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ABSTRACT Nuclei classification is a mandatory process to obtain scoring information for whole slide
images (WSIs). In immunohistochemistry (IHC) staining specifically for estrogen receptor (ER) biomarker,
an Allred score based on the proportion and intensity of cancer nuclear staining is widely used in histopathol-
ogy practice to predict response to hormonal treatment. This manually exhaustive process can be accelerated
with the help of computational intelligence. In this article, we present a thorough analysis of 37 WSIs of
breast cancer cases with over 2.8 million segmented nuclei. ER-stained nuclei were classified into negative,
weak, moderate and strong intensities using DenseNet deep learning architecture, contributing to Allred
scoring. Seven different models and configurations were exhaustively analysed in six tests to obtain the
scoring reaching the best concordance of 56.8% and 81.1%with the pathologist’smanual score and suggested
hormonal treatment. We also discussed in detail the causes that lead to the non-concordances. This study
follows the pathologists’ workflow in obtaining the Allred score but is fully automated. It provides a basis for
the development of more complex deep learning models, particularly for nuclei classification and achieving
accurate scoring of ER-IHC stained WSIs.

INDEX TERMS DenseNet, ER-IHC, nuclei classification, PyTorch, TensorFlow, whole slide image.

I. INTRODUCTION
Digital pathology (DP) is a technology that allows patho-
logical information created from digitalized images to be
accessed, handled, and interpreted. Using optical scanners,
traditional histopathology sections mounted on glass slides
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can be transformed into digitized histopathology images that
can be viewed on a computer monitor [1]. Today whole
slide scanners create images that replicate glass slides in
high resolution. This whole slide scanned image is remotely
consulted. It saves time, costs, and the physical transportation
of slides. Hence, DP combines pathology and computers to
replace the traditional diagnosis based on a microscope. This
DP makes the sharing and annotating slides much simpler
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and offers new opportunities for e-learning in health science
applications [1].

DP can be one of the gears for translational medicine where
interventions of new strategies using computer science to the
clinical results can be implemented to benefit the patient [2].
It also helps in closing the gap between two domains (medical
and computer science) to help clinicians and patients to make
more informed choices and point-of-care decisions [3]. Arti-
ficial intelligence (AI) models can be trained to understand
cancer nuclear using whole slide images (WSIs) with initial
input knowledge from practising pathologists and clinicians,
to fill the gap between basic sciences and clinical sciences.
DP allows promising techniques to manipulate digital images
in novel ways for diagnoses, second opinions, telepathology,
quality assurance, archiving and sharing and many other uses
[4]. General standards related to implementations, patholo-
gist experiences, reliability, as well as approval of taking over
routine human evaluations in diagnostics have been discussed
[5], [6], [7]. Specific standards in different clinical settings
have also been considered such as in oral pathology [8]
and nephropathology [9]. Technical aspects of DP have been
reviewed comprehensively by García-Rojo in 2016 [10], tak-
ing account of the international clinical guidelines provided
by several well-known organizations. Review on particular
technical features related to WSI such as the interpretation of
color by the human visual system and its relations with WSI
representation of pathology [11], display characteristics and
its impact on diagnostic performance [12] and a white paper
on tissue image analysis, software solutions and analysis
strategies have been explained in detail [13].

Analysing theWSI is incredibly challenging due to its high
resolution, high dimensionality, and variability in slide stain
representation. These were addressed in several studies, dis-
cussing computer-aided pathologic diagnosis [14], predictive
modelling object detection and tissue classification [15], and
state-of-the-art nucleus and cell segmentation for different
types of microscopic images [16]. Various aspects of AI tools
in contributing to DP as a whole were studied [1], [5], [17],
[18], as well as interpreting WSI at the cellular or nuclei
level [13], [19]. A roadmap for DP in developing new AI
tools and components for clinical use has been presented
by NCRI (National Cancer Research Institute, UK) Cellular
Molecular Pathology Initiative (CM-Path) with joint forces
with the British In Vitro Diagnostics Association (BIVDA)
[20]. This roadmap highlighted a few practical applications
including immunohistochemistry (IHC) biomarker detection
and scoring, disease quantification, morphometrics, tumor
detection and cancer grading, and rare event screening (such
as emphasizing tumor sample location).

The traditional way of diagnosing cancer is that pathol-
ogists, using the microscope, will study the histopathology
images of the cancer biopsy taken from patients, and from
their personal experience of cancer images, they will reach
a decision on the presence or type of cancer they have visu-
alised. A crucial step is the evaluation of cell patterns in the

FIGURE 1. Example of nuclei classes from ground truth 22k dataset:
negative, positive-weak, positive-moderate and positive-strong. The
nuclei classes are categorized according to intensity.

biopsy tissue. Computer-aided automatic detection methods
provide assistance in this step. However, there are specific
challenges. When histological sections of the biopsy are
stained to allow visualization of cells, uneven distribution
of stains in the tissue will induce noise - this is the first
challenge. So, pre-processing steps are required to eliminate
such noise. Nucleus or cell segmentation is the second chal-
lenge that has to be solved, which completely depends on
the properties of the cellular details (e.g. nuclei) in the image
[21]. Image segmentation is the procedure for extracting the
region of interest through an automatic or semi-automatic
process.

DP can also help to increase the productivity of the surgical
pathologist by automating time-consuming tasks. Some such
tasks which are current aspects of breast cancer evaluation
include mitosis counting, lymph node scanning for metastatic
deposits and immunohistochemical scoring for specific pro-
tein expressions [22]. IHC scoring for estrogen receptor (ER)
protein expression is an important means whereby the pathol-
ogist categorises cancer to predict response to endocrine
therapy. The Allred score is an example of such a predictive
evaluation and is based on deriving the ER status of breast
cancer by combining the percentage of ER-positive cells
(proportion score) and the ER staining intensity (intensity
score) expressed by the tumor cell nuclei, creating a range
from 0 to 8 [23]. Patients with Allred scores ≥ 3 respond to
adjuvant endocrine therapy and statistically has better disease
prognosis than those with Allred scores < 3 [24]. In the scor-
ing methodology, the negative-staining nuclei are assigned
an intensity score of 0, and the intensity of positive-staining
nuclei is divided into three grades: weak, moderate and
strong, depicted as scores 1, 2 and 3 respectively. Examples
of nuclei for these grades are shown in Fig. 1. The nuclei
classification into different intensity classes can be automated
in DP. The aim of our work is to find the best deep learning
(DL) pre-trained model for the classification of nuclei in
ER-IHC-stained histopathology images of breast cancer.
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II. RELATED WORKS
DL can deal with the very complex patterns of histologi-
cal images. It can highlight the underlying features which
cannot be identified by human eyes, and uncover unrec-
ognized features to assist diagnosis in digital pathological
images. DL stands out on accuracy, computational efficiency
and generalizability in analyzing DP images, specifically
on segmentation (e.g. tumor region identification), detec-
tion (e.g. metastasis detection) and classification (e.g. patient
prognosis). Two important components in the DL framework
are the pre-processing and post-processing stages; where the
former is to optimally prepare the input, and the latter is to
improve the results of the network output.

