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ABSTRACT Network slicing is a critical technology for fifth-generation (5G) networks, owing to its merits
in meeting the diversified requirements of users. Effective resource allocation for network slicing in Radio
Access Networks (RAN) is still challenging owing to dynamic service requirements. Therein, automatic
resource allocation based on environmental changes is of significant importance for network slicing. In this
study, we used deep reinforcement learning (DRL) to allocate resources for network slicing in a RAN with
the aid of massive multiple-input multiple-output (MIMO). The DRL agent interacts with the environment
to execute autonomous resource allocation. We considered a two-level scheduling framework that aims to
maximize the quality of experience (QoE) and spectrum efficiency (SE) of slices. The proposed algorithm
can find a near-optimal solution. We used the standard DRL advantage actor-critic (A2C) algorithm to
implement upper-level inter-slice bandwidth resource allocation that considers service traffic dynamics in a
large timescale. Lower-level scheduling is a mixed-integer stochastic optimization problem with several
constraints. We combined the proportional fair scheduling algorithm and the water filling algorithm to
perform resource block (RB) and power allocation in a small timescale. The results show that the QoE
and SE of all slices using the A2C algorithm achieved a significant performance improvement over the other
algorithms. The efficiency of the proposed method was supported by the simulation results.

INDEX TERMS Network slicing, resource allocation, radio access networks (RAN), massive MIMO,
advantage actor critic (A2C).

I. INTRODUCTION
There has been exponential growth in the amount of
data transfer as an increasing number of devices are
connected to wireless networks. The user experience is
greatly affected by sharing a limited bandwidth over an
extremely narrow spectrum. The existing fourth-generation
(4G) network cannot meet the needs of a large amount
of data communications within limited frequency bands.
Mobile networks have mostly supported mobile devices from
the early days of the third generation (3G) to the current
4G network. However, in the fifth generation (5G) era,
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mobile networks must provide services to devices with a
variety of application types and quality of service (QoS)
criteria. With the help of network slicing, many types can
operate flexibly on the same physical infrastructure [1].
Various applications must meet QoS requirements, such
as enhanced mobile broadband (eMBB), ultra-reliable low-
latency communications (uRLLC), andmassivemachine type
communications (mMTC) [2]. Network slicing includes a
range of network resource requirements, including those
for computing and communication, as well as a range of
performance characteristics, including latency and through-
put. Because 5G cellular networks are expected to provide
end users with faster data speeds and lower end-to-end
latency, managing network resources in slices becomes
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more difficult [3], [4], [5]. Owing to the scarcity of
spectrum resources and the strict dynamic requirements of
slice users, radio access networks (RAN) slicing presents
more difficult technical challenges for real-time resource
management. In this regard, automation is required to
distribute resources to slices because it is difficult to manually
regulate resource allocation from the changing state of slices
using traditional mathematical model-based approaches.
Artificial intelligence (AI) is useful for allocating resources
for autonomous control because it can choose an appropriate
control strategy based on the knowledge it has gained from
analyzing previous data. AI technology, deep reinforcement
learning (DRL), a model-free methodology, has been applied
to allocate resources for network slicing with autonomous
control. By allocating resources to slice the network using
DRL algorithms, the performance was shown to be better
than those of current state-of-the-art solutions in terms of
QoS satisfaction and resource utilization [6]. Compared with
existing systems, [7] showed that resource slicing based on
DRL increases resource consumption, slice satisfaction, and
throughput benefits. Reference [8] coupled slice Admission
Control (AC) and network slicing problems using a multi-
agent DRL. The suggested methodology can bring in up
to 29.96% more revenue than methods based on heuristics
methods. Additionally, their findings show that multi-agent
DRL accelerates convergence and generates 8.62% more
long-term infrastructure provider (InP) revenue than a single-
agent DRL strategy. Reference [9] proposed a hierarchical
deep learning framework that integrated punctured and
orthogonal scheduling algorithms for a resource slice in a
RAN. For the eMBB and URLLC slices, they improved
the average service level agreement (SLA) satisfaction ratio
(SSR), and for eMBB users, they increased the average
aggregate throughput. By dynamically deploying suitable
virtual base stations and distributing subchannels and power
to each user of each slice, [10] proposed an efficient multi-
agent DRL algorithm to jointly optimize three types of RAN
slices according to throughput, average latency, and average
interference plus noise power ratio (SINR). The suggested
plan performed better than the alternatives did.

