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ABSTRACT Mixed data refers to a mixture of continuous and categorical variables. The clustering problem
with mixed data is a long-standing statistical problem. The latent Gaussian mixture model, a model-based
approach for such a problem, has received attention owing to its simplicity and interpretability. However,
these approaches are prone to dimensionality problems. Specifically, parameters must be estimated for each
group, and the number of covariance parameters is quadratic in the number of variables. To address this,
we propose ‘‘regClustMD,’’ a novel model-based clustering method that can address sparse dependence
among variables. We consider a sparse latent Gaussian mixture model, assuming that the precision matrix
between variables has sparse nonzero elements.We proposemaximizing a penalized complete log-likelihood
using the Monte Carlo expectation-maximization (MCEM) algorithm. Our numerical experiments and real
data analyses demonstrated that our method outperformed a counterpart algorithm in both accuracy and
failure rate under the correlated data structure.

INDEX TERMS Latent Gaussian mixture model, maximum likelihood, model-based clustering, Monte
Carlo expectation-maximization algorithm.

I. INTRODUCTION
In clustering problems, the observations are clustered into
groups that share similar features. These features are com-
monly observed in continuous and categorical mixed data
types (ordinal, nominal, or binary). Mixed-type datasets are
prevalent in many applications, for example, finance, market-
ing, medicine, and healthcare sciences [1]. Although there is a
wealth of clustering approaches, they often face challenges in
correctly and simultaneously explaining the correlation struc-
ture in large datasets that consist of mixed types of variables.
One of the main issues is the choice of the most appropriate
distance ormodel to simultaneously deal with both data types.
When an acceptable or reasonable model for cluster structure
in the data can be found, model-based clustering provides
persuasive results [2]. It is a popular toolkit and a principled
statistical approach for clustering. In particular, the Gaussian
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mixture model is popular for model-based clustering of con-
tinuous data [3], [4].

Recently, various model-based approaches have been pro-
posed for categorical or mixed data analysis. The Gaussian
mixture models in the presence of categorical variables were
proposed in [5] and [6] for binary data, [7] for ordinal data, [8]
for the combination of binary and continuous data. In addi-
tion, [9] and [10] considered a mixture of latent trait and
factor models, respectively. Reference [11] then proposed
the Gaussian mixture model in the ClustMD latent variable
framework. ClustMD considers six specific covariance struc-
tures for latent variables. However, these structures assume
uncorrelated variables, which may limit their practical use.
The adaptation of the uncorrelatedness assumption may be
due to the high dimensionality of the parameters when an
arbitrary covariance structure is assumed.

In this study, we developed a novel model-based clustering
algorithm called ‘‘regClustMD’’ (regularized model-based
clustering for mixed data), that can model sparse but arbitrary
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dependence structures for mixed data while addressing the
dimensionality problem. We consider the latent Gaussian
mixture model for the observed data and maximize the
ℓ1-penalized version of the complete log-likelihood.
By imposing the ℓ1 penalty on the inverse covariance matrix
term, we expect to explain the strong partial correlation
among variables while reducing the number of active param-
eters. We propose a Monte Carlo expectation maximization
(MCEM) algorithm tomaximize the complete log-likelihood.

One key advantage of regClustMD is its ability to naturally
incorporate the dependence structure between variables into
the algorithm, even when it varies across different groups.
As a result, compared to ClustMD, the proposed regClustMD
can better estimate the within-covariance structure of each
cluster. The improvement in estimating cluster-specific
covariance can enhance the quality of clustering, as we will
demonstrate in both our simulation experiments and real data
examples.

The remainder of this paper is organized as follows.
In Section III, we introduce our probability model of the
Gaussian mixture model with latent continuous variables for
mixed data. In Section IV, we describe the objective function
and the detailed procedure of the regClustMD algorithm.
In Section V, we propose a model selection procedure based
on BIC. In Sections VI and VII, we demonstrate the useful-
ness of the proposed method through simulations and real
data examples. Section VIII summarizes this paper.
The codes used for the simulation and real data analysis

section is available at:
http://github.com/shahn63/regclustMD.