In pre-processing of DL models, three main tasks for
DP images have been identified, namely tissue and artefact
detection, stain normalization and patch selection. Recent
work by [25] on tissue and artefact detection is based on
changing the color space and adaptive thresholding, which
can process WSI quicker and increase the DL performances.
Work on stain normalizations used various methods ranging
from global color normalization to color transfer using gener-
ative adversarial networks (GANs). In GANs, the model can
learn from color distribution and histopathological patterns,
thus stable performances can be achieved especially when
the stains come from different sources. For patch selection,
available methods used thresholding, color deconvolution
and active contour model. This task can increase the overall
accuracy of DL performances because patches contain signif-
icant information for particular problems.

Post-processing in DL is important to achieve the ultimate
computer vision tasks: classification, detection, and segmen-
tation. The classification task is used to predict class labels,
using patch aggregation methods such as adopting simple
max voting procedures or complex models like random for-
est and nearest-neighbour classifiers. Patch aggregation can
increase DL performance, teaching the model to be more
robust to low-confidence predictions and single-patch mis-
classifications. For detection, it was done by identifying the
centroid location or bounding box of the object. Common
tasks in pathological images are the detection of lymphocytes
and mitosis. The main post-processing method for detection
is using a non-maxima suppression algorithm, which removes
the overlapping bounding boxes but maintains a high level of
sensitivity. In DP images, pixel-level segmentation was com-
monly carried out for segmenting nuclei and tubules/glands.
These were carried out using either one of the strategies: two-
class or three-class pipelines. For binary segmentation and
traditional morphological operations or watershed transform,
a two-class pipeline is used. Recent methods using DL were
using a three-class pipeline, where it can simultaneously
estimate the background, the border and the inside of the
object of interest.

From the literature study, CNN has achieved state-of-the-
art object recognition performance in various DP applications
[26], [27]. Authors [28] have adopted a deep CNN to separate
abnormal from normal cervical cells in Pap-stained and

hematoxylin and eosin (H&E) stained images. They pro-
posed a pre-trained feature extraction ConvNet model on
the ImageNet dataset, and data pre-processing on the cervi-
cal cell dataset. Transfer learning is also applied, whereby
the pre-trained network parameters are used to initialize a
new ConvNet. This ConvNet is then fine-tuned on the pre-
processed training samples. Others [29] have trained a CNN
to classify cells in fluorescence microscopy images, and [30]
have combined a CNNwith a deep autoencoder for individual
cell classification. For Ki67 stains, [31] used pixel-to-pixel
learning for single-stage nucleus recognition. The fully con-
volutional network (FCN) model takes advantage of weak
labels, i.e. ROI region annotation, to assist individual nucleus
identification. This auxiliary task boosts nucleus identifi-
cation by encouraging the network to learn more general
representations. More importantly, it can reduce human effort
for fine-grained nucleus annotation, which is much more
expensive. Most of the above methods only use H-channel
images in the network. So they still introduce noise, and
discarding E channel images means losing some structural
information. The current effort in DP is on examining large
pathology WSI datasets and applying AI or DL approaches
to identify novel prognostic factors including tumor nesting,
nuclear features, tumor cell density and stromal cell features.

ER-IHC stain is specific to breast cancer, and the study is
still very limited even though it is the leading cause of cancer
with high mortality rates among women; hence it is crucial
to conduct more deep-learning-related research to pave the
way for computer-aided pathological image analysis in breast
cancer. There is no similar work on ER-IHC from other
authors in the literature, and no standard or public dataset is
available for ER-IHC baseline or benchmarking. We recently
published the initial work done on the Allred scoring for ER-
IHC in [32], introducing the proof of concept for hormone
receptor status in WSIs. In this work, a different approach
was applied where a well-known StarDIST object detection
method [33] is utilized for nuclei segmentation, obtained
using Cytomine platform [34]. StarDIST was trained using
H&E stained images but seemed to produce decent results
with other stains. The nuclei were then classified into four
classes using several DL approaches based on the DenseNet
model with the aim of getting the highest scoring concor-
dance with the pathologists at the whole slide level. DenseNet
is chosen for its outstanding performance in classifying ER-
IHC nuclei in our earlier work [35]. The main contribution of
this paper is listed below:

1) Exhaustive ground truth (GT) generation for ER-IHC
on the whole slide level and the cellular level. Our
collaborating pathologists helped on identifying the
whole slide regions for scoring; validating the seg-
mented and classified nuclei to further train our DL
models; and providing concordance validation on the
3k nuclei dataset.

2) Modified trimmed and lightweight DenseNet config-
uration with only 21 dense layers with a reduction
of 97.5% model size, faster computation and
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FIGURE 2. General process flow of the methodology. The focus of this
paper is highlighted in the blue boxes.

better concordance with the pathologists’ manual
interpretation.

3) Modified positive-negative nuclei classification to first
filter out negative nuclei of ER-IHC for better separa-
tion of the two classes before further classifying them
into weak, moderate and strong classes using the DL
model.

4) Comprehensive comparative evaluation on the DL
models where seven different configurations are exper-
imented in six tests, to find the highest concordance
with the pathologists manual evaluation. We dive into
details on why the models misclassified some of the
nuclei, which are elaborated in separate sections for
each test in Section IV.

5) All underlying issues related to the proposed nuclei
classification for ER-IHC are highlighted in a section
before concluding this article, together with some
potential improvements.

III. METHODOLOGY
There are five general steps in the methodology of this article,
as illustrated briefly in Fig. 2. Main contributions are high-
lighted in the blue boxes: the GT preparation and different
setup of DL environment for the nuclei classification process.