In view of the above results of DRL, this study designs
an intelligent RAN slicing resource allocation strategy that
can adapt to changing network conditions over time with a
variety of time and resource granularities to meet the strict
and specific slice criteria of the user.

II. RELATED WORK
The DRL agent obtains the status of the environment by auto-
matically interacting with it. Based on the present condition,
the agent chooses an action and performs it. The agent and
the environment move on to the next state as a result of the
system emitting a feedback value that rewards or punishes
the action. Reinforcement learning has been used to allocate
network slicing resources. References [11], [12], [13], [14],
and [15] aimed to determine the best inter-slice bandwidth

allocation that optimizes the utility of the system. System
utility is related to the quality of experience (QoE) and
spectrum efficiency (SE). They view fluctuating service
requests as environmental states and resource allocation as
environmental actions. Reference [11] leverages a deep Q
network (DQN) to resolve resource management problems
for network slicing scenarios. The convergence is not very
good, and 50,000 updates are required to achieve stable
performance. Reference [12] embedded long short-term
memory (LSTM) into the actor-critic algorithm (A2C) to
monitor user mobility and increase the utility of the system.
The LSTM network is responsible for predicting the current
state, which is combined with service requests from the
past T states. A discrete normalized advantage function
(DNAF) is added to traditional Deep Q-Learning (DQL)
in [13] to speed convergence in a broad action space. They
also incorporated a k-nearest-neighbor technique into the
DQL to quickly find an action in the discrete space that is
closest to the deterministic policy gradient descent (DPGD)
outcome, since DPGD only works in a continuous action
space. The proposed scheme converges quickly in a larger
action space. It is possible to avoid calculating the Q value for
each state-action combination by using the DPGD technique
to break the Q value function into a state value function
term and an advantage term. To approximate the action-
value distribution, [14] used a deep distributional Q network
(DDQN) driven by a generative adversarial network (GAN)
and implemented the reward-clipping strategy to boost the
stability of the GAN-training DDQN. To acquire the training
problem with the built-in DDQN in GAN, they used Dueling
GAN-DDQN to extract the state-value distribution and the
action advantage function from the action-value distribution.
Reference [15] proposed an intelligent resource management
technique for network slicing and combined a graph attention
network (GAT) with DQN.

In summary, although in the literature [11], [12], [13],
[14], [15] various DRL methods had been proposed to
implement inter-slice bandwidth allocation, they only con-
sidered the number of resource blocks allocated to each
user without considering the specific resource block power.
They leveraged round-robin scheduling methods within each
slice which may be unfair for users with different channel
conditions. Furthermore, the typical Shannon capacity in
real-world applications does not account for users’ delayed
QoS requirements. As a result, it is not suitable to assess
the effectiveness of delay-sensitive services [16]. For delay-
sensitive network slicing services, Shannon formulation-
based network capacity analysis may not be the best option.
Therefore, to evaluate delay-sensitive applications that can
provide statistical delay provisioning by ensuring a low
probability of packet transmission delays, we use short packet
transmission.

The technical contributions of this paper can be summa-
rized as follows.
• For the user-delay requirement of the slice, we con-
sidered the short packet transmission, which provides
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FIGURE 1. Illustration of the epoch, TTI, and PRB.

statistical delay provisioning approximated by finite
block length theory and improves the QoE.