II. RELATED WORK
A. MODEL-BASED CLUSTERING ALGORITHMS
FOR MIXED DATA
Since the work of McParland and Gormley [11] proposed a
clustering algorithm for a mixed type of continuous, binary,
ordinal, or nominal variables, it may be the most relevant
to our method. It employs a latent variable model where
observed categorical variables are considered as a discretiza-
tion of the continuous latent variables. Then, the latent
variables are assumed to follow a mixture of Gaussian dis-
tributions. To reduce the number of parameters, it introduces
a diagonal covariance structure for the latent Gaussian vari-
ables. A major drawback of this approach is not being able to
model the dependence structure between variables.

Several other papers have proposed clustering methods for
a narrower scope of a mixture of specific types of data. Refer-
ence [8] proposed a clustering algorithm for mixed binary and
continuous variables, where each binary attribute is generated
by a latent continuous variable that is dichotomized with a
suitable threshold value. Reference [5] introduced a latent
variable model for binary data with heterogeneity accounted
for replacing the traditional assumption of Gaussian dis-
tributed factors with a finite mixture of multivariate Gaussian.
Reference [6] proposed a mixture of latent trait models

with common slope parameters for model-based clustering
of high-dimensional binary data. Reference [7] developed a
mixture model for ordinal data using a pairwise likelihood
approach. They considered the observed categorical variables
as a discretization of an underlying finite mixture of Gaussian
estimated within the EM framework. Reference [9] assumed
a model for the categorical response variables that depends
on both a categorical latent class and a continuous latent
trait variable. The discrete latent class accommodated group
structure and the continuous latent trait held dependence
within these groups. Last but not least, [10] presented a latent
variable based-algorithm for a mixture of binary, ordinal, and
nominal response data.

B. REGULARIZED MODEL-BASED CLUSTERING
ALGORITHMS FOR CONTINUOUS DATA
For continuous-type datasets, the Gaussian mixture model
and its variants have been popular for model-based clustering
algorithms. We refer to [3] and [4] for a comprehensive
review. Regularized mixture models have been proposed to
deal with the dimensionality problem when the data are only
of the continuous type. References [12] and [13] proposed
penalizing the inverse covariance matrix in terms of the
log-likelihood of the Gaussian mixture model. Some variants
can be made; for example, the group membership variable
can be extended from a binary variable to a continuous
variable that sums up to one [14] and [15]. In addition,
the distribution of the data can extend to multivariate t-
mixtures [16]. We refer the reader to [17] for a more com-
prehensive and extensive review of model selection strategies
for the Gaussian mixture model-based clustering problem.
However, as mentioned previously, these methods are limited
to continuous data.

C. NON-MODEL-BASED CLUSTERING ALGORITHMS
FOR MIXED DATA
The extensive literature on non-model-based clustering algo-
rithms encompasses a wide variety of methods, such as K -
means, hierarchical clustering, and density-based algorithms
among others [18], [19], [20], [21]. Some of these methods
rely on a measure of distance between data values. A com-
mon approach for non-model-based clustering of mixed data
involves calculating a ‘generalized distance’, a weighted
combination of the distance between continuous variables,
and a dissimilarity measure for categorical variables such as
Gower distance. One can run hierarchical clustering algo-
rithms for mixed data by employing this generalized distance
instead of the conventional distance measure. Reference [22]
proposed the K -prototype algorithm, a variant of K -means,
that iteratively calculates modes of temporary clusters. How-
ever, one major drawback of these approaches is the difficulty
in balancing the weight between distances for categorical and
continuous variables. These are controlled by a weighting
factor which, if not set appropriately, may cause one type of
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variable to dominate the other, which may lead to suboptimal
clustering.

III. MODEL
We denote the observed record of the i-th subject as yi =

(yi1, . . . , yip)T ∈ Rp, i = 1, . . . ,N . We denote hidden cluster
group memberships by the random variable gi ∈ {1, . . . ,G}.
In addition, we define li = (li1, . . . , liG)T as a one-hot
representation of group membership, that is, lig = I (g = gi),
g = 1, . . . ,G.

A. MODELING LATENT VARIABLES
We employ the setting described by [11] for the latent vari-
ables. For completeness, we define the latent variables as
follows. Assume that each j-th variable of the i-th subject,
yij, has a latent random variable associated with it, say, zij.
We assume that zij is always continuous, whereas yij can
be continuous, binary, ordinal, or nominal. For each case,
we postulate the relationship between yij and zij as described
below.

