RNN) [5], [14], hybrid DL-ML method [15], ensemble-
based classification with DL [12], have been developed for
malware detection. Even though useful results have been
reported, they are neither efficient nor accurate enough for
complex and large-scale malware detection tasks. DL models
typically use the traditional optimization techniques, i.e., gra-
dient descent with the Back-Propagation (BP) algorithm [7],
for network learning. The BP algorithm suffers from several
limitations, such as high computational costs and local
suboptimal solutions [7], [16]. In addition, not many DL
and optimization techniques in the literature leverage parallel
processing to facilitate data processing and learning. These
shortcomings make the current DL models ineffective in
practice, particularly in dealing with big data challenges.

To undertake the aforementioned issues, we propose an
ensemble-based parallel DL classifier for malware detection
in this paper. The proposed ensemble method undergoes
feature learning and classification in a parallel computing
platform. Each DL constituent uses a hybrid Particle Swarm
Optimization (PSO) and BP for parameter tuning, with
an aim to find optimal solutions and improve overall
performance. PSO has an ability to search for global optimal
solutions [17], [18], while BP can effectively find accurate
local solutions [19]. Therefore, a hybrid PSO-BP scheme

entails complementary advantages of global and local search
algorithms to optimize DL model parameters efficiently in
a parallel computing environment. The proposed method,
denoted as Ensemble Classification with Deep Learning
Parallelism (ECDLP), has the following contributions:

• An ensemble DL method with parallel processing
(i.e., is proposed for malware detection, leveraging
the strength of individual DL models to improve
classification performance;

• A hybrid optimization method based on a hybrid
PSO-BP algorithm is introduced for optimization of
individual DLmodel parameters, leveraging the comple-
mentary global search capability of PSO and local search
capability of BP to achieve optimal solutions;

• A parallel computing scheme is developed to improve
the scalability and efficiency of the proposed method.

The remaining sections of this paper are organized as
follows. In Section II, we review the relevant studies in the
existing literature. Section III provides a detailed explanation
of the ECDLP method. The experimental results, analysis,
and discussion are presented in Section IV, and concluding
remarks are given in Section V.

II. RELATED WORK
Malware data require a careful analysis to identify malicious
behaviors, for example, malware infection risk, structure,
and spread speed. Several approaches and techniques have
been suggested for malware detection, most of which
involve ML with signature, behavior, heuristics, and model
checking techniques. DL approaches have emerged recently
to undertake malware detection [3].

Signature techniques first create a set of bits to represent
the program structure, e.g., the malware structure. Next, the
techniques analyse suspicious files and detect their signatures
for classifying them into either benign or malware [20].
However, signature techniques are not scalable, and they also
cannot detect complex malware variants [21]. Behaviour-
based techniques initially monitor the characteristics of
data samples (e.g., from a program) before identifying
them as benign or malware [2]. Detecting changes in
Application Program Interface (API), calls registry, system
calls, file activities and computer networks are used to
trace malware behaviours [2]. A graph model was devel-
oped by Kolbitsch et al. [22] to track malware behaviours
by monitoring system calls. Lanzi et al. [23] designed a
system centric behavioural model to identify interactions
between malware and system resources. Behaviour-based
techniques generally yield inferior performance, especially
when analysing complex malware variants.

Heuristic approaches combine ML techniques and rule
bases to handle malware detection tasks [24]. PSO and Apri-
ori algorithmswere combined in [25], in which PSOwas used
to generate and optimize candidate detectors while Apriori
algorithm was employed to establish association rules for
detecting malicious Android applications. Fatima et al. [26]
developed a malware detection method using the Genetic

VOLUME 11, 2023 76331



M. N. Al-Andoli et al.: Ensemble-Based Parallel DL Classifier With PSO-BP Optimization

Algorithm (GA) to select appropriate features and feed them
to an ML classifier.

Model checking methods use linear temporal logic for
extracting representative malicious features by encoding
them as flow relations, i.e. feature dependencies [2]. Song
and Touili [27] developed a model checking method named
‘‘pushdown’’, in which all software and executable programs
were converted into a pushdown system. The pushdown
system used the stack computation tree predicate logic to
represent malicious behaviours and exploit the associated
predicates across the stack to detect malicious behaviours.
Overall, malware detection based on model checking
and heuristic methods are effective in detecting certain
unknown malware variants. However, they are less effective
to detect malware that uses obfuscation and packaging
techniques.

Even though DL has been widely used in various domains
including malware detection, there is room to further
develop effective DL-based solutions for improving malware
detection rates [3]. A DL malware detection framework
was developed in [28] to analyze and identify dynamic and
static malware. DL and image processing techniques were
integrated to detect malware. Another DL framework was
developed in [5] to learn and identify malware in Android
devices. GCN was employed to identify the semantic and
sequential patterns automatically, while the deep semantic
information was determined by using an RNN model.
In [29], an automatic detection method utilising Stacked
Auto-encoder (SAE) and Deep Belief Network (DBN) was
presented to detect unknown and new Android malware.
In [30], a new DL-based malware detection method was pro-
posed to overcome the issue of overfitting. Transfer learning
was applied using pre-trained ShuffleNet and DenseNet-201
models as feature extractors. An Optimal-Error-Correction-
Output-Coding ensemble model, called ECOC, consisting
of Support Vector Machines (SVMs) was employed as
the final classifier. The SVM parameters were optimized
with a grid search approach. A lightweight DNN-based
model was developed in [31] for malware classification.
Denoted as IMCLNet, the method could effectively detect
malware using advanced evasion techniques. As indicated
in the study, IMCLNet was able to extract features directly
from images without requiring additional feature engineering
or domain knowledge for malware detection. In [32],
a GCN was utilized to detect system call relationships
and identify malicious Android software. Likewise [33]
introduced an Android malware detection method utilizing
a Graph Neural Network (GNN) with Jumping-Knowledge
(JK) and its variations, such as GIN-JK and GraphSAGE-JK.
Additionally, [34], employed a GNN for Android malware
classification to create an API graph embedding technique,
alongside the use of a Generative Adversarial Network
(GAN) to target the graph-based GNN Android malware
classifier.