A. IMAGE DATASET
Our image database consists of a total of 44 ER-IHC
stained WSIs of invasive breast carcinoma provided by our
collaborating hospital, Universiti Malaya Medical Center.
TheWSIs were scanned using 3DHistech Pannoramic DESK
at 20× magnification with an approximate dimension of
80,000 pixels width and 200,000 pixels height per WSI.
These 44 WSIs comprise an initial cohort of 40 which
had Allred scoring by the collaborating pathologists with a
breakdown of 17 ER-negative and 23 ER-positive. Of these
40 WSIs, 37 had region annotation by the pathologists (as
in Fig. 3). The remaining 4 of the 44 WSIs (subsequently

added) were not annotated and did not have manual Allred
scoring. The WSI dataset used in this research is available
at the IEEE Dataport https://dx.doi.org/10.21227/9gbq-gz50.
The usage is allowed only for scientific research and must be
cited with ethical attribution to this article.

B. GT PREPARATION AND ROI-WSI IDENTIFICATION
For GT preparation, there are three separate processes: one
for Allred scoring of WSIs, and another two for nuclei clas-
sification of negative, weak, moderate and strong (NWMS)
classes. The details for these steps are explained below.

1) GT FOR ALLRED SCORING
1) Only 37 WSIs are evaluated
2) Our pathologists identified useful large ROIs for each

WSI (example in Fig. 3) and manually delineated the
regions. These regions will be referred to as ROI-WSI.

3) Single scoring will be given per WSI based on the
ROIs. The GT has 37 Allred score for 37 WSIs.

2) GT FOR NUCLEI CLASSIFICATION
1) 37 regions

a) The pathologists identified one small patch per
WSI, of size around 500 by 500 pixels. 37 patches
are identified, one each from the 37 WSIs.

b) The patches underwent nuclei segmentation using
Stardist object detectionmethod [33] in Cytomine
platform [34]. Stardist was trained using H&E
stained images, but seemed to produce decent
results with other stains, and can be applied for
IHC stains.

c) A total of 3333 nuclei were segmented and man-
ually classified into the four classes by two junior
pathologists for concordance comparison. After
the classification, there are 233 nuclei with class
disagreement, and their class was then determined
by a senior pathologist (with >35 years of expe-
rience in breast cancer pathology diagnostics).
As a final result, 2428 nuclei are classified as
negative, 135 are positive-weak, 367 are positive-
moderate, 249 are positive-strong and 154 are not
classified due to incomplete or inaccurate seg-
mentation, yielding 3179 validated nuclei dataset.
This dataset will be called as 3k dataset for the rest
of this article.

2) 220 regions
a) The pathologists identified five small patches

per WSI, of size around 500 by 500 pixels.
220 patches are identified from the 44 WSIs.

b) These patches will undergo similar processes
as the 37 patches, segmentation of nuclei using
Stardist in Cytomine for all 220 patches.

c) The segmented nuclei are pre-classified into
four different classes (negative, weak, moder-
ate and strong) using DenseNet-201, which was
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preliminarily trained with the GT nuclei from the
3k dataset.

d) Two pathologists were involved in validating the
detection and segmentation of the nuclei, by
accepting the correctly segmented nuclei, cor-
recting the under- or over-segmented nuclei,
and manually adding the delineation of miss-
ing nuclei. They also validated the pre-classified
nuclei, by accepting the correctly classified
nuclei, correcting the wrongly classified nuclei,
and adding the class of the missing nuclei. The
validation process of both segmentation and clas-
sification was done simultaneously, patch by
patch. It was done by two pathologists, with
110 patches for each of them. The resulting num-
ber of validated nuclei was 22431 (16209 nega-
tive, 1391 weak, 3078moderate and 1753 strong).
This dataset will be called as 22k dataset for the
remainder of this article.

The overall process flow of the GT generation is shown in
Fig. 4 with three main components: WSI database, scoring
GT generation and class GT generation. Since the initial
scoring and classification were done based on the 37 WSIs,
the related process is highlighted using blue texts, boxes
and arrows for distinction. It is noticeable that both 3k and
22k datasets are imbalanced, and can be addressed by using
either data augmentation, generative adversarial network,
or hyperparameter tuning. In this experiment, we used data
augmentation from Albumentations [36] image transforma-
tions, based on vertical and horizontal flip, shifting hue,
saturation and value limits, rotation and random size crop.

C. NUCLEI SEGMENTATION FROM ROI-WSI
The identified large region from the WSIs (ROI-WSI) for
the GT Allred scoring was extracted from the WSI for cel-
lular level analysis, i.e.: nuclei detection and segmentation.
There were a total of 359 ROI-WSI extracted from the WSIs,
from one up to 26 large regions per WSI. The size of
ROI-WSI was very big, ranging from 6,227 to 28 million
micron2 (480 by 642 to 10,000 by 8,543 pixels) contain-
ing hundreds of thousands of nuclei. Each WSI had more
than one ROI-WSI, with the total area listed in Table 1
together with the total of segmented nuclei in each image.
The process had taken place in September 2021, and was
also done using the Stardist object detection method [33]
in Cytomine platform [34] (S_CellDetect_Stardist_HE_ROI
v1.0.4) based on ‘‘ROI-WSI’’ term. This particular version
of the Stardist detection algorithm used during the experi-
ment had the limitation of processing only up to 5,000 by
5,000 pixels, hence the large ROI-WSI is divided into smaller
regions with a maximum of 2,048 pixels sides, as illus-
trated in Fig. 5. The code for this operation can be found in
https://github.com/mizjaggy18/S_ROI_splitpoly. Processing
smaller regions at a time is also computationally efficient
because only a smaller space will be allocated rather than
having to allocate one large space or memory for one large

TABLE 1. List of images with their respected total ROI-WSI area in
micron2, number of ROI-2048 blocks and total number of segmented
nuclei. This table is sorted in ascending order according to the total
ROI-WSI area.

region. The total number of segmented nuclei was 2,878,290,
with an average time taken of 0.06s per nucleus without GPU
setting. The total time taken was 172,697.4s (47.9715 hours).
The computational time can be reduced with GPU runtime
but the setup had not taken place during this experiment.

D. NUCLEI CLASSIFICATION
The nuclei classification process is crucial to determine the
scoring of the ER-IHC biomarker. The score expressed by the
cancer informs the decision on whether hormonal treatment
is suitable for the patient. The pathologists have furnished us
with the GT Allred scoring per WSI, based on the identified
regions. From the regions, every single nucleus is extracted
and classified according to the four NWMS classes. The
count of the resulting classes will determine the final intensity
and proportion scores, which in combination will yield the
Allred score. In order to match the pathologists’ scoring and
to obtain reasonable computational time, we tested several
DL setups for the classification and scoring performance
of breast carcinoma on ER-IHC WSIs. The approaches are
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FIGURE 3. WSI with the annotated large regions by the pathologist. The regions are referred as ROI-WSI.

listed in Fig. 2 and all the models involved in the experi-
ments are summarized in Table 2. All DL models are trained
from scratch without pre-trained weight with data augmenta-
tions from Albumentations [36] using 100 epochs with batch
size 16.