1) CONTINUOUS yij
We assume that the observed yij exactly matches the latent
variable; that is,

yij = zij.

2) ORDINAL yij
It is assumed that the observed category yij is a split of uni-
variate zij. Let us say that the j-th variable consists of ordinal
categories 1, . . . ,Kj. We assume that there existKj−1 thresh-
old values. We include ±∞ as the threshold for notational
convenience. Let partitions −∞ = cj,0 < cj,1 < · · · <

cj,Kj = ∞ split support of zij. Then, we suppose that

yij = k ⇐⇒ zij ∈ [cj,k−1, cj,k ), k = 1, . . . ,Kj,

in other words, yij = k · I (cj,k−1 ≤ zij < cj,k ). It is assumed
that the mean and variance parameters of zij are unknown and
free to change. Thus, for identifiability issue, the threshold
values cj,0, cj,1, . . . , cj,Kj are used as predetermined values.
Following the literature [10], [11], we fix cj,k = 8−1(bk ),
where bk =

∑N
i=1 I (yij ≤ k)/N is the frequency of subject

i satisfying yij ≤ k and 8(·) is the cumulative distribution
function of the standard normal distribution.

3) NOMINAL yij
Because nominal categories are unordered, a nominal vari-
able requires a multivariate representation. With slight nota-
tional abuse, we propose that a nominal variable yij with Kj
categories be represented by zij := (z1ij, . . . , z

Kj−1
ij )T ∈ RKj−1

as follows:

yij =

{
k, if zkij ≥ 0 and zkij = maxl∈[Kj−1] zlij;

Kj, if zlij < 0 for all l ∈ [Kj − 1].
(1)

In other words, if at least one zlij (l = 1, . . . ,Kj − 1) is non-
negative then yij is the index l that maximizes zlij otherwise,
yij takes Kj.

4) BINARY yij
Binary yij can be viewed as a special case of both ordinal
and nominal variables when Kj = 2. The formulation of an
ordinal variable with Kj = 2 is the same as that of a nominal
variable.

B. PROBABILITY MODEL AND OBJECTIVE FUNCTION
We impose a normal mixture assumption on the latent space
of zi. Suppose that

P(gi = g) = πg

(equivalently li ∼ Multinom
(
1, (π1, . . . , πG)

)
),

zi|gi = g ∼ ND(µg, 6g),

where
∑G

i=1 πg = 1,πg ≥ 0,µg ∈ RD,6g is a p by p positive
definite matrix for g = 1, . . . ,G and i = 1, . . . ,N . Because
zi may have a larger dimension than yi, we haveD ≥ p. We let
�g = 6−1

g denote the precision matrix for the group g. Then,
the log-likelihood for complete data {(li, zi)}Ni=1 is written as

logLC =

N∑
i=1

G∑
g=1

[
lig logπg + const +

lig
2
log det(�g)

−
lig
2
zTi �gzi + ligµT

g�gzi −
lig
2

µT
g�gµg

]
. (2)

The unknown parameters to be estimated are {πg, µg, �g :

g = 1, . . . ,G}. In [11], �g is strictly restricted to a class
of diagonal matrices. We impose only the sparsity of �g,
that is, �g is assumed to have sparse nonzero off-diagonal
elements. This assumption relaxes the diagonal assumption
and is advantageous because non-zero off-diagonal elements
can address the dependency between variables. To reflect the
sparsity assumption in the estimation procedure, we consider
penalizing �g, g = 1, . . . ,G, when maximizing logLC .
If complete data were available, the penalized log-likelihood
would be written as

argmax
πg,µg,�g:g=1,...,G

logLC −

G∑
g=1

Pg(�g)

 ,

where Pg(�g) is a sparse penalty function for �g; for exam-
ple, the vectorized ℓ1 norm of �g multipled by a tuning
parameter. Because the observed data {yi}Ni=1 are incomplete,
onemaywant to maximize the expected value of the objective
function given {yi}Ni=1.