Recently, a hybrid DL-ML model was devised in [15] to
detect malware and prevent dissemination. A 12-layer DL

model was combined with ML, e.g. Random Forest (RF),
and voting was performed to reach a final decision. In [35],
a semi-supervised DL method was designed to detect obfus-
cated malware and identify its family. DL processing, image
transformation, and feature engineering were leveraged to
accomplish such task. Similarly, a CNN-based model was
introduced in [36] to classify variants of malware families.
In this method, malware families were identified using a
fine-tuned CNN architecture, and raw malware binaries were
transferred into colour images. In [37], a hybrid architecture
combining Long Short-TermMemory (LSTM) and CNNwas
proposed for detecting malicious software. The classification
of malware was accomplished through the utilization of
Call-Graph analysis, dynamic analysis, and static analysis.
Similarly, [38] conducted an exploratory analysis to identify
significant features that enhance the performance of malware
detection. Additionally, [39] developed a method for Android
malware detection, which involved Dalvik-Opcode features
and permission features.

Ensemble methods overcomes the disadvantages of indi-
vidual models by consolidating their strength in problem
solving. Various malware detection methods based on
ensemble learning have been proposed in the literature.
In [13], an ensemble learning method for Android malware
identification was developed. The method combined Naive
Bayesian (NB), Decision Tree (DT), RF, and decision
table ML algorithms was formed. In the method, intents
and permissions were combined to employ a collaborative
approach to enhance the classification performance of
malware. A meta-ensemble model for Android malware
detection was developed in [40]. It applied static analysis
in identifying malicious applications. An ensemble approach
was introduced in [41] to average the output of several
classification models, including Logistic Regression (LR),
NB, RF, K Nearest Neighbors (KNN), Stochastic Gradient
Descent (SGD), and Support-vector machine (SVM). It was
used for analysing Android software behaviours with an
integration of static analysis and dynamic instrumentation.
Similarly, an extrinsic random-based ensemble method for
Android malware detection was proposed in [42]. In the
method, the output of ML models, i.e., LR, SGD, and
multilayer perceptron (MLP), was averaged to obtain a
positive or negative prediction for each data samples (i.e.,
benign or malware). In [43], a prediction model for Android
malware was developed based on ML algorithms using
ensemble learning comprising RF, DT, LR, SVM, and
XGboost was developed. The best algorithm was selected
for malware detection. Louk and Tama [44] compared
tree-based ensemble learning methods for analyzing and
detecting Portable Executable (PE) malware and evaluating
different methods, including RF and XGBoost, with accuracy
and recall as the performance indicators. In [45], a multi-
faceted deep Generative Adversarial Network model was
suggested for an Android malware detection. On the other
hand, various ML algorithms, i.e., RF, DT, LR, and SVM,
were evaluated in [46] by using an ensemble learning for
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FIGURE 1. Outline of the proposed malware detection methodology (ensemble classification-based parallel deep learning with
PSO-BP optimization for malware detection).

Androidmalware identification. Overall, the abovementioned
methods demonstrate that ensemble learning is useful to
improving the performance of individual malware detection
models.

In the current literature, DLmodels are often not scalable to
handle large-scale data because their architectures are com-
plex. Moreover, the reported DLs typically utilize gradient
optimization, which may lead to suboptimal generalization.
To address this issue, this paper proposes an ensemble
DL model that optimizes its parameters through a hybrid
PSO-BP algorithm. To enhance efficiency in processing
speed, a parallel processing platform is designed to house
the ensemble DL model for malware detection. Compared
with other methods reported in the literature, the proposed
ECDLP model offers a new malware detection solution
by integrating three distinctive characteristics within its
framework, namely ensemble learning, hybrid optimization,
and parallel DL processing. The efficiency and effectiveness
of ECDLP are demonstrated through an empirical evaluation
and performance comparison study, as detailed in Section IV.

III. METHODOLOGY
The methodology of ECDLP, which is shown graphically in
Fig. 1, is explained in this section. In general, ECDLP is an
ensemble-based parallel DL classifier with a hybrid PSO-BP
optimizer for data classification. ECDLP involves two main
phases: data preparation andmodel training. In the first phase,
a dataset is pre-processed into a useful format for further
analysis. Feature engineering then is carried out by using a
DL method trained with a hybrid PSO-BP algorithm in a
parallel processing platform. In the second phase, which is
the main phase, malware detection is performed by training
an ensemble model consisting of several base learners and a
meta-learner. In ECDLP, the base learners are a series of Deep
Neural Networks (DNNs), while the meta learner is a simple
Neural Network (NN). Both base and meta learners are
trained with the PSO-BP optimizer in a parallel processing
platform.

A. DATA PROCESSING
1) PRE-PROCESSING
This study used numerical feature vectors to represent
the malware samples from benchmark datasets, namely

Drebin, NTAM, DikeDataset, Ml_Android, and TOP-PE.
Data cleansing was performed to address missing values,
although the amount was small. This served as a precaution-
ary measure to ensure high-quality data representation for
achieving improved model performance.

The Python library (Numpy) was employed for data
cleansing. The pre-processing task involved replacing all
missing values in a dataset with the average feature
values. Note that averaging data summarizes the associated
numerical features and determines their representative values
without significantly affecting the sample representation,
especially for behavioural features in malware detection. A z-
score normalization process [47] is carried out, as defined
in Eq. (1):

z− score =
(x − µ)

σ
(1)

where x, µ,and σ indicate to the original value, mean value,
and standard deviation, respectively.