1) TensorFlow VS PyTorch
These two frameworks were evaluated in terms of scoring
accuracy and computational time. The DL model used for
the nuclei classification was DenseNet-201, based on its
outstanding performance in our previous study on pancreatic
cancer of pathological images [37]. We also compared 32 DL
models for ER-IHC nuclei classification done in [35], where
DenseNet-169 gave the best performance but with a verymin-
imal difference from DenseNet-201. The confusion matrix of
DenseNet-201 showed more balanced results than DenseNet-
169, especially on the Strong and Weak classes. Hence
DenseNet-201 is chosen for this exhaustive experiment. The
scoring is highly dependent on the nuclei segmentation and
classification process.

2) DenseNet-201 VS DenseNet-21
DenseNet architecture is known for its high training time and
large model size. Hence, we trimmed the dense layers by
limiting the convolutional layers with only block configu-
rations of (2,2,2,2) yielding 21 layers altogether, instead of
(6,12,48,32) for DenseNet-201. This configuration is faster

because the convolutions are repeated only twice for each
dense block, as opposed to 6, 12, 48 and 32 respectively
for DenseNet-201. This is followed by evaluating the effect
of the lighter dense layers using DenseNet-21. Reducing
the model’s layer will also reduce the model size by 97.5%
(5MB vs 200MB), hence a reduction in parameters and time
complexity as well. The impact of the lightweight model will
be evaluated against the scoring.

3) 3k DATASET VS 22k DATASET
The best performing DenseNet model (201 vs 21) will be
retrained using a higher number of nuclei images, the 22k
dataset. The performance of the two models (the one trained
using the default 3k dataset against the 22k dataset) will be
evaluated. This test is important to see the effect of getting
pathologists’ concordance on the validation, compared to
single pathologist validation.

4) INPUT NUCLEUS IMAGE (CROP VS ALPHA)
After the nuclei segmentation process in section III-C, there
is an option to take the output image as crop or alpha. For
the default setups, the crop-nucleus input image is used for
model training and classification. The difference between
these two is clearly shown in Fig. 6. The crop-nucleus
will be the nucleus cropped around its bounding box, and
the alpha-nucleus will only be the nucleus itself with the
exact boundary and the background will be set to alpha
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FIGURE 4. Process flow for GT generation: from WSI database to whole
slide scoring and nuclei classes, provided by the collaborating
pathologists.

(transparent). The alpha image will have 4 channels (RGBA),
instead of only RGB. This setup was carried out on the 22k
dataset, where the DL model was trained using alpha-nuclei
images, and compared with a model trained using crop-nuclei
images in the 3k vs 22k dataset setup.

5) PN CLASSIFICATION (WITH VS WITHOUT)
Positive-Negative (PN) classification was proposed in our
previous work [38] for p53 expression. The same idea is used
for ER expression, as shown in Fig. 7, whichwill be explained
in the following subsection. In this setup, we filtered out
negative nuclei using the PN classification algorithm, and
only the remaining nuclei were classified using the best
DenseNet model. The classes will still be NWMS, where the
PN algorithm will act as a first filter, and DenseNet classi-
fication as a second filter. This approach is called a hybrid
approach, and is expected to produce lesser false positive
classification involving negative- and weak-class nuclei.

E. POSITIVE-NEGATIVE (PN) CLASSIFICATION
For the last setup of the nuclei classification experiment,
we filtered out negative nuclei using the PN classification
algorithm, before performing DenseNet classification at the
positive output. Even though the PN algorithm has filtered out
the negative nuclei, there were still negative nuclei remaining
in the positive class, having dark and intense blue color, which
cannot be filtered out with simple threshold filtering. Hence
DenseNet classification will still categorize the nuclei into
the four classes. The process flow is shown in Fig. 7, where

FIGURE 5. Division of large ROI-WSI into smaller regions with a
maximum of 2048 pixels sides. The division will minimize the resources
used by the algorithm compared to running on large ROI-WSI.

TABLE 2. Summary of the models for nuclei classification.

FIGURE 6. Input nucleus image: crop vs alpha. For crop image, an exact
bounding box of the detected nucleus boundary is taken; while for alpha
image, the exact detected nucleus boundary is used, and the outside
boundary area will be transparent, using an additional alpha color
channel.

FIGURE 7. Process flow of obtaining PN classification, followed by
DenseNet classification (negative, weak, moderate, strong) at the positive
output. Examples of nucleus images are shown for each step.

the blue highlighted box showed the differences between this
approach on ER expression compared to the p53 expres-
sion, as proposed in [38]. Since the nucleus (I) size varies,
we take the smallest side of the nucleus bounding box, either
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Ir or Ic, to crop it as a square block. Then, the nucleus
block will be converted to HSV (Hue-Saturation-Value) color
space. Weighted values of Hue and Value will be calcu-
lated using the reciprocal of Euclidean’s distance, against
the block’s centroid; the closer the pixels are to the cen-
troid, the higher the weighted values. IHC stain produced a
brownish color nucleus in response to ER-positive expres-
sion, and blueish for ER-negative. Here, two filters with
different threshold values are applied to separate the positive
and negative nuclei, according to their wH and wV values.

F. WSI SCORING
The Allred scoring for ER-IHC is determined by combining
the intensity score and the proportion score of the regions
identified by the pathologists. From the classified nuclei, the
positive portion will contribute to the scoring. The percentage
of positive nuclei over the total of whole detected nuclei
will determine the proportion score, and the highest class of
positive nuclei (either weak, moderate or strong) will deter-
mine the intensity score. For example, a WSI with regions
containing a total of 8979 nuclei (from Fig. 3 regions), and the
classifications are 2113 negative, 194 weak, 6088 moderate
and 584 strong, with total positive nuclei is 6866 (76.47%).
By referring to the standard ER status evaluation, as listed
in Table 3, the proportion score is 5, and the highest positive
class is moderate, where the equivalent intensity score is 2.
From here, the Allred score is the summation of both scores,
which equals 7. The scores for the hormonal treatment for
ER-IHC are categorized into two groups. Allred scores of
0 and 2 are considered negative and not actionable for hor-
monal treatment, while scores of 3 to 8 are considered positive
and recommended for hormonal therapy. A score of 1 is not a
possible outcome because a proportion score of 0 means there
are no positive nuclei (i.e. the intensity score will be 0); and
a proportion score of 1 means there are some positive nuclei
and the intensity score must be at least 1.