IV. regClustMD: PROPOSED ALGORITHM
We now describe our proposed algorithm (regClustMD). The
complete algorithm is described in Algorithm 1. It maxi-
mizes the penalized log-likelihood using the Monte Carlo
expectation-maximization (MCEM) algorithm. We iterate
the following E- and M-steps until the convergence of the
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Algorithm 1 Proposed Algorithm (regClustMD)

1: Input: Observed data {yi}Ni=1, the number of groups G.
2: Initialize π

(1)
g , µ(1)

g , �(1)
g for g = 1, . . . ,G.

3: while until convergence do
4: (E-step)
5: for i = 1, . . . ,N and g = 1, . . . ,G do
6: Calculate τig as in (3).
7: Calculate mig as in (4).
8: Calculate Vig as in (5).
9: end for

10: (M-step)
11: for g = 1, . . . ,G do
12: Update π

(t+1)
g as in (7).

13: Update µ
(t+1)
g as in (8).

14: Calculate 6
(t+1)
g as in (10).

15: Update �(t+1)
g as in (9).

16: end for
17: end while

objective function or estimated parameters. In what follows,
we explain the detail of each line in the algorithm.

A. E-STEP
This subsection describes the calculation of E(logLC |D,

2(t)), where D = {yi}Ni=1 is the observed dataset, 2 =

{µg, �g, πg}
N
g=1 is the collection of all parameters and2(t)

=

{µ
(t)
g , �(t)

g , π
(t)
g }

G
g=1 is the t-th update of the loop of the

MCEM algorithm. For simplicity, we let 2 = 2(t) if there is
no confusion.

To conveniently refer to the continuous and categori-
cal parts without loss of generality, we write yi as yTi =

(yαi
T , yβi

T
), where yαi ∈ RC and yβi ∈ Rp−C are the continu-

ous and categorical variables, respectively. For the continuous
part, the designation of latent space yields yαi = zαi . For
the categorical part, let ks (s = 1, . . . , q) be all possible
values that yβ can take and let Is ⊆ RD−C be the set of
all possible values of zβ ∈ RD−C that generates an out-
come ks. We partition other notations accordingly, i.e., zTi =

(zαi
T , zβi

T
),µT

g = (µα
g
T , µ

β
g
T
), and6g =

[
6αα
g 6

αβ
g

6
βα
g 6

ββ
g

]
. From

(2), the expected values for the calculation are E(lig|D, 2),
E(ligzi|D, 2), and E(ligzizTi |D, 2). In addition, we define
τig = E(lig|D, 2). With a slight abuse of notation, let
N (z|µ, 6) be the density function of the multivariate normal
distribution with mean vector µ and covariance matrix 6.
Assuming that the observed value of yβi is ks, according to
Bayes’ rule,

τig = P(gi = g|D, 2)

=
πgN (zαi |µ

α
g , 6

αα
g )

∫
Is N (zβi |µ

β|α
g , 6

β|α
g )dzβi∑G

g=1 πgN (zαi |µ
α
g , 6

αα
g )

∫
Is N (zβi |µ

β|α
g , 6

β|α
g )dzβi

,

(3)

where µ
β|α
g = µ

β
g + 6

βα
g (6αα

g )−1(yαi − µα
g ) and 6

β|α
g =

6
ββ
g − 6

βα
g (6ββ

g )−16
αβ
g . Evaluations of the truncated inte-

grals of the multivariate normal densities are numerically
conducted; for example, the minimax tilting Gibbs sampling
method proposed by [23] implemented in the R package
mvNcdf.

Once τig is evaluated,E(ligzβi |D, 2) andE(ligzβi z
β
i
T
|D, 2)

can be calculated as

E(ligzβi |D, 2) =

P(gi = g|D, 2)
∫
Is
zβi N (zβi |µ

β|α
g , 6β|α

g )dzβi =:τigmig, (4)

E(ligzβi z
β
i
T
|D, 2) =

P(gi = g|D, 2)
∫
Is
zβi z

β
i
T
N (zβi |µ

β|α
g , 6β|α

g )dzβi =:τigVig.

(5)

Note that mig and Vig are the first and second moments of
the truncated multivariate normal distribution, respectively.
Their calculations were implemented using the mtmvtnorm
of the R package tmvtnorm. We refer the reader to [24] for
the closed-form formula for moments.