• We applied massive multiple-input multiple-output
(MIMO) to improve the system capacity, which is
studied assuming short packet communication.

• We formulated a joint QoE and SE optimization problem
using a two-level scheduling strategy. In upper-level
scheduling, we use the A2C algorithm to schedule
inter-slice resources. In lower-level scheduling, resource
block (RB) assignment and power allocation (RAPA)
are jointly optimized for intra-slices by proportional
fair (PF) scheduling and water filling (WF) algorithms.
A corresponding resource block is allocated to each user,
and power is allocated to each resource block.

• The proposed scheme exhibits faster convergence with
lower computational complexity.

The rest of this paper is structured as follows. In section III,
the proposed system model is introduced. It formulates
the problem objectively and provides the proposed RAN
resource-slicing control approach. The precise implementa-
tion plan and algorithm are outlined in section IV.We present
a system-level simulation result and an analysis of the
proposed scheme in section V. Finally, section VI concludes
the paper.

In this study, matrices, vectors, and scalar quantities are
denoted by bold-faced upper case letters, bold-faced lower
case letters, and light-faced lower case letters, respectively.
The notations used in the system model are summarized in
Table 1.

III. SYSTEM MODEL
A. SIGNAL TRANSMISSION MODEL
We focus on a multi-user radio access network with a
single base station (BS) that constitutes a wireless MIMO
communication system. The transmitter is equipped with
M antennas. The receiver is equipped with Q antennas.
We set M ⩾ Q in this study. We implemented inter-slice
bandwidth allocation at each epoch and intra-slice resource
block scheduling at each Transmission Time Interval (TTI).
Each epoch is divided into several TTI (∆T -TTI), each TTI

is 0.5ms long and indexed by t ∈ T = {1, 2, . . .T }.
Each TTI divides the bandwidth into a number of physical
resource blocks (PRBs), designated by the symbol j ∈
F = {1, 2, . . . ,F}. There exist a set of slices n ∈
N = {1, 2, . . . ,N } and a set of users (or user equipment)
i ∈ U = {1, 2, . . .U}. A schematic of this process is
shown in Figure 1. Each RB consisted of 12 subcarriers,
each of which has seven Orthogonal Frequency Division
Multiplexing (OFDM) symbols and a subcarrier spacing of
15 kHz. As a result, each RB has a 180 kHz bandwidth.
The user equipment (UE) in this scenario moves within each
epoch to generate different distributions, and the slice user
shares the same movement model. The movement pattern
refers to the user moving randomly around at a certain speed,
the direction of movement obeys a uniform distribution
within [−180◦, 180◦]. The set Un is specifically referred to as
the UE connected to the slice n ∈ N . The data rate at which
the i-th user acquired the j-th physical resource block (PRB)
at the t-th TTI, is determined as follows [17]:

ri,j,t = B · log2 det
(
IQ +

γ

M
Hi,j,tHi,j,t

∗

)
, (1)

where det (A) denotes the determinant of matrix, A. IQ
denotes the identity matrix of dimension Q × Q, and ∗

denotes the transpose conjugate operator. Also γ =
ρPi,j,t

σ 2 ,
where the transmit power on the j-th PRB of the t-th TTI is
denoted byPi,j,t , ρ denotes the path loss, the shadowing effect
between the UE and BS, and σ 2 is the power of additive white
Gaussian noise (AWGN). Hi,j,t ∈ CQ×M models the small-
scale fading coefficients of the j-th PRB, based on the rayleigh
fast fading channel [18]. The bandwidth of the PRB is B.
One unique aspect of the new uRLLC service, as opposed

to conventional services, is the short packet transmission. The
data rate of the short packet transmission cannot be accurately
described by Shannon’s capacity theory. Alternatively, finite
block length theory can be used to approximate the possible
data rate for short packet transmission [19]. The maximal
rate achievable with MIMO transmission given the error
probability ϵ and block length n of the packet is closely
approximated by

ri,j,t = B ·

{
C(γ )−

√
V (γ )

n

Q−1(ϵ)
In2

}
, (2)

where C(γ ) = log2 det
(
IQ +

γ
MHi,j,tHi,j,t

∗
)
is the capacity,

V (γ ) denotes the channel dispersion [17], [20]