In manual practice, the evaluation is done by the patholo-
gists based on manual counting and estimation, and the speed
is depending on their level of confidence. Expert pathologists
can perform the evaluation in less than a minute per WSI. For
a computer algorithm, it has to go through nuclei detection
and segmentation, classification and lastly scoring, involving
every single nuclei. The computational time can be very
extensive depending on the region size, but computer-aided
evaluation allows the pathologists to attend to more urgent
diagnostic aspects of work than tedious manual counting.

G. EVALUATION METHOD
All the different approaches proposed in Section III-D will be
evaluated based on the final Allred score and computational
time for eachWSI. The score will be compared with the man-
ual GT score provided by the pathologists. The best approach
is one with the most agreement with GT scores and is less
computationally expensive. There will be six comparison
experiments of the exhaustive cellular level analysis for the
37 WSIs, summarized in Table 4. For each analysis, only

TABLE 3. Allred score for Estrogen and Progesterone receptor evaluation.
Allred score = Proportion score + Intensity score.

TABLE 4. Summary of proposed approaches for evaluation. The six tests
are from seven different model configurations in terms of framework,
dense layer, dataset and input nucleus, as listed in Table 2.

one setting is changed (with emphasized font), to observe
the effect of each tested parameter, namely the number of
dense layers, framework, dataset for model training, and input
nucleus image. It is known that DL models perform differ-
ently with different applications and types of images. While
the evaluation of this ‘‘grid search’’ method is exhaustive, the
analysis takes every possible parameter to find the best model
to get the highest scoring concordance with the pathologists
at the whole slide level for ER-IHC stain.

IV. RESULTS AND DISCUSSIONS
The ROI-WSI for each WSI underwent nuclei detection,
segmentation, and classification to obtain the Allred score.
Detection and segmentation tasks were done only once, and
the classification experiment was repeated comprehensively
with different settings for Test 1 to Test 6, with parameters
as described in Table 4. The resulting Allred score for every
37 WSIs of all settings is listed in Table 5, with the GT
scores manually estimated by the pathologists. The table is
sorted according to the manual GT scores, from 0 to 8. Out of
37WSIs, 17 of them are considered negative (scores 0 and 2),
and the other 20 are considered positive (scores 3 to 8). The
comparison of Allred score was evaluated on the exact agree-
ment with the pathologist’s scores, and also on the clinical
utility of suggestion for hormonal treatment. The WSI scores
for the latter were marked with an asterisk (*), and the total
agreement for both comparisons is summed up at the bottom
of the table.

A. TEST 1: TensorFlow VS PyTorch USING DenseNet201
(TF-DN201 VS PT-DN201)
The first test was to investigate two main DL frame-
works: TensorFlow and PyTorch, using the same model,
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TABLE 5. Allred score for 37 WSIs comparative to the manual GT score done by the pathologists, sorted according to the GT score.

DenseNet201. Both scoring results show that TensorFlow
and PyTorch are able to get 17 out of 37 WSIs exact same
score as the GT. Even though the total agreement is the
same, the individual WSI scores for both models vary from
one another. We can see that there is no concordance for
the first four WSIs with a GT score of 0 for all models.
This is due to inaccurate segmentation (segmenting other
than nuclei) and also sensitive classification by the model.
The GT scores were prepared by the pathologists by manual
estimation based on their experience and expertise, whereas
classification by computer was according to the learnt model,
nucleus per nucleus. None of the nuclei were neglected unless
it was missed out during the segmentation. A single nucleus
classified as positive-weak will result in a proportion score
of 1 and an intensity score of 1, which translates to an Allred
score of 2. Some of the examples of these segmentation and

classification issues will be discussed further at the end of this
section.

Other than WSIs with GT 0, the difference in score results
by these two models can be seen in images 24, 35 and 37;
one score concordance for each TensorFlow (image 35) and
PyTorch (image 24) model. Detailed comparisons of these
images are shown in Table 6 together with the subsequent
tests. Concordance scores or closest to the GT are marked
with an asterisk in the column ‘‘Allred Score’’. For image
24, the PyTorch model is better in differentiating negative
(Class 0) and positive-weak (Class 1) nuclei by more than
6000 nuclei, with a total of +7.3% more positive nuclei in
the TensorFlow model. For images 35 and 37, TensorFlow
is better in differentiating positive-moderate (Class 2) and
positive-strong (Class 3), where the difference is on the inten-
sity score, with similar ER status proportion. By looking at
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their agreement on hormonal treatment with GT, 25 WSIs
from the TensorFlow model have the same suggestions as
the GT, and 26 WSIs for PyTorch. We have to stress here
that accuracy on the agreement for treatment is far more
important than the exact score itself because the decision will
determinewhether the patient should undergo hormonal treat-
ment or not. Since the PyTorch model had more treatment
concordance, we proceeded with PyTorch for the following
experiments, first on lighter-weight DenseNet.

B. TEST 2: DenseNet201 VS DenseNet21 USING PyTorch
(PT-DN201 VS PT-DN21)
This experiment will compare the performance of the previ-
ous model (PT-DN201) with a lighter DenseNet, with only
21 layers instead of 201, using the same PyTorch framework.
Surprisingly the lightweight model performed better with
more concordance with GT on both the Allred score and
hormonal treatment (18 and 27 correspondingly). For most of
theWSIs, theAllred scores were exactly the same as the heav-
ier model, except it produced better results on image 11which
concordance with the GT score. The difference can be seen
in Table 6 where the positive proportion is only +0.189%
for the heavier model but gives a different proportion score.
Meanwhile for image 3, even though scores from the DN201
model are not a concordance, the difference with GT is lesser
than scores from DN21.

Upon checking the detailed result, out of 171153 nuclei in
the ROI-WSIs for image 3, DN201 classified them as 170404,
11, 2 and 736 for each NWMS class, which contribute to
0.438% positive nuclei, with proportion and intensity scores
of 1 and 3 respectively. For DN21, the NWMS classifications
are 165254, 751, 0 and 5148 accordingly, with 3.447% pos-
itive and 2+3 for proportion+intensity scores. While we do
not have a GT breakdown for each class, since the GT Allred
score for this class is 0, DN21 clearly misclassified many
nuclei as positive-strong. The reason is some parts of the
nuclei are having intense dark blue stains, which the model
confused with the positive-strong nuclei. DN201 has extra
180 dense layers to learn more about the features, hence it
is able to learn the different nuclei characteristics better.