B. M-STEP
Let τ

(t)
ig , m

(t)
ig , and V

(t)
ig be the resulting values from (3), (4),

and (5), respectively, when the given parameter is 2(t). Let
N (t)
g =

∑N
i=1 E(lig|D, 2(t)) =

∑N
i=1 τ

(t)
ig for g = 1, . . . ,G.

For eachM-step, we propose to encourage sparsity on�gs by
maximizing ℓ1-penalized expected complete log-likelihood,
that is,

Q(2|2(t)) := E(logLC |D, 2(t)) −

G∑
g=1

Pg(�g)

=

G∑
g=1

[
1
2

N∑
i=1

{
2E(lig|D,2(t)) logπg + E(lig|D, 2(t)) log det(�g)

−tr
(
�gE

(
lig(zi − µg)(zi − µg)

T
|D, 2(t)

))}
− λN (t)

g |�g|

]
=

G∑
g=1

N (t)
g

[1
2

{
2 logπg + log det(�g)

−tr
(
�g

∑N
i=1 E

(
lig(zi− µg)(zi− µg)

T
∣∣D, 2(t)

)
Ng

)}
− λ|�g|

]
.

(6)

Here, |A| =
∑

i≥j |aij| is the vectorized ℓ1 norm of matrix
A = (aij) and λ ≥ 0 is a tuning parameter. For each group
g, we have weighed the penalty λ|�g| by N

(t)
g to ensure that

the parameters across different groups were penalized in the
same amount.

We now derive 2(t+1)
:= argmax2 Q(2|2(t)). It is note-

worthy that (6) is separable over g. For each g, maximization
over πg and µg is independent of maximization over �g. It is
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straightforward to derive the following equation:

π (t+1)
g =

N (t)
g∑G

g=1 N
(t)
g

, (7)

and

µ(t+1)
g =

1

N (t)
g

N∑
i=1

E
(
l(t)ig zi

∣∣D, 2(t)
)

=
1

N (t)
g

N∑
i=1

τ
(t)
ig

[
yαi
m(t)
ig

]
. (8)

To update 6g, the maximization of (6) is a weighted version
of the graphical lasso problem. To be precise,

�(t+1)
g = argmax

�

{
log det(�) − tr

(
�6(t+1)

g

)
− λ|�|

}
,

(9)

where

6(t+1)
g := E

(
ligzizTi

∣∣D, 2(t)
)

− µ(t+1)
g

(
µ(t+1)
g

)T
=

1

N (t)
g

N∑
i=1

τ
(t)
ig

[
yαi (y

α
i )
T yαi m

(t)
ig
T

m(t)
ig (y

α
i )
TV (t)

ig

]

− µ(t+1)
g

(
µ(t+1)
g

)T
. (10)

To solve (9), we can use off-the-shelf statistical software, for
example, the graphical lasso [25] or QUIC [26].

Remark. To encourage sparsity, one may consider other
penalty functions, such as the smoothly clipped absolute
deviation (SCAD) or the minimax concave penalty (MCP).
An advantage of the choice of ℓ1-penalty is that each M-step
becomes a concave maximization problem, which facilitates
the scalability of our proposed algorithm.

Remark. The time complexity of the algorithm for each
iteration is dominated by the combination of the number
of Monte Carlo samples in the E-step and the precision
matrix estimation in the M-step. Thus, it is O(NM (D −

C) + min(GD3,GND2)). Compared to ClustMD, a bench-
mark algorithm in the Simulation and Real Data Anal-
ysis Section, our algorithm has an additional cost of
O(min â(GD3,GND2)) due to the estimation of the precision
matrix.

V. MODEL SELECTION
The regClustMD procedure requires tuning G and λ, which
determines the number of clusters and sparsity of the esti-
mated precision matrix.

We consider BIC-based model selection, widely employed
in model-based clustering [3], [11], [13], [27]. Let 2̂ =

2̂(G, λ) be the estimate of 2 given G and λ. In EM
algorithm-based procedures, the BIC value is the expected
negative complete likelihood added byDF ·log(N ). Similarly,
we propose the BIC value as

BIC(G, λ) := −E(logLC |2̂(G, λ)) + DF · log(N ),

where DF is regarded as the number of non-zero elements
of the estimated parameters in the sparse estimation litera-
ture [28], that is, letting 2̂ = {π̂g, µ̂g, �̂g}

G
g=1,

DF = N + NG+

G∑
g=1

∑
i≤j

I ([�̂g]ij ̸= 0),

where [�̂g]ij is the (i, j)-th element of �̂g. One advantage
of our method is that it directly maximizes the expected
complete likelihood, which does not require an additional
approximation procedure, as in [11]. Finally, we select G and
λ to minimize BIC(G, λ).