V (γ ) = Q−
Q∑
q=1

(
1+

γ

M
· λj,q

)−2
, (3)

where λj,q denotes the q-th unordered eigenvalue of
Hi,j,tHi,j,t

∗. Q−1 (•) denotes the inverse of the Gaussian
cumulative distribution function [21], [22] given by

Q−1 (ϵ) = sup{x ∈ R,Q (x) ≤ ϵ, 0 < ϵ < 1}, (4)

Q (x) =
∫
∞

x

1
√
2π

e(−
t2
2 )dt. (5)
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TABLE 1. Notation summary of system model.

Consequently, the instantaneous data rate for the i-th UE at
the t-th TTI can be expressed as

ri,t =
F∑
j=1

ai,j,tri,j,t , (6)

where the binary variable ai,j,t = 1 indicates that the i-th
UE obtains the j-th PRB in the t-th TTI; otherwise, ai,j,t = 0.
Additionally, only one UE per TTI may have a PRB allocated
to it.

B. QUEUING MODEL OF UE
On the back-end server, it is assumed that each user has a
data queue where incoming packets are held before being
distributed following the first-come, first-served (FCFS)
principle. The i-th user’s queue length (expressed in packets)
in the t-th TTI is shown and developed as follows [22], [23]:

li,t+1 = max
{
li,t − ri,t/Li, 0

}
+ Ai,t . (7)

Li and Ai,t , denote overall packet size (in bits) and
instantaneous packet arrival (in bits), respectively, for user
i during the t-th TTI. Slice n’s UEs that have a non-zero
queue length Uactvn =

{
i
∣∣li,t > 0, i ∈ Un

}
⊆ Un are referred

to as being activated. We presume that the queue buffer has
a limited capacity and that discarding packets due to buffer
overflow is unavoidable. We introduce the queue length
threshold in an effort to reduce the likelihood of a new arrival
packet dropping.

C. ANALYSIS OF QUALITY OF EXPERIENCE (QoE)
The QoE of users served by slice n is represented by the
transmission success rate of the data packets [24] and can be
expressed as:

QoEn =

∑
i∈Un

∑
m∈Qi νi,m∑

i∈Un |Qi|
, (8)

where Qi denotes the data packet for the i-th user. The total
number of data packets sent to user i by the BS is denoted
by |Qi|. If the packets are successfully transferred, the binary
variable νi,m indicates whether the service’s rate and delay
limits are satisfied.

νi,m =

{
1, ri,t ⩾ Rn,min,Di,m ⩽ Dn,max

0, otherwise
, (9)

where Di,m denotes the transmission delay of the m-th
packet of the i-th user. Dn,max and Rn,min are the thresholds
for the data packet transmission delay and transmission
rate, respectively, according to the n-th slice communication
requirements.

IV. PROBLEM FORMULATION AND ALGORITHM
DECISION
In this study, we calculated the network slice’s overall utility,
which is connected with the service’s QoE performance and
the network slice SE. The utility function of slice n in the k-th
epoch is then given by:

Un,k = ζ · UQoE
n,k (w, d)+ µ · USE

n,k (w, d) . (10)

The use of DRL for radio resource slicing bandwidth
allocation is covered in this section. The ζ and µ are the
weights of QoE and SE, respectively. The group of slices
has varying demands d =

{
d1, d2, . . . , dN

}
and shares

the total bandwidth W . To optimize the long-term reward
expectations E {R (w, d)}, the bandwidth sharing solution is
w = {w1,w2, . . . ,wN }, where the notation E (·) denotes
the expectation of the random argument in (·). The objective
maximization can be formtated as:

P : argW max

{
U =

[
∞∑
k=0

∑
n∈N

Un,k

]}
(11)

s.t. C1 : w1 + w2 + . . .+ wN = W (11a)
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C2 :
∑

i∈Uactvn

F∑
j=1

ai,j,t · B ⩽ wn,∀n ∈ N (11b)

C3 : ai,j,t ∈ (0, 1) ,∀i ∈ Uactvn , j ∈ F , n ∈ N (11c)

C4 :
∑
n∈N

∑
i∈Uactvn

ai,j,t ⩽ 1,∀j ∈ F (11d)

C5 :
∑
n∈N

∑
i∈Uactvn

∑
j∈F

ai,j,tpi,j,t

 ⩽ Pmax. (11e)

where constraint (11a) represents the total allocated band-
width, which is equal to the total system bandwidth. (11b)
states that the sum of users’ bandwidths sharing the slice
is less than or equal to the allocated bandwidth of that
slice. (11c) represents the binary variable of the resource
block allocation. (11d) represents the indicator of a resource
block allocation of only one user in a TTI. (11e) represents
the restricted power allocation. The optimization of the
utility function in (11) is resolved by two-level scheduling.
In the upper-level scheduling, we use the A2C algorithm
to determine slice bandwidth within constraint (11a), which
takes the (11a) as action and chooses from action space
in (18). The lower-level scheduling determines the user
bandwidth and power within the constraints (11b) to (11e).
We calculated user rates based on user bandwidth and power,
which is related to QoE and SE. Then we calculated the
reward by SE and QoE. The reward was feedback to the A2C
agent to update its parameters and thus influence the choice of
action for the next epoch. Our approach to solve (11) using
the A2C and mapping the RAN scenario to the context of
Markov decision process (MDP) is in similar spirit as [12].

A. UPPER-LEVEL SCHEDULING BY A2C
1) OVERVIEW OF A2C
In reinforcement learning (RL) [11], an agent generates
actions and manages the elements of the environment. S is
a collection of states, and A is a collection of actions. The
agent assesses the state s ∈ S of the surrounding environment
at each time step t . Regardless of whether the action a ∈ A
taken by the agent is advantageous or disadvantageous to the
state, it is output to the state following its policy π (at |st) and
is rewarded rt . The agent gains knowledge on how to boost
prospective benefits as

Rt =
T∑
t=0

Υ trt , (12)

where the discount factor Υ (0 ⩽ Υ ⩽ 1) is a constant that
deducts future rewards, and T represents howmany time steps
are still left in the training session or episode. (13) evaluates
the future rewards that will be received. A drawback is that the
reward fluctuates stochastically according to the state’s initial
value. Consequently, the predicted reward value following a

state action is

Q (st , at) = E [Rt |st , at ] = E
[
rt + Υmax

a∈A
Q (st+1, a)

]
.

(13)

A2C method [12] employed a combination of policy
and value-based techniques to reduce the variance of
the reinforcement algorithm and the training agent more
effectively and quickly. In the agent role, the actor executes
the present action distribution while being judged by the
critic. The advantage function is defined as follows:

A (st , at) = rt+1 + Υ V (st+1; θc)︸ ︷︷ ︸
Q(st ,at )

− V (st ; θc) . (14)

A2C maximizes the following policy objective:

L (θa)=−Et
[
logπθ (at |st ; θa)A (st , at)+ ϕH (π (st ; θa))

]
.