C. TEST 3: PyTorch DenseNet21 USING 3k VS 22k
DATASET (PT-DN21 VS PT-22k-DN21-CROP)
We have seen slight improvement by reducing the DenseNet
layer from 201 to 21 in Test 2. In this Test 3, the DN21 model
is trained using a 22k dataset, as explained in section III-B
b. (ii) iv. We expect more concordance on both exact scores
and hormonal treatment, but the results show otherwise. The
model trained with the 22k dataset obtained 15 and 26 respec-
tively for concordance on scoring and hormonal treatment,
whereas the 3k model achieved 18 and 27 correspondingly.
On closer comparison, the 3k model is better for six images,
with five concordances on both score and treatment (images
11, 20, 24, 29 and 32) and one on treatment only (image 1).
For the 22k model, there are three images which performed
better than the 3k model, namely images 28, 35 and 37, with

the first two being concordance on both score and treatment
and the last one only on treatment. Detailed comparisons for
these images are tabulated in Table 6. For images with low ER
status, the 3k model is better because it is able to differenti-
ate the negative and positive-weak nuclei much better than
the 22k model, producing lower positive nuclei proportion.
While for images with higher ER status, the main difference
between the two models is their bias on the positive-moderate
class (3k model) and positive-strong class (22k model).

Images 3, 4, 7, 8, 9, 13, 16, 17 and 27 remain as
non-concordance issues for all tests so far. Image 28 previ-
ously was non-concordance for all other models, but the 22k
model now can successfully get the concordance score. Out
of 101619 nuclei in the ROI-WSIs, the positive proportion by
the 22k model is 1111, 115 and 50 for weak, moderate and
strong classes, while the 3k model gets 605, 32 and 26, which
contribute to proportion scores of 2 (1.256%) and 1 (0.652%)
for each 22k and 3k models. The difference is very small but
gives different proportion scores.

D. TEST 4: PyTorch DenseNet21 USING 22k DATASET
USING INPUT IMAGE CROP VS ALPHA
(PT-22k-DN21-CROP VS PT-22k-DN21-ALPHA)
This test will compare if there is any difference using the
crop or alpha input nucleus, as explained in Section III-D-d.
The difference between the two can be clearly seen in Fig. 6,
and we are expecting some improvements using the alpha
input because it takes the exact nucleus area without the sur-
rounding pixels. The classification results somehow turned
out to be exactly the same for both, class per class, hence it
shows that limiting the nucleus area without its surrounding
pixels did not affect the model’s learning process. We did not
dive into details, for example comparing nucleus per nucleus,
because the aim is to get the best model for WSIs scoring.
Both models obtained a total of 15 concordances for the score
and 26 for hormonal treatment. Since these two models gave
less concordance as compared to PT-DN21 in Test 3, the next
test will take the PT-DN21 model for comparison.

E. TEST 5: PyTorch DenseNet21 NON-HYBRID VS HYBRID
WITH PN CLASSIFICATION (PT-DN21 VS PN+PT DN21)
This test will take a hybrid setup considering positive and
negative nuclei classification using procedures explained in
Section III-Ewith a combination of the PT-DN21model, to be
compared with the non-hybrid PT-DN21 model. This hybrid
model gave the most favorable results as compared to the rest
of the five models so far. The concordance for Allred score
is 21 and for hormonal treatment is 30. The improvements
for both concordances are +8% when measured with the non-
hybrid model, which can be observed in images 8, 13 and 16.
For these three images, all other models gave false positive
results with a score of 3 which is positive and recommended
for hormonal therapy, while the patients’ GTs indicate their
ER status is negative and not actionable.

Upon closer inspection in Table 6, the significant dif-
ference given by the hybrid model is in its ability in
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differentiating negative and positive-weak nuclei for these
three cases. Previously we observed the non-hybrid model is
better in this type of classification in Test 3 when compared
to the non-hybrid 22k model, and a combination with PN
classification further improves it. For the non-hybrid model,
total nuclei for the positive-weak class are 1313, 652 and
817 for each image 8, 13 and 16, whichmake the total positive
percentage of 1.122%, 1.009% and 1.112%. To get an Allred
score of 2, the proportion score has to be 1, where the ER
status has to be less than 1% of positive nuclei. The hybrid
model is able to achieve this, with the total positive-weak
nuclei of 924, 592 and 601, and ER status of positive nuclei of
0.791%, 0.923% and 0.822% for each of the three cases. The
small differences make significant changes to the proportion
score due to the strict negative ER status range (less than 1%)
which minimized the false positive prediction.

In Test 3, we listed the nine non-concordance images
where all tested models failed to get the correct score or hor-
monal treatment. In this test, the scores of the aforementioned
images (images 8, 13 and 16) have successfully achieved GT
concordance but an issue remains for image 28 in addition
to the other six non-concordance images (images 3, 4, 7, 9,
17 and 27). These images will be further analyzed later in this
section.

F. TEST 6: PyTorch DenseNet21 HYBRID WITH PN
CLASSIFICATION USING 3k VS 22k DATASET
(PN+PT DN21 VS PN+PT-22k DN21)
In Test 3 and Test 4, we observed there is nothing much
to promise by the 22k model, apart from the concordance
for image 28. This test is to see whether or not a hybrid
of PN classification is able to improve the 22k model to
supersede the PN+PT DN21 model. By looking at the score
concordance, it is clearly not with the 14-Allred score and
23-hormonal treatment concordances. The difference is too
much that it seems unfair to compare these two hybrid mod-
els, so we deemed it fit to make a comparison with its
non-hybrid model instead. The hybrid model is better for
images 20 and 29 in getting the exact concordance for the
Allred score, even though both have the same agreement on
the hormonal treatment.

However, the opposite happened for images 5 and 10,
where the hybrid of 22k model produced the worst scores,
with Allred score of 4 for both images, while all other
models are not having any issues getting the concordance
for the exact score and hormonal treatment (Allred score
of 2). When checking the detailed classification scores for
each class, we found the cause of this issue, as tabulated
in Table 6. For image 5 particularly, the positive classes
for the non-hybrid model are 5, 1 and 5 for each WMS,
and 4, 1 and 5 for the hybrid model. The algorithm decides
that the highest intensity score for the non-hybrid model is
weak (class 1), and strong (class 3) for the hybrid model,
even though their difference is only one nuclei in class 1.
We looked into the classified nuclei, as shown in Figure 8,
and the positive-strong class were mixed of artefacts and

FIGURE 8. Classification results for positive classes of weak, moderate
and strong nuclei for image 5 using non-hybrid PT-22k DN21. The first
three cells in the positive-strong class are actually artefacts, wrongly
segmented as nuclei. The remaining 2 nuclei.

misclassified nuclei. Better classification can be obtained
after addressing artefact segmentation.