VI. NUMERICAL STUDY
A. EXPERIMENTAL SETTINGS
To assess the performance of the proposed method, we com-
pared the clustering accuracy rate and the number of failures.
Our model was compared with ClustMD [11], a latent Gaus-
sian mixture model approach that does not allow for an
association between variables. For the clustering error rate,
although BIC is known to identify the true model consistently
across a range of applications, as in Section V, the number of
clusters was assumed to be known as two (G = 2), so that
the selection of cluster numbers between two methods does
not confound the performance evaluation. With G = 2, the
clusters produced by each method are re-labeled to be the
most consistent with the real membership.

We consider 100 replications consisting of N = 100 sub-
jects with p = 10 variables from a 2-cluster model with a
mixing probability π1 = π2 = 0.5. Seven variables were
continuous, two were ordinal with two and three levels, and
one was nominal with three levels. The last three categorical
variables were obtained by categorizing a part of zij. As in
Section III, we consider the median and the first and third
quantiles as threshold values for binary and ordinal data with
three levels, respectively. For nominal data, we generateKj =

3 levels using a Kj − 1 = 2-dimensional latent continuous
variable and a threshold 0 using (1).

FixingG = 2 andπ1 = 0.5, we generate 50 subjects for the
first cluster from aMVN (µ1, �

−1
1 ) with amean vectorµ1 and

a covariance matrix �−1
1 , and similarly 50 subjects for the

second cluster from MVN (µ2, �
−1
2 ). For simplicity, we fix

the mean vector of each mixture component as µ1 = 0p and
µ2 ∈ {1p/2, 1p}, where 1p denotes a p-dimensional vector
of ones. Here, the norm of µ2 determines the separability
of two clusters. Finally, we consider two sparse covariance
structures:

• AR(1) model: the two precision matrices for both clus-
ters follow AR(1) structure, respectively:

�g(i, j) =


1, if i = j;
ρ, if |i− j| = 1;
0, otherwise,
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TABLE 1. Clustering accuracy summarized by mean (Mean) and standard
error (S.E.) ×103, and the number of simulation failures (# failures) over
100 replications with µ2 = 1p/2.

• Randommodel: the two precisionmatrices are generated
by adding random noise ϵ to off-diagonal elements:

�g(i, j) = �g(j, i) =

{
1, if i = j;
ϵij · I (|ϵij| < ρ), if i ̸= j,

where g = 1, 2, ϵij ∈ [−1, 1] is uniformly and independently
generated but fixed over replications, I (·) is the indicator
function, and ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} denotes covariance
structure parameters controlling the dependency and sparsity
of the covariance matrix. A larger ρ indicates stronger depen-
dence in both AR(1) and Random models. We scaled the
covariance matrices for both models with diagonal elements
of 1. All analyses were conducted using R version 4.0.2 [29].

B. RESULTS
Tables 1 and 2 show the results across different association
levels by ρ under both AR(1) and Random models, with
µ2 = 1p/2 and 1p denoting medium and large separability,
respectively. We compared the two methods in terms of the
averaged clustering accuracy and the simulation failure rate
over the 100 replications. In terms of clustering accuracy,
regClustMD tended to have increased accuracy as the depen-
dency between variables gets stronger (larger ρ). On the other
hand, as we expected, ClustMD tended to have decreased
accuracy for most settings as ρ increased. We hypothesize
that the inefficiency of ClustMD in larger ρ may be because
ClustMD assumes an independent covariance structure and
does not account for dependency. When we compared the
two methods for each setting, the proposed regClustMD was
more accurate than ClustMD in most cases, except for the
independent covariance structure case (ρ = 0) that is favor-
able to ClustMD. In terms of the simulation failure rate, the
proposed regClustMD outperformed ClustMD which does
not allow estimation of the correlated data structure (e.g., with
ρ = 0.8 under the Random model, ClustMD’s failure rates
are 23% in Table 1 and 43% in Table 2).