After z-score normalization, the next step is to reduce the
large number of features in data samples. Somemalware data,
such as programs, have a large feature dimension. This causes
DL-based models to be ineffective in learning. Therefore,
the number of features is reduced to an affordable level
pertaining to the computing power, which helps minimize
computation time and facilitate the formation of a compact
DL model. This task is accomplished by aggregating a
set of neighbouring features and combine them to single
feature [48]. The generation of adjacent features is controlled
by a hyper-parameter F , which ranges from 1 to a, where a
represents the original features. The new feature dimension
(Fsize) is expressed as follows:

Fsize =
a
F

(2)

After obtaining the normalized and reduced features, the
new representation has Fsize features, instead of the original
set of features a, where Fsize < a.

2) DEEP LEARNING-BASED FEATURE ENGINEERING
To further improve the quality of features, a DL-based feature
engineering process to extract features and represent them in
a lower-dimensional space is conducted. Feature engineering
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is accomplished with an unsupervised DL model, i.e.,
Deep Auto-encoder (DAE). DAE learns useful features and
transforms them from a high dimensional representation to a
low-dimensional one. DAE typically comprises two stages:
encoding and decoding. In the first stage, the data sample
representation x is encoded in the hidden layer based on h =

f (W1x + b1), where f is the encoder function, x indicates
the original sample, h refers to the extracted information,W1
and b1 are the adjustable parameters of the encoding layer.
The decoding stage aims to generate a data representation
(Y ) similar or close to the original representation. This
representation is generated from the output of the hidden
layer using the g function, i.e.,Y = g(W2h + b2), where W2
and b2 are the adjustable parameters of the decoding layer.
Both stages with fand g perform a nonlinear mapping with
the sigmoidand ReLU (rectified linear unit) functions [49].
DAE seeks to find a latent representation (h) such that
h retains useful features of data samples (x), where the
feature dimension of h is smaller than that of x. Its
adjustable parameters are denoted by θ= [W1, b1,W2, b2].
After accomplishing feature engineering and identifying the
meaningful features, they are sent to the ensemble DL-based
classifier for malware detection.

The process of feature extraction in a DAE occurs through
its training and optimization process [50]. The aim is to
minimize the reconstruction error between the input data
sample and its reconstructed output by adjusting the DAE
weights in both the encoding and decoding parts. Weights in
the encoding layer are responsible for learning and generating
useful features from the input data such that the most relevant
and important features are extracted. The encoding layer is
responsible to capture critical features and using them to
reconstruct the input. The optimization process directs the
extraction and learning of important features based on the
reconstruction error between the input and its reconstructed
output. To enhance the optimization efficiency, a hybrid PSO
and BP algorithm is devised.

Specifically, the adjustable parameters in a DAE are
optimized using a two-step method, i.e., PSO for global
search and BP for local search, as shown in Fig. 2. PSO
generates a pool of particles that utilize the output of BP
for optimization. These particles are distributed across the
search space, allowing them to exchange information and
identify the optimal solution for further fine-tuning by BP.
A detailed explanation of this hybrid algorithm is presented
in Section III-B1.a

B. MODEL ENGINEERING
1) DEEP LEARNING-BASED MALWARE CLASSIFICATION
Once the samples features are prepared, they are propagated
to another DL model, which is a modified version of DAE,
to perform classification. The input features are handled
by a DNN, and a prediction is generated at its last layer
with ( n ∗ d), where d indicates the labels (target classes).
The DNN hidden layers use functions h = f (W1x + b1),

hl = fl (W2hl + b2) , . . .o = fl (Wl+1hl + bl+1) , where x
represents the sample features, h represents the hidden layer,
o represents the target class, and l represents the number of
layers. The DNN adjustable parameters are indicated by θ .
The DNN layers are dense, and a ReLU is utilized in all
hidden layers. To implement ensemble learning, the proposed
method incorporates two activation functions, namely the
sigmoid function and the softmax function, in the last hidden
layer of the base learners.

When designingDLmodels, two concerns are optimization
and computational cost. ECDLP offers two advantages,
i.e. hybrid PSO-BP method for achieving optimization,
and parallel processing for improving computational
speed. The details of ECDLP are explained in the next
sub-sections.

a: HYBRID PSO-BP OPTIMIZATION
A hybrid meta-heuristic, i.e. PSO, and gradient, i.e. BP,
optimization method can yield better solutions than those
from individual methods [51]. PSO enables information
sharing and promotes constructive collaboration among
particles, resulting in the attainment of a global optimal
solution [52]. In addition, PSO is simple and has proved
its capability in solving complex optimization problems in
various domains. On the other hand, BP is able to produce
an non-linear mapping through local search [19]. In this
research, we use the original version of PSO to perform
global search, which is simple and fast in operation. Thus, the
hybrid PSO-BP algorithm leverages the fast search capability
of PSO in identifying global optimum solutions, which are
then fine-tuned with BP. In addition, the potential drawback
owing to simplicity of the original PSO algorithm is mitigated
by forming an ensemble method. Good results in terms of
accuracy and stability have been achieved, in line with those
reported in the literature [51], [53], making the integration
of PSO and BP in an ensemble framework a suitable choice
for malware detection, as demonstrated in the empirical
study.

ECDLP consists of DL-based feature engineering
(Section III-A2) and DL-based classification modules
(Section III-B1). Both modules utilize PSO and BP
algorithms to optimize their parameters. A Weighted Cross
Entropy (WCE) loss function (Jθ ) is employed to refine
parameter θ of DAEs. ECDLP is trained in such a way to
minimize the loss function, as defined in Eq. (3).