(15)

The parameterization of a stochastic policy is given by
πθ . In an algorithm that alternates between sampling and
optimization, A (st , at) is an estimator of the advantage
function at time-step t , and Et [•] is the expectation
reflecting the empirical average across a small batch of data.
H (π (st : θa)) is the entropy term used to favor exploration
during the training process. The action entropy’s weight is
represented by the component ϕ.
The gradient of the actor is obtained by taking the gradient

of objective L (θa). The actor θa and the critic θc parameters
are updated as follows:

θa = θa +∇L (θa) , (16)

θc = θc + A (st , at)
∂V (st ; θc)

∂θc
. (17)

2) PROPOSED A2C DEEP REINFORCEMENT LEARNING
ALGORITHM
The proposed A2C network slicing resource allocation
architecture is shown in Figure 2. The environment refers
to the 5G network communication, in which multiple slices
are produced based on the same physical infrastructure.
We divided the scheduling procedure into two levels, with
the intelligent agent responsible for adjusting the inter-slice
bandwidth in accordance with the dynamics of service traffic
over a long period. The agent first obtains state st from the
wireless network environment and then takes st as input of the
actor network. The actor network produces a slice bandwidth
allocation action based on this policy. This action is fed
back into the environment. Based on the agent’s behavior,
the lower-level controlling policy immediately executes radio
resource scheduling in accordance with the dynamics of
the physical layer over a brief period. After scheduling, the
environment stepped into the next state, st+1, and we received
a reward that was given to the agent. The critic network
took the state st and the next state st+1 as input to produce
V (st) and V (st+1). The temporal difference (TD) error was
calculated using the reward R, V (st), and V (st+1). The critic
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network’s parameter θc is updated via TD error. The TD error
and policy are used to update the actor-network parameter θa.
State: In our formulation, the state is defined as, st ={
d1, d2, . . . , dN

}
, where each observation vector represents

the number of packets in each slice during the k-th epoch.
Action: Action is the quantity of bandwidth that the BS

allots to each slice. The action space is defined as follows:

a =
[(
w0,0,w0,1,w0,2

)
,
(
w1,0,w1,1,w1,2

)
, . . .(

wp,0,wp,1,wp,2
)]

, (18)

where
(
wp,0,wp,1,wp,2

)
denotes the bandwidth for three

slices of the p-th action.
Reward: The reward, described in (19) [12], is given by:

r1 =

{
(Qu − 0.7) · 10, if Qv ⩾ 0.98and Qe ⩾ 0.95
−5, if Qv < 0.98or Qe < 0.95

.

(19)

where Qu, Qv, and Qe represent, respectively, the QoE of
uRLLC, VoLTE, and eMBB. Once the specified service level
agreement (SLA) requirements have been satisfied as (19),
the agent is encouraged to modify its reward as r2 =
4+ (SE − 200) ∗ 0.1 if SE > 200; otherwise r2 = 4.
The pseudocode of the upper level is shown in algorithm 1.

B. LOWER-LEVEL SCHEDULING
Following the selection of the slice bandwidth by the
upper-level control policy during the k-th period, each TTI
implements a radio resource allocation plan. Allocating PRB
and transmitting power to the active UE in accordance with
the lower-level strategy presents the next issue. We allocate
the PRB to the user using the PF scheduling algorithm,
which makes full use of the time-frequency characteristics
of the channel to schedule the users with better channel
conditions as much as possible and to schedule every user
as much as possible. The number of RB allotted to each UE
was determined by the PF scheduling method using the user
priority set by the instantaneous available data rate over the
average data rate. User priority is computed as p = ri(t)

Ri(t)
, and

the average data rate [25] is defined as

Ri,t =
(
1−

1
tc

)
Ri,t−1 +

1
tc
ri,t . (20)

It is important to note that the Ri,t value is updated for
every TTI by using a weighted moving average technique
and accounting for the real data quota. And ri,t is the data
rate that the i-th user can reach during the prior subframe.
According to the PF scheduling algorithm, a user cannot
always be scheduled to communicate in amulti-user cell. This
is because if the user is communicating all the time, it can
cause Ri,t to continue increasing. As shown by the priority
formula of the user PF algorithm, the priority also decreases.