TABLE 2. Clustering accuracy summarized by mean (Mean) and standard
error (S.E.) ×103, and the number of simulation failures (# failures) over
100 replications with µ2 = 1p.

TABLE 3. Unequal mixing probability π1: clustering accuracy summarized
by mean (Mean) and standard error (S.E.) ×103, and the number of
simulation failures (# failures) over 100 replications with µ2 = 1p.

C. SENSITIVITY ANALYSIS AGAINST THE CHOICE OF
EXPERIMENTAL PARAMETERS
We evaluated our proposed method across different parame-
ters: mixing probability π1, the number of groups G, sample
size n, and the number of variables p. To illustrate this, we var-
ied a parameter once at a time while fixing other parameters
in Table 2.

1) MIXING PROBABILITY
Table 3 shows the results with different mixing probability
π1 = 0.75, π2 = 0.25 compared to Table 2 with π1 = π2 =

0.5. In terms of both clustering accuracy and failure rate, the
proposed regClustMD consistently outperformed ClustMD
while the accuracy level was lower than those for each case
in Table 2.

2) NUMBER OF GROUPS
Tables 4 present the results with different numbers of groups
G = 3, 4 compared to Table 2 with G = 2. We again fixed
the mean vectors as µ1 = 0p and µ2 = 1p and consider
µ3 = (1p−q, −1q) and µ4 = −1p where q denotes the
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TABLE 4. Different number of groups G: clustering accuracy summarized
by mean (Mean) and standard error (S.E.) ×103, and the number of
simulation failures (# failures) over 100 replications with µ1 = 0p,
µ2 = 1p, µ3 = (1p−q, −1q) and µ4 = −1p.

number of categorical variables. As the number of groups
increased with a fixed sample size n = 100, both methods
tended to have decreased accuracy and increased failure rate.
Especially, clustMD failed most of the cases with G = 4 but
regClustMD consistently outperformed clustMDwith a small
failure rate for both G = 3, 4.

3) SAMPLE SIZE
Tables 5 illustrate the results with different sample sizes
n = 50, 200 compared to Table 2 with n = 100. As the
sample size become larger, accuracy also increased except
for clustMD under the Randommodel. The proposed method
consistently outperformed clustMD and the difference in
accuracy between the two methods tended to increase as
n increased under the Random model which required the
estimation of the more sophisticated correlated data structure.

4) NUMBER OF VARIABLES
Tables 6 illustrate the results with different sample size p =

5, 20 compared to Table 2 with p = 10. The accuracy posi-
tively correlated with the number of variables p. The results
were consistent in accuracy and the differences between two

TABLE 5. Different sample size n: clustering accuracy summarized by
mean (Mean) and standard error (S.E.) ×103, and the number of
simulation failures (# failures) over 100 replications with µ2 = 1p.

methods were negligible with large p = 20 in which the
performances of both methods were almost perfect.

VII. DATA EXAMPLE
A. PROSTATE CANCER DATA
Firstly, we considered the prostate cancer data introduced
by [30]. The data consist of 12 mixed-type variables. To be
specific, eight variables (Age, Diastolic blood pressure, Index
of tumor stage and histologic grade, Serum hemoglobin,
Serum prostatic acid phosphatase, Size of the primary
tumor, Systolic blood pressure, Weight) are continuous, three
variables (Bone metastases, Cardiovascular disease history,
and performance rating) are ordinal, and only one vari-
able (Electrocardiogram code) is nominal. We preprocessed
12 variables, as in [11]. Some exploration of the correlation
structure showed dependency across variables. For example,
the absolute values of the correlation coefficients ranged
from 0.011 to 0.797 in the correlation matrix of the data.
In addition, the range of the inverse covariance matrix of the
prostate cancer data is from 0.000 to 1.461.

As in Section VI, we fitted the proposed method and
ClustMD with a BIC-based model selection. A line plot of
the BIC values estimated using our proposed method (the
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TABLE 6. Different number of variables p: clustering accuracy
summarized by mean (Mean) and standard error (S.E.) ×103, and the
number of simulation failures (# failures) over 100 replications with
µ2 = 1p.

left panel of Figure 1) reveals that the two-cluster model
(G = 2) leads to the minimum BIC value. The right panel of
Figure 1 shows the estimated group means for the ClustMD
with G = 2. The patients in group 2 have a larger primary
tumor size, higher serum prostatic acid phosphatase levels,
higher tumor stage and histologic grade index, and lower
serum hemoglobin levels than those of group 1.