For image 10, the hybrid model is clearly better in sepa-
rating the negative and positive-weak nuclei with only a total
of 330 positive proportions as compared to the non-hybrid
model (506 positive nuclei). However, the intensity of the ER
status for the hybrid model is biased towards class 3 (positive-
strong) even though the number is lesser than the non-hybrid
model, due to a much lesser nuclei in class 1 (positive-weak).

G. TIME COMPLEXITY
In the previous subsections, we compared the performance
of each model in terms of their concordance of scores and
hormonal treatment suggestions with the GT. The compar-
ison is purely on the scoring accuracy without taking the
time complexity into consideration, which will be elaborated
in this section. Our system uses the 6th generation Intel®

Core™ i7-6700K at 4.00GHz with 4 cores and 8 threads CPU,
GeForce GTX 1060 6GB GPU and 64GB memory. It is
running on Ubuntu 18.04 with CUDA 11.4.

From the distribution plot in Figure 9, we can see that the
longest time taken is when executing the TensorFlow DN201
model. The average time taken per WSI is approximately
3.6 hours (0.16s per nucleus), as compared to the PyTorch
DN201 model, 2.4 hours (0.1s per nucleus). Apart from the
good score performance of PyTorch, its time complexity is
also much lower, which is in our favor. For the three subse-
quent PyTorch DN21 models (3k model, 22k-crop model and
22k-alpha model), the time taken is even much lower: 1.72,
1.85 and 1.76 hours respectively per WSI, and an average of
0.07s per nucleus for all models. Since the size and weight
of these lighter models are lesser than DN201, is it expected
to compute in lesser time, but the fact that it produced better
score performance than the heavier model is a new finding for
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TABLE 6. Detailed comparison for selected images for each test set.

this ER-IHC-stained WSI. For the two hybrid models com-
binedwith PN classification, both have similar computational
times, 2.76 hours for the hybrid 3kmodel (PN+PTDN21) and
2.77 hours for the hybrid 22k model (PN+PT-22k DN21) per
WSI, with 0.11s and 0.12s per nucleus respectively.

From Table 5, the second top-performing model is the
non-hybrid of PT-DN21 with 1.72 hours per WSI and 0.07s
per nucleus, which is one hour less than the hybrid model per
WSI. However, this system can be left overnight or for a few
days for the experts to attend to other important issues and
come back to the systemwhen it has completed the analysis to
validate it. Both score and time are important but at this stage,
we will take the highest-performing model to be considered
the best configuration.

H. ISSUES AND RECOMMENDATIONS
There are two main issues which have been identified
throughout this experiment and these will be discussed in

detail here. The first issue is the non-concordance of image
results’, and the second issue is inaccurate segmentation,
which can be divided into non-nuclei segmentation and over-
sensitive segmentation.

1) NON-CONCORDANCE IMAGES
In Test 5 (Section IV-E), we listed out seven images that
remain non-concordance for the rest of the tests, including
image 28 for not being concordance for the best performing
model (PN+PT DN21). In this section, we will look into
the images at the cellular level to analyse them in detail
as to why the models could not achieve concordance. The
images are images 3, 4, 7, 9, 17, 27 and 28. Only part of
the ROI-WSI will be captured as examples, together with the
classified nuclei which are overlayed with colors according
to the classes (blue: negative, yellow: positive-weak, orange:
positive-moderate, red: positive-strong). These images have
similar scores for all models, and the classified nuclei in
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FIGURE 9. Distribution of time complexity in second (s) for all models in
classifying the nuclei (top) per WSI; (bottom) per nuclei. Non-hybrid DN21
models show the lowest computational time, due to the lower number of
dense layers and parameters.

the examples in Figure 10, 11 and 13 are captured from all
models. For images 3 and 4, both have GT scores of 0, but
the models gave scores of 4 or 5 for image 3, and 3 or 4 for
image 4. Examples of part of the ROI-WSIs for these images
are shown in Figure 10, (a) and (b) for image 3, and (c) and
(d) for image 4. On looking at image 3, human eyes can
clearly identify the nuclei as negative with unambiguous blue
staining of various shades, from deep dark blue to the lightest
blue. However, the models mistakenly classified many of
the nuclei to the positive-strong class, specifically the deep
dark blue color, as it might be confused with the dark brown
nuclei.

For image 4, the WSI is visually having lightly brown
staining, and similar-looking cells were confused with the
positive-weak nuclei. The high Allred scores obtained by
all models were due to the high positive nuclei propor-
tion caused by the positive-weak nuclei, ranging from 5%
to 13%, resulting in proportion scores of 2 to 3. This
may be a situation where background staining of the cell
cytoplasm may artefactually give a brownish hue over the
nucleus. Cytoplasmic staining is not accepted in ER staining
assessment.

For images 7, 9 and 17, the GT Allred scores for all
were 2, but were wrongly scored by all models as 3, 5 and
4 respectively. In Figure 11, examples of ROIs from images
7 and 9 are shown. We can see that the cause leading to
misclassification is similar for these images, where there
are many brown-looking cells classified as positive nuclei,
some are weak, moderate or strong, but many are classified
as positive-weak. These are actually non-cancerous stroma
cells which are in the connective tissue that provides the
background on which the cancer cells grow. For image 17,
we take the wrongly classified cells from the best model,
a hybrid of PN classification with PT DN21 model, to be
analyzed, as shown in Figure 12. There are a total of 29 pos-
itive nuclei, 10 are positive-weak and 19 are positive-strong.

FIGURE 10. Example of misclassification in (a) and (b) Image 3
(4305367); and (c) and (d) Image 4 (4305305) which led to wrong scores.
(a) and (c) are part of the ROI-WSI; (b) and (d) with the classified nuclei.
For image 3, the dark blue nuclei confused the model as positive-strong
nuclei (dark brown); and for image 4, the model detected the light brown
nuclei as a positive-weak class.