Jθ =
1
n

∑n

i=1
[Xi log(Yi) + (1 − Xi) log(1 − Xi)], (3)

Eq. (3) is used to guide training of DAE through
unsupervised (feature engineering) learning and supervised
(classification) learning, respectively, where n,Xi are the
number of samples and the original samples. In the feature
engineering module, Yi denotes the regenerated data sample,
whereas in the classification module, Yi represents the
predicted class label (i.e., benign or malware). Parameter θ

is updated iteratively through a local search process with BP,
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as follows:

θ ijα = θ ijα − γ
∂

∂θ
ij
α

Jθ (X ,Y ) (4)

∂

∂θ
ij
α

Jθ (X , g(f (X ))) =

N∑
i=1

∂

∂θ
ij
α

Jθ (Xi, g(f (Xi)))

=

N∑
i=1

∂

∂zjα
Jθ (Xi, g(f (Xi)))

∂

∂θ
ij
α

zjα

=

N∑
i=1

δjαX
T
i (5)

where N indicates to neurons, γ refers to the learning rate,
and α refers to the activation values of the H hidden layer
and Y output layer.
A set of DL models is created and executed using the

entire data samples to optimize and tune the parameters of
all replica DL models. The output of replica DL models is
Mθ = (Mθ1,Mθ2, . . . ,Mθm) , m indicates the number of
DL replicas. Mθ is calculated with Eqs. (3-5), i.e., local
optimization with BP. Effective local solutions are found
with BP, since it has fine-tuning optimization capabilities.
PSO works with BP to search for optimal solutions. After
performing local optimizationwith BP,Mθ is re-used for PSO
optimization.

The general idea of hybrid PSO-BP optimization is
depicted in Fig. 2. Firstly, the PSO algorithm obtains
Mθ (parameters of DL replicas) optimized by BP. Next,
a pool of particles Ps is generated, where Ps corresponds
to the local replicas. Each particle Pi uses BP in its local
optimization and represents one replica. Particles Ps are
distributed to several regions of the search space. These
particles have the capability to exchange information to each
other, in order to search for the optimal solution. To update
the position of each particle Pi, it moves with velocity Viθ
over iteration t based on Eqs. (6) and (7). BP updates the
local positions (i.e., solutions) of the particles during local
optimization using Eqs. (3) to (5), where the output, i.e.,
Mθ=(Mθ1,Mθ2,Mθ3, . . .Mθm), is sent to PSO, as defined in
Eqs (6) to (9):

V (t+1)
θ i = λv(t)θ i + c1r1

[
pbest(t)

θ i
−M (t)

θ i

]
+ c2r2

[
gbest(t)θ −M (t)

θ i

]
, (6)

i ∈ [1,Ps],M
(t+1)
θ i = M (t)

θ i + V (t+1)
θ i , i ∈ [1,Ps] (7)

For each particle (Pi,) the best local solution is updated
with the following equation.

Pbestθ i = Mθ i|f (Mθ i) = min
{
f
(
Mθ i,c

)}
c=1,2,3,...,t+1

(8)

In Eqs. (6) to (8), r1 and r2 are two randomly chosen
numbers in the interval [0, 1];Mθ i is the output of a local
replica;λ is the inertia of the Ps movement; c1 is the
cognitive parameter and c2 is the social parameter; while

t, v, gbest , andpbest are the number of iterations, velocity,
global best solution, and local best solution, respectively.

There are two ways to find the best global solution, either
based on the average of the best local solutions pbest of all
particles or the best local solution with the highest rank.
In this research, the best solution is selected for minimization,
as shown in Eq. (9).

gbest
θ

= min


[
Pbest

θ i
|f (Pbest

θ i
) = min

{
f (Pbest

θ i
)
}

i=1,2,3,...,Ps

]
,[

1
Ps

∑Ps
i=1 P

best
θ i

]
 (9)

The fitness function is computed by calculating the average
values of the loss function (i.e., WCE) from the local DL-
replicas (JθM=(Jθ1, Jθ2, Jθ3, . . . ,Jθm)) in Eq. (3), as given in
Eq. (10).

f (JθM ) =
1
m

m∑
i=1

Jθ i (10)

where m refers to the DL-replicas. Once the fitness function
is minimized and improved, Pbestiθ and gbestθ are updated with
Eqs. (6) to (9).

b: PARALLEL DEEP LEARNING
To improve efficiency of ECDLP, it is developed in a
parallel processing platform. It operates at two levels: high-
level parallelism with multi-processors/machines and low-
level parallelism with multi-threads. Data parallelism is
employed to build the platform. Parallel processing is carried
out pertaining to the tasks of each base learner. In other
words, there is no parallelization across the base learners,
but in the tasks of each base learner. Fig. 2 shows the
parallel processing method of the base learner, i.e., DL-based
hybrid optimization with PSO and BP algorithms. Using
the developed parallel processing method, many executers,
i.e. cores/processors/computers, are first created based on
the available resources. For each base learner, multiple DL
replicas (M ) are created. Each executer (E) receives a replica
of the DL model. The dataset is then partitioned into small
subsets and stored in local memory for parallelize processing.
Parameter θ is shared with all replica DLmodels and stored in
a server, i.e., global memory. Each E addresses one replica of
the DL modelMi. Finally, the parallel replicas of DL models
are synchronized and their outputs are combined to update
the shared parameter.

In the high-level parallelism, a dataset is partitioned into
chunks (C), and a number of executors are established
according to the available resources, i.e., machines, pro-
cessors, or cores. Executers (E) represent these resources,
and they receive chunks of data with C/E. A set of DL
replicas M is generated, and is allocated as particles Ps. The
particles evolve through PSO in a high-level parallelismmode
with multi cores/processors. Each individual particle, Pi, that
corresponds to Mi carries out a search process and updates
its local solution through parallel processing. The global
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memory stores C and gbest , and shares them with connected
E . The processing resources are allocated according to a ratio
of 1:m, wherem is the number of DL replicas. As an example,
if we have a parallel system with 2 machines, each machine
has 7-CPU cores, and consider m = 3; each replica of DL
model uses 4 CPU cores resources. The low-level parallelism
mode, i.e. multi-threads, is carried out with CPU cores for
BP local optimization, including matrix multiplication [54].
After that, all DL replicas are synchronized to yield the results
of local replicasMθ . The fitness function of PSO is computed
with Eq. (10). Next, the global best solution gbest is updated
and sent to the global memory, while the local best solution,
Pbesti , is sent to the local memory of each particle, e.g., Mi,
for analysis.