In addition, we estimated the existing validation indices
that are widely used in the cluster analysis introduced by [31].
In other words, we calculated eight validation indices to
measure the quality of clusters (C, Dunn, Gamma, Gplus,
Mcclain, Ptbiserial, Silhouette, Tau) in the ClustMD method
with three clusters (selected by the BIC) and regClustMD
method with two clusters to compare their results. Table 7
summarizes the cluster results for each method in terms of
eight cluster validity indices. Six of the eight performance
measures represent that our proposed method with two clus-
ters fits better than ClustMD with three clusters.

B. AUSTRALIAN INSTITUTE OF SPORTS DATA
We also considered the Australian Institute of Sports (AIS)
data [32]. The data contains 202 observations with 13 mixed-
type variables. The variables consist of nine continuous

TABLE 7. The comparison of cluster validity indices calculated from the
clustering results on the prostate cancer data.

TABLE 8. The comparison of cluster validity indices calculated from the
clustering results on the AIS data.

(Red blood cell count, White blood cell count, Hema-
tocrit, Hemoglobin concentration, Plasma ferritins, Body
mass index, Sum of skin folds, Percent body fat, Lean
body mass), one binary (Sex), and one nominal variable
(Sport), respectively. We recategorized the ‘Sport’ variable
into three categories for computational efficiency. That is,
we merged basketball, Netball, and Tennis as the first group,
waterpolo and Rowing as the second group, and the rest
of the nine sports as the third group, respectively. A total
of 13 variables revealed pairwise dependency showing that
absolute values of the correlation coefficients ranged from
0.080 to 0.964.

Two cluster model in our proposed method with a mini-
mum BIC value was selected (Figure 2). The right panel of
Figure 2 represents that the patients in group 2 have higher
lean body mass, higher body mass index, higher plasma fer-
ritins, higher hemoglobin concentration, higher hematocrit,
higher white blood cell count, higher red blood cell count,
lower percent body fat, lower sum of skin folds, and are more
likely to be females than those of group 1, respectively.

We measured the eight validation indices that measure the
quality of clustering to compare the ClustMD result with
three clusters which were also selected by the BIC value
and that of regClustMD with two clusters. As summarized in
Table 8, five of the eight indices illustrate that our proposed
regClustMD with two clusters outperforms the clustMD with
two clusters.
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FIGURE 1. Left panel, Line plot of the number of groups (G) versus BIC. For each group, only the result for best λ is
reported; Right panel, the estimated group mean (µ̂1, µ̂2) in the proposed regClustMD method.

FIGURE 2. Left panel, Line plot of the number of groups (G) versus BIC. For each group, only the result for best λ is
reported; Right panel, the estimated group mean (µ̂1, µ̂2) in the proposed regClustMD method.

VIII. CONCLUDING REMARKS
It is well known that modeling the correlation structure
between variables improves clustering results. Most of the
data were correlated regardless of the data type. In this
study, we proposed the regClustMD algorithm, which is
a model-based clustering method for mixed data, that
can address sparse dependence between variables. Our
probability model postulates that categorical variables are
generated from latent continuous variables before categoriza-
tion. We then considered a sparse latent Gaussian mixture
model. Through simulation studies and prostate cancer data
analysis, we showed that regClustMD outperformed existing
approaches that do not address dependence.

Our study considered the l1-penalty in regularization for
implemental simplicity. However, the l1-penalty generally
produces biased estimates, and other nonconvex penalties
such as SCAD and MCP may be beneficial for miti-
gating the bias. Another future direction is to accelerate
the proposed algorithm by parallelization because many

computation routines in our algorithm can be conducted in
parallel. Since our method relies on the assumption of a
Gaussian distribution, it may be susceptible to outliers. One
systematic approach to handling outliers is by developing a
latent t-mixture model suitable for mixed data. An example
of such a model is presented by [16] where a multivariate
t-mixture model is proposed for clustering continuous-type
data.
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