A higher priority was given to users near the base station.
Owing to bad channel conditions, UEs farther from the base
station have a lower priority and cannot be scheduled for a
long period. The average data rate is reduced. The priority

Algorithm 1A2C-Based Upper-Level Scheduling Procedure
Input: {d1, d2, . . . , dN };
Input: QoE, SE, Utility;
1: Initial queue buffer, latency buffer, replay D, and user

location.
2: Users move.
3: Users activate.
4: Obtain state s = {d1, d2, . . . dN } from environment.
5: for i in range(Ψ ) do
6: Choose action by state s.
7: Map action to slice RB

(
wp,1,wp,2,wp,3

)
.

8: for t in range(T ) do
9: RBs allocation by algorithm 2, obtain user

bandwidth, and power allocation by algorithm 3,
obtain RBs power.

10: if t == T − 1 then
11: break.
12: else
13: Clear the queue of packets and delay cache.
14: end if
15: end for
16: Calculate the reward utility, observe the next state

st+1.
17: Calculate temporal difference (TD) error by (14).

Update parameter of actor network θa by (16)
and critic network θc by (17) per learn steps.

18: st = st+1.
19: Parameter Reset.
20: Users move.
21: Users activate.
22: end for
23: return QoE, SE, Utility;

of users increases again. Then tc denotes the update time
window parameters, which affect the average rate and contain
information about how long the channel conditions have been
in the past. When tc is larger, the user rate is averaged over
the rate values in more slots, and the long-term fairness is
better. In contrast, when tc is smaller, the user average rate
only refers to the rate value at the latest slot, which leads to an
abrupt change in the user channel and affects the scheduling
result of the scheduling algorithm more easily.

The PF scheduling algorithm determines the number of
RBs required for each user. We can then map the RB
index to each user. We then need to allocate power to each
PRB. To distribute power and obtain the best throughput,
we commonly used the water-filling algorithm, a well-known
information theory procedure. The goal of water filling is to
benefit from better channel conditions, as these enable the
faster and more efficient transmission of more power and
data. When the quality of the channel decreases, less power
and a lower rate are transmitted over the channel. The channel
does not require more power and a faster data rate is achieved
if the instantaneous channel signal-to-noise ratio(SNR) is
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FIGURE 2. Illustration of the proposed A2C network slicing resource allocation architecture.

below the cutoff value [20]. The objective of this part is to
optimize the sum rate of the entire system under the limiting
total power restriction. Denote pj as the assigned power to the
j-th RB.(1) can be rewritten as [26]:

ri,j,t = B ·
η∑

n=1

log2

(
1+

ρpi,j,tλj,n
Mσ 2

)
, (21)

where η = min (M ,Q) is the rank of the channel matrixHi,j,t
and λj,n (n = 1, 2, . . . , η) are the positive eigenvalues of
Hi,j,tHi,j,t

∗. The objective function for a long packet can be
represented as

max
F∑
j=1

η∑
n=1

B · log2

(
1+

ρpjλj,n
Mσ 2

)

St.
F∑
j=1

pj ⩽ Pmax, (22)

where, Pmax is the total power. This is a non-convex
optimization issue that has been extensively researched in
the literature, and it is then transformed into a convex-
constrained optimization problem [27], [28]. We adopt the

water-filling [29] power allocation and the power for RB pj
as

pj =

[
1

LIn2
−

ησ 2

ρ
M

∑η
n=1 λj,n

]+
, (23)

pj =
[
u− ησ 2

ρ
M
∑η

n=1 λj,n

]+
, where u denotes 1

LIn2 and [x]+ =

max {0, x}, u is the water level that satisfies

F∑
j=1

pj =
F∑
j=1

(
u−

ησ 2

ρ
M

∑η
n=1 λj,n

)+
= Pmax, (24)

so, u =
(
Pmax +

∑F
j=1

ησ 2
ρ
M
∑η

n=1 λj,n

)
/F .