2) STACKED ENSEMBLE MODEL FOR CLASSIFICATION
Model averaging is an ensemble technique in which multiple
sub-models help produce a better prediction. Improvement is
achieved by weighting the contributions of each sub-model to
the generated prediction based on the expected performance
of each individual model. The ensemble-based averaging
model can be extended by employing a model to learn how
to merge the contributions of each individual model. This
approach is denoted as a stacked ensemble technique or
stacked generalization.

In this study, we propose a stacked ensemble method
combining heterogeneous classifiers. Fig. 3 shows the
proposed stacked ensemble DL model architecture, which
consists of five DNN models as the base learners and single
NN as the meta learner. Specifically, the meta learner is a
feedforward NN with a hidden layer and an output layer
activated using a sigmoid function and trained using BP. Each
base learner is a DNN classifier (as described in Section III-
B1). All five DNN base learners (Fig. 3), whereby they utilize
a sigmoid softmax functions in their operation, undergo the
feature engineering and classification processes in parallel.

The architectures of the base learners, i.e., DNNs, utilize
different activation functions and numbers of neurons,
in order to ensure diversity among the base models used in
ECDLP. Specifically, we use sigmoid and softmax activation
functions, and each base model has a unique number of
neurons, while maintaining consistent input and output
layers. In addition, the base models are trained on different
subsets of the dataset to further increase diversity of the
ensemble model.

DNNs are selected as the base learners because they
are effective in learning complex data representations and
achieving high performance on various tasks, including
malware detection [2], [28]. Additionally, they are highly
parallelizable and can be optimized efficiently on digital
hardware, making them well-suited for use in our parallel
computing platform [10]. Furthermore, the evaluation indi-
cates the effectiveness of the proposed ensemble model in
achieving the best performance in comparison with those
from other ensemble machine learning algorithms.

Once the base learners, i.e., the DNN models, have
completed their operations, the results are merged together.
Specifically, a concatenation process is carried out to merge
all outputs into single vector A. Vector A is sent to the meta
learner, which is used as features to perform classification and
produce the final prediction.

The ECDLP operations are summarized in Algorithm 1.

Algorithm 1 ECDLP
Input: Data samples
Output: Classification of samples as malware or benign
1: Processing data:
2: Pre-processing (Refer to Section III-A1)
3: Feature engineering: (Refer to Section III-A2)
4: for i=1 to t
5: For all (m in M ): do in parallel
6: Generate DL models
7: Optimize DL models with PSO-BP

(Section III-B1.a)
8: Extract useful features of samples
9: end parallel
10: end for
11: Stacking ensemble DL for malware detection and

classification:
12: a) Base classifiers
13: for i=1 to e (Generate and train DL models)

(Section III-B1)
14: for i=1 to t
15: For all (m in M ): do in parallel
16: Generate replicas of DL models
17: Optimize DL models with PSO-BP

(Section III-B1.a)
18: Classify samples as benign or

malware
19: end parallel
20: end for
21: end for
22: Send the prediction values to the meta classifier
23: b) Meta classifier
24: Receive the prediction values from base

classifiers and combine them into a vector A
25: Generate meta learner (NN with hidden layer

and output layer uses sigmoid function)
26: Use A as input of the meta learner
27: Train the meta learner and make the final

prediction
28: Return malware and benign samples.

C. TIME COMPLEXITY ANALYSIS
In this section, we present the time complexity analysis
of ECDLP and assess its efficiency. ECDLP consists of
two optimization phases covering local optimization with
BP and global optimization with PSO. During BP-based
local optimization, the training steps comprise a feed-forward
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FIGURE 2. Parallel processing method of the base learner model (DL-based hybrid optimization with
particle swarm optimization and backpropagation algorithms).

FIGURE 3. ECDLP: Stacking ensemble DL model architecture consisting of five DL models as base learners and a
NN as a meta learner.

process Jθ and a back-ward process∂Jθ . As such, the
time complexity is T (Jθ + ∂Jθ ) = O (2nho+ 2nho) =

O (4nho) = O (nho), where n and h indicate the numbers

of training samples and hidden neurons, respectively, while o
represents the number of neurons in the input/output layers.
Assume the ECDLP architecture comprises multiple hidden
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layers, l, and the DL model requires t iterations for training,
the time complexity becomesO (tlnho). The time complexity
for PSO to undergo global optimization is O (PsD), where Ps
denotes the swarm size, and Dis the dimension of adjustable
parameters. Since the time complexity of Dis approximately
O(nho), the overall time complexity of PSO isO(Psnho).
The time complexity of single DL model in ECDLP is
O (Pstlnho) . Given that ECLDP uses an ensemble method
(E), this leads to time complexity of O (EPstlnho). However,
as the number of models within the ensemble method
is constant, where Eis usually is set to a small number;
the overall time complexity of ECDLP is approximately
O (Pstlnho).

We also compare the time complexity of the proposed
ECDLP model with other ML and DL models, includ-
ing SVM, Random Forest, CNN-LSTM, DBN-SAE, and
ECDLP. The time complexity of SVM is O(n3) where n is
the sample size, while that of Random Forest isO(nmlog(k)),
where n is the sample size, m is the feature size, and k is
the number of trees. The time complexity of CNN-LSTM is
O(mnp), where m is the number of time steps, n is the sample
size, and p is the number of parameters, leading toO(n3). The
time complexity of DBN-SAE is O(nmho+mnp), where h is
the number of hidden layers and o is the number of output
nodes. For the proposed ECDLP model, its time complexity
isO (Pstlnho), where Ps and tare the content sizes and l is the
number of deep layers. If nis greater than any parameters of
the mentioned models, ECDLP remains within an acceptable
range of complexity between nho and that of SVM (n3).