These gave an Allred score of 4, with a proportion score
of 1 and an intensity score of 3. However, looking at the
classified nuclei, they are not nuclei, but instead other arte-
facts in the image, just like some of the positive-strong
nuclei in image 5 shown in Figure 8. The sizes are very
small, with the area ranging from 2 to 46 micron2. A typical
diameter of the cancer nucleus would be 12 to 18 microns.
Taking the smallest diameter and assuming an ellipse with
12 microns semi-major axis and 6 microns semi-minor axis,
an area of 56.5 micron2 is obtained. It is safe to assume a
complete nucleus should be at least of this size. This type
of misclassification perhaps can be mitigated or avoided by
introducing another class, such as a non-nuclei class, to get
cleaner results. On the other hand, another cause that con-
tributes to this issue comes from inaccurate segmentation,
where other than nuclei are segmented, such as stroma cells or
artefacts.

Images 27 and 28, both have GT Allred scores of 3,
but were wrongly scored as 2 for all models, except the
non-hybrid 22k model obtained the correct score only for
image 28. Part of the ROI-WSI for these images is shown
in Figure 13, where we can see that image 27 visually looks
negative ER staining. Upon review with the pathologists,
image 28 clearly has some brownish-colored nuclei classi-
fiable as positive-weak to positive-moderate, but many of
these were missed by the models, except for the non-hybrid
22k model. The best model (PN+PT DN21) only detected
529 (0.521%) positive nuclei with 476, 32 and 21 for each
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FIGURE 11. Example of misclassification in (a) and (b) Image 7
(4305459); and (c) and (d) Image 9 (4305441) which leads to wrong
scores. (a) and (c) are part of the ROI-WSI; (b) and (d) with the classified
nuclei. There are many of the nuclei classified as positive-weak and
positive-moderate. These are actually non-cancerous stromal cells.

FIGURE 12. Wrongly classified cells as nuclei positive-weak and
positive-strong in image 17 (4305267) which lead to an Allred score of 4.
Most of these are actually artefacts, wrongly segmented as nuclei. This
result is from the best model (PN+PT DN21) with the lowest classified
positive proportion for this WSI.

WMS nuclei. For the non-hybrid 22k model, the total posi-
tively classified nuclei are 1276 (1.256%) with a breakdown
of 1111, 115 and 50 for the WMS. When looking closely
at the classified nuclei, the weak classified nuclei have a
bluish and brownish hue, which might have confused the
model, as shown in Figure 14. Referring to Figure 1, these

FIGURE 13. Example of misclassification in (a) and (b) Image 27
(4305379), and (c) and (d) Image 28 (4305285) with GT Allred score 3
which leads to wrong scores. (a) and (c) are part of the ROI-WSI; (b) and
(d) with the classified nuclei. For image 27, although the nuclei visually
look negative, on quick scanning, there are isolated positive-staining
nuclei outside the main tumor cluster (see circle). For image 28, some of
the nuclei are clearly positive-weak to positive-moderate in staining, but
many were missed by the models.

FIGURE 14. Examples of nuclei classified as positive-weak for Image 28,
with bluish and brownish hue, looking like the third last nucleus in Fig. 1
of negative class for 22k validated dataset.

positive-weak nuclei look more like the third last nucleus in
the negative class of the 22k validated dataset. This explained
why PN classification did not perform well for this image,
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FIGURE 15. Image 1 (4305349) (a) and (c): part of the ROI-WSI;
(b) and (d): with the classified nuclei. Example of segmentation and
misclassification in Image 1 for other than nuclei. The stained nucleus in
(a) and (b) is a dying one in pyknosis with non-specific condensation of
stains with the nuclear material. For (c) and (d), the stained nucleus is in
early mitosis (prophase), and also shows non-specific condensation of
stains with the chromosomes. These should not be counted for ER
staining assessment.

because the bluish hue nuclei have been filtered out during
the weighted hue threshold.

2) INACCURATE SEGMENTATION (SEGMENTING OTHER
THAN NUCLEI)
Another issue that led to the misclassification of the nuclei
was inaccurate segmentation, where many non-tumor-nuclei,
nuclei in mitosis or artefacts were segmented and wrongly
classified as one of the four classes. Some examples are
shown in Figure 12, Figure 14 (second row, last image) and
Figure 15. A more serious issue was identified in image 1,
as shown in Figure 16. From the ROI-WSI region, the left
side (light brown part) is actually a necrotic region where the
tumor cells have died and nuclei have disintegrated but the
Stardist segmentation algorithm detected the area as contain-
ing nuclei, and following this was the wrong classification as
positive-weak nuclei. We refer to this issue as ‘‘oversensitive
segmentation’’.We have identified two possible ways to over-
come this issue. The first one is to train Stardist using IHC
dataset, preferably ER biomarker. The current Stardist model
used for segmentation was trained using H&E stain, but
seems to work well even with IHC. Training the model with
ER-IHC stain will further increase segmentation performance
and eliminate this issue. The second way is to introduce a
non-nuclei class, in addition to the NWMS classes. This class

FIGURE 16. Example of inaccurate segmentation in Image 1, showing the
ROI-WSI area that has no intact nuclei on the left side (necrotic area), but
has many segmented nuclei and was classified as positive-weak.

will take all non-nuclear particles or artefacts like the ones in
Figure 12 into its class.

V. CONCLUSION
This paper provides a critical analysis of WSI scoring for
ER-IHC stained pathological images, using several config-
urations of DenseNet architecture for nuclei classification.
There are six tests altogether, with each test having only one
change in the setting. We also introduced a modified PN clas-
sification to separate positive and negative nuclei in the first
phase. The positive nuclei will be further classified into neg-
ative, positive-weak, positive-moderate and positive-strong
using the DenseNet model to avoid any missed classification
during the PN algorithm stage. The six tests were compared
comprehensively, with the best concordance achieved by a
hybrid model of PN with DenseNet of 21 layers. Out of
37 WSIs, 21 of them obtained concordance on the Allred
score, and 30 of them are concordance with the suggested
hormonal treatment. We also have identified several causes
that lead to the non-concordances, particularly the confusion
of dark blue stains, brownish small cells which are actually
non-cancerous stromal cells but detected as nuclei, and also
the confusion of the nuclei with both bluish hue and brownish
hue. Another issue is the inaccurate segmentation, where
many of the non-nuclei cells or artefacts were segmented and
wrongly classified as one of the four classes. For oversensi-
tive segmentation, there is a case where the model segmented
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disintegrated nuclei on a necrotic regionwhere the tumor cells
have died, which can possibly be avoided by retraining the
segmentation model with the ER-IHC dataset. The findings
from this work can be a strong basis for future improvements
of automated WSI scoring in ER-IHC using DL models,
specifically DenseNet architecture and its hybrid algorithm.
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