IV. IMPLEMENTATION AND RESULTS
This section presents a set of experiments to validate the
performance of ECDLP1. The obtained results are analyzed
and discussed comprehensively.

A. DATASETS
In this study, we use five malware datasets for performance
evaluation, as follows:

1) Drebin2. This is a common dataset used to identify and
detect Android malware. It consists of 4,500 benign
and 5,500 malware samples from 179 various malware
families.

2) Network Traffic Android Malware (NTAM)3. This is
a network layer feature set for malware detection.
It comprises 3,141 malware samples and 4,704 benign
samples.

3) DikeDataset4. It consists of 11,923 samples, com-
prising 10,841 malicious and 1,082 benign instances.
These samples are extracted from Object Linking and
Embedding (OLE) and Portable Executable (PE) files.

1‘‘https://github.com/MNAl-Andoli/ECDLP’’
2‘‘https://www.sec.cs.tu-bs.de/∼danarp/drebin/’’
3‘‘https://www.kaggle.com/datasets/xwolf12/network-traffic-android-

malware’’
4‘‘https://github.com/iosifache/DikeDataset’’

4) Ml_Android5. It consists of 10,0000 Android package
kit (apk) samples, with 50,000 benign and 50,000
malware samples. The data samples contain behavioral
features of malware.

5) TOP-PE6. It consists of 47,580 samples, with 45,651
malware and 1,929 benign samples. The top 1,000
features have been extracted from the Cuckoo-Sandbox
report, and the benign samples have been collected
from Windows 7-x86 and portableapps.com.

B. EXPERIMENTAL SETUP
Two machines have been used to analyze and verify
the distributed computing and parallel implementation of
ECDLP. The processors are Intel Core-i7, and the operating
system is Ubuntu 20.04. One machine has 8GB RAM and
the other has 4 GB. The Python Ray Library [55] is utilized
to implement parallelization.
The DL model hyper-parameters are set as follows: the

number of iterations, learning rate, and batch size are set to
200, 0.001, and 256, respectively. As for PSO, c1= 0.5,c2 =

0.3, the inertia weight= 0.9,and the number of particles= 20.
The position of each particle is randomly initialized within
the range [0, 1]. The hyper-parameter F in Eq. (2) is set to
1 for Ml_Android and DikeDataset, while for Drebin and
TOP-PE is set to 4 and 5, respectively. The ECDLPmethod is
coded in the Python language. Its parameters are chosen after
several trails, which allow ECDLP to yield the best results.
Each dataset is split into a training set and a test set according
to the ratio of 4 to 1.
For performance comparison, six ML algorithms are

devised as ensemble classifiers, including Ensemble Random
Forest (ERF), Ensemble Decision Tree (EDT), Ensemble
Gradient Boosting (EGB), Ensemble K Nearest Neighbors
(EKNN), Ensemble Ada Boost (EAB), and Ensemble
Support Vector Machine (ESVM). In addition, RF, DT, GB,
KNN, AB, and SVM are integrated to create a heterogeneous
ML-based ensemble classifier, called HML-EC. Moreover,
three existing DL based on a single classifier are used for
malware detection, i.e., DBN-SAE [29], CNN-ML [28], and
CNN-LSTM [37].
As the Drebin dataset is commonly utilized for malicious

software detection, we have conducted another evaluation for
comparing ECDLP with various ML and DL methods, which
are based on single and ensemble classifiers. Specifically,
seven state-of-the-art single classifier methods published
between 2020-2022 have been used, i.e., GCN-JK [33],
GCN-AMD [32], GIN-JK [33],VGAEMalGAN [34], SAGE-
JK [33], DeepDiveDrebin [38], and FMulAMD [39]. Further-
more, nine state-of-the-art ensemblemethods have been used,
i.e., FSEC-MD [40], PIndroid [13], TA-AMD [41], EAMP-
EML [43], ERE-AMD [42], MDGAN-MD [45], Stacking
DT-SVM-LR [46], Blending DT-SVM-LR [46].

5‘‘https://github.com/mburakergenc/Malware-Detection-using-Machine-
Learning’’

6‘‘https://ieee-dataport.org/open-access/malware-analysis-datasets-top-
1000-pe-imports’’
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TABLE 1. Comparison with three DL and seven ensemble ML methods performed on (a) the Drebin and (b) NTAM datasets.

TABLE 2. Comparison with three DL and seven ensemble ML methods performed on (a) the TOP-PE and (b) DikeDataset datasets.

C. EVALUATION METRICS
Accuracy, precision, recall, and F1-measure metrics are used
for performance evaluation and comparison. These metrics
are computed based on True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) rates,
as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

F1 − measure =
2 × (Recall × Pr ecision)
Recall + Pr ecision

(14)

Speedup indicator is computed, as in Eq. (15).

Speedup(A,B) =
Method(A)
Method(B)

(time), (15)

D. PERFORMANCE COMPARISON
The experimental results are summarized in Tables 1-6,
where the bold scores indicate the best performance. Table 1
presents the results of ECDLP, seven ensemble ML and three
DL methods on the (a) Drebin and (b) NTAM datasets. For
the Drebin dataset, ECDLP outperforms all other methods
(EDT, EGB, ERF, EKNN, EAB, ESVM, HML-EC, CNN,
DBN-SAE, and CNN-LSTM) in all four metrics. HML-EC,
ERF, and CNN-LSTM harvest the best performance among
the comparison methods. On the other side, EAB and EKNN
have the lowest performance in all metrics. The results also
demonstrate that ensemble ML algorithms provide a good
performance, as compared with those of DL-based single
classifiers, i.e., CNN, DBN-SAE, and CNN-LSTM. HML-
EC outperforms all ensemble-basedML classifiers, including
EDT, EGB, ERF, EKNN, EAB, and ESVM. Again, the
NTAM results in Table 1(b) clearly indicate that ECDLP
obtains the best accuracy, precision, recall, and F1-measure
scores.
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The TOP-PE and DikeDataset results of ECDLP and
compared methods are presented in Table 2(a) and (b),
respectively. ECDLP achieves the best performance, out-
performing all DL and ensemble ML methods. CNN
and CNN-LSTM report the best performance among the
compared methods, which are close to those of ECDLP.
EDT and EKNN yield the lowest performance in all four
indicators.

Referring to the Ml_Android dataset (Table 3), ECDLP
performs excellently with a perfect (100%) score in all four
metrics, which is on par with ERF, EKNN, and HML-
EC. According to Table 3, while CNN-LSTM achieves
100% accuracy on the Mal_Android dataset, its performance
is not consistently the highest across different datasets.
This is particularly clear when the dataset involved is
complex with high-dimensional features, e.g. the Drebin
dataset (Table 1(a)). Comparatively, our proposed ECDLP
method demonstrates a superior performance in four metrics
across on all five datasets. To mitigate its complexity as
compared with single models, ECDLP leverages parallel
computing for ensemble learning, which enhances its com-
putational efficiency and scalability for tackling large-scale
datasets.

Referring to the Dikedataset, NTAM, and TOP-PE datasets
(Section IV-A), they exhibit imbalanced data distribution.
This can lead to bias in performance with a high accuracy
rate, due to correct classification of the majority-class
samples. To avoid this issue, we apply a random over-
sampling technique [56] to increase the number of minority-
class samples, leading to a balance between both majority-
and minority-class samples. As shown in Tables 1(b) and
2(a and b), our proposed model performs well in terms
of accuracy, precision, recall, and, most importantly,
F1-measure, which is a useful metric insensitive to
imbalanced data distribution.

Overall, as shown in Tables 1 to 3, ECDLP depicts a
high performance in terms of accuracy, precision, recall,
and F1-measure. There are several reasons pertaining to the
effectiveness of ECDLP. Firstly, ECDLP comprises two DL
models, one for feature engineering and another for data
classification. Secondly, ECDLP uses optimization based on
PSO and BP for devising DL models. This allows ECDLP to
find the global optimum and enhance generalization. Thirdly,
ECDLP employs the ensemble approach to leveraging
the strengths of individual models to achieve the best
performance.

To ascertain the results in Tables (1) to (3), two
non-parametric statistical tests have been conducted with
Friedman and Nemenyi post-hoc tests. The Friedman test
computes the average ranked performance with the four
indicators at a level with α =0.05 (i.e., 95% certainly level)
with respect to ensemble ML methods consisting of ERF,
EDT, EAB, EGB, ESVM, EKNN, and HML-EC methods
(Tables 1 to 3) and DL methods comprising DBN-SAE [29],
CNN [28], and CNN-LSTM [37] (Tables 1 to 3). Table 4
presents the p-values obtained from the Friedman test, which

TABLE 3. Comparison with three DL and seven ensemble ML methods
performed on the ML_Android dataset.

TABLE 4. Friedman test results of the ECLDP method.

indicate a significant difference in performance between
EML and DL at a significance level of α =0.05.

Since the Friedman tests show that the results of ECDLP,
EML, and DL methods are significantly different, we apply
the Nemenyi post-hoc test to find the difference in perfor-
mance. Figs. 4 and 5 present the Nemenyi test results. It is
evident that ECDLP harvests the highest performance rank
across all four indicators for both EML and DL methods.
HML-EC achieves the highest rank among EML methods
and closely matches the performance of ECDLP. This can
be attributed to its utilization of heterogeneous EML models.
Among DLmodels, CNN-LSTM attains the highest rank, yet
it still falls short compared to ECDLP.

We conduct two additional studies using the Drebin dataset
to further validate the effectiveness of ECDLP, i.e., (1) a
comparison between ECDLP and state-of-the-art based on
single classifiers, as in Table (5); and (2) a comparison
between ECDLP and state-of-the-art based on ensemble
classifiers, as in Table (6). Referring to Tables (5) and (6),
ECDLP outperforms all compared methods based on single
and ensemble classifiers in terms of all four metrics. The
performance improvements of ECDLP pertaining to single
classifiers are better than those of ensemble methods.

In addition, we have included three optimization-based
techniques published in 2022 for performance compari-
son [57], [58]. In [57], a binary-PSO optimization was
combined with DL, and the method achieved an accuracy of
up to 94.92% with the Drebin dataset. In [59], the proposed
ensemble-based genetic optimization produced an accuracy
rate of 94.15% with the Drebin dataset. In [58], two swarm
intelligence optimization techniques (i.e, Bald Eagle Search
and Sailfish Optimization) were employed in conjunction
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FIGURE 4. Average rankings Performance between ECLDP and the EML- methods.

FIGURE 5. Average rankings Performance between ECLDP and the DL- methods.

TABLE 5. Performance comparison with single methods on the Drebin
dataset.

with other ML models, which recorded an accuracy rate of
98.92% with the Drebin dataset. Meanwhile, our proposed
ECDLPmethod is able to yield 99.2% accuracy on the Drebin
dataset, outperforming all three aforementioned methods.

E. RUNTIME, SPEED-UP, AND SCALABILITY EVALUATION
In this section, the ECDLP efficiency is evaluated with three
metrics, namely runtime, speedup, and scalability. Firstly, the
runtime results of ECDLP, seven EML methods (i.e., ERF,
EDT, EGB, EKNN, EAB, and ESVM, and HML-EC), and
three DL methods (i.e., CNN, DBN-SAE, and CNN-LSTM),

TABLE 6. Performance comparison with ensemble-based methods on
Drebin dataset.

from experiments with five malware datasets using different
computing processors are computed.
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FIGURE 6. Run time of the proposed ECDLP method, the seven EML and the three DL methods.

The experiments have been initially performed sequen-
tially with one computing processor, because the comparison
methods are implemented in a sequential way, instead of
in a parallel platform. Fig. 6 shows the results in terms of
computational time from ECDLP, seven EML, and three DL
methods. The longest time was consumed by ESVM with
large datasets, such as Mal-Android, Top-PE, and Drebin.
However, it performs well with acceptable runtime when
dealing with medium sized datasets such as DikiDataset
an NTAM. ERF exhibits the shortest runtime consumption.

Other EML methods consume a shorter run time than those
of DL methods, including ECDLP. ECDLP records shorter
runtimes than those of DL methods in all datasets. It also
consumes shorter runtimes as compared with those from
ESVM in large-scale datasets, i.e., Ml_Android, TOP-PE,
and Drebin.

In summary, while ECDLP achieves the best results
pertaining to all four indicators (accuracy, precision,
recall, and F1 measure), it still lacks efficiency in
terms of runtime in sequential implementation. Therefore,
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FIGURE 7. Run time of ECDLP with three parallel settings and sequential implementation.

a parallel processing platform is developed to overcome this
limitation.

The experiment has been further expanded to execute
ECDLP in a parallel processing platform. Two com-
puting machines with 2 CPUs of 12 cores are used.
Figs. 7 (a) and 7 (b) depict the ECDLP runtime results graph-
ically using sequential and three parallel implementations
over medium-sized (DikiDataset and NTAM) and large-sized
(TOP-PE, ML_Android, and Drebin) datasets. As can be
observed in Fig 7 (a) and 7 (b), the sequential implementation
takes the longest computation time on all datasets, while
parallel implementation with 12-cores consumes the shortest
time. As expected, the computation time of ECDLP is
reduced when a parallel processing platform is adopted.

Fig. 7 (a) and 7 (b) depict the computational time of
ECDLP in a sequential implementation, as well as in parallel-
4-cores, parallel-8-cores, and parallel-12-cores settings.
As shown in Figs. 7 (a) and 7 (b), parallel-4-coresconsume
the longest runtime, while parallel-12-cores records the
shortest runtime. The results in Figs. 7 (a) and 7 (b) indicate
that ECDLP allows the inclusion of additional resources
(i.e., cores, processors, machines) to reduce its computational
time. From the results in Figs. 7 (a) and 7 (b), the ECDLP
runtime improves significantly with the incorporation of new
resources, indicating the scalability capability of ECDLP.

Speed-up and scalability are next evaluated to further
gauge the efficiency of ECDLP. Eq. (15) is used to
calculate the relative speed-up performance between two
methods, while scalability indicates how the performance
of the parallel method is affected by adding new resources
in a parallel processing platform, i.e., computing cores,
processors, or machines.

Fig. 8 depicts the speed-up rates of ECDLP on three par-
allel platforms, i.e., parallel-4-cores, parallel-8-cores, and
parallel-12-cores), for processing the five datasets. Speed-
up of these parallel platforms is computed by comparing
them with those from the sequential implementation, which

FIGURE 8. Speedup of ECDLP with three parallel platforms and five
malware datasets.

is denoted as Method (A) in Eq. (14). The results in Fig. 8
indicates that ECDLP with Parallel-12-cores achieves the
highest speed-up rates, i.e., in the order of 2.2x, 2.5x, 2.82x,
4.63x, 6.75x as compared with those of sequential implemen-
tation in processing the DikiDataset, NTAM, Ml_Android,
TOP-PE, and Drebin datasets, respectively. The results in
Fig. 8 indicate that ECDLP with parallel-4-cores records
the lowest speed-up performance. All parallel processing
platforms outperform sequential processing in handling all
five datasets. A higher speed-up can be achieved when
handling larger datasets, as shown in Fig 8.
The trade-off between effectiveness and efficiency refers to

the balance between the quality of results and the resources
(e.g. time, computing power) required to achieve the results.
Pertinent to complex DL models with multiple layers with
ECDLP, a trade-off between effectiveness and efficiency
in ECDLP performance is exhibited. Indeed, comparing
ECDLP with several ML models (RF, KNN, and EAB), there
is a compromise between effectiveness and efficiency. While
ECDLP operates not as fast as other models, it is able to yield
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better results. Compared with other models such as SVM
and CNN-LSTM, ECDLP depicts both high effectiveness and
efficiency. To mitigate the computational load of ECDLP,
its speed efficiency can be greatly improved with the use of
parallel computing, as demonstrated in the results shown in
Figs 6 to 8.

V. CONCLUSION
In this paper, we have proposed an effective and efficient
ensemble method, denoted as ECDLP, for malware detection.
ECDLP first extracts the meaningful features from malware
data samples using the DAE model. The data samples with
newly extracted features are sent to DNN models to perform
classification, i.e., determining whether a sample is either
benign or malignant. In this phase, a stacked ensemble
learning method has been devised to combine the decisions
from DNN models to improve the performance. The stacked
ensemble method uses five DNN models as the base learners
and one NN as the meta learner. During the training and
optimization stage, ECDLP uses a hybrid BP and PSO
algorithm that combines local and global search capabilities
to identify global optima for improving the performance.
Finally, ECDLP exploits parallel computing to improve its
scalability and efficiency. Five malware datasets have been
used to evaluate the performance of ECDLP on two parallel
machines. ECDLP outperforms several ensemble ML and
state-of-art DLmalware detectionmethods. The experimental
results have demonstrated that ECDLP is able to improve the
computational speed up to an order of 6.75 times, ascertaining
the usefulness of the developed parallel processing platform.

For future work, we will investigate a new DL architecture
for malware detection using various data modalities, such
as text and images. Another research direction is to extend
the proposed model to handle multi-class problems, such as
predicting different malware types and families, and to assess
its efficacy in undertaking large scale and complex malware
detection tasks in real-world environments. We also aim to
explore different DL architectures and other ML algorithms
to enhance diversity of the ensemble model. In addition,
the current work could be extended to handle big data and
execute on large distributed and parallel computing systems,
involving multiple interconnected machines in the future.
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