The objective function for a short packet can be represented
by (26). We verified that the first-order approximation turns
the objective function into a convex function by using
the Taylor expansion approach to approximate the problem
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(26) [30]. We obtained the first-order Taylor expansion as√√√√√
1−

∑Q
q=1

1(
1+

ρpjλj,q
Mσ2

)2
Q

= 1−
1
2

Q∑
q=1

1

Q
(
1+ ρpjλj,q

Mσ 2

)2
+ o

1
2

Q∑
q=1

1

Q
(
1+ ρpjλj,q

Mσ 2

)2
 .

(25)

In particular, the approximation

√√√√
1−

∑Q
q=1

1(
1+

ρpjλj,q
Mσ2

)2
Q ≈

1 − 1
2

∑Q
q=1

1

Q
(
1+

ρpjλj,q
Mσ2

)2 is tight in the case as the value of

1
2

∑Q
q=1

1

Q
(
1+

ρpjλj,q
Mσ2

)2 is very small. Then, problem (26), as

shown at the bottom of the next page, can be approximated
as (27), as shown at the bottom of the next page, we have the
following key lemma:

Lemma 1. Problem (27) is convex. Proof as follows:

∂ri
∂pj
=

Q∑
q=1

{
M(

1+ pjM
)
· In2
−

Q−1 (ε)
√
QnIn2

·
M(

1+ pjM
)3
}

,

(28)

where M = ρλj,q/Mσ 2.

∂2ri
∂2pj
=

Q∑
q=1

{
−

M2(
1+ pjM

)2
· In2
+

3Q−1 (ε)
√
QnIn2

·
M2(

1+ pjM
)4
}

=

Q∑
q=1

{
M2(

1+ pjM
)2
· In2

·

(
3Q−1 (ε)
√
Qn

·
1(

1+ pjM
)2 − 1

)}

⩽
Q∑
q=1

{
M2(

1+ pjM
)2
· In2
·

(
1(

1+ pjM
)2− 1

)}
⩽ 0.

(29)

Hence, − ∂2ri
∂2pj

⩾ 0. In addition, we have − ∂2ri
∂2pipj

= 0,
∀i ̸= j, thus, it can be written as a diagonal matrix for the
hessian matrix of it. Since this matrix is positive semidefinite,
the problem (27) is convex. The pseudocode for the lower
level is shown in Algorithms 2 and 3. In Algorithm 3
|Channels| denotes the numbers of Channels.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The number of neurons π l

a in the l-th layer of the
actor neural network and the epoch steps TU of upper-
level policy training can be used to represent the
computational complexity of the learning method for
the upper-level control policy (i.e., Algorithm 1) as

Algorithm 2 Proportional Fairness Scheduler Procedure
Input: Slice RB {w1,w2, . . . ,wN };
Output: Allocate user RB {RB1,RB2, , . . . ,RBU };
1: index = 0.
2: for n in range(N ) do
3: Calculate available RBs for slice n, namely wn.
4: Calculate require RBs slice user{

RBn,1,RBn,2, . . . ,RBn,u
}
, u ⩽ Uactvn .

5: Calculate instantaneous available data rate of the i-th
user of the slice n, rn,i,t−1 and average data rate Rn,i,t−1.

6: Calculate the priority of the user, and sort users by
priority.

7: index 1=index
8: for i in range(u) do
9: Calculate the required resource blocks according

to the user’s priority order.
10: if wn ⩾ RBn,i then
11: aRBn,i = RBn,i (aRBn,i denote the assign RBs

for user i of slice n).
12: wn− = aRBn,i
13: else
14: if wn ⩾ 0 then
15: aRBn,i = wn
16: wn = 0
17: elseaRBn,i = 0
18: end if
19: end if
20: RBn,i =

[
index1, index1+ aRBn,i

]
.

21: index1 = index1+ aRBn,i
22: index+ = wn
23: end for
24: end for
25: Obtain user RB {RB1,RB2, , . . . ,RBU }.

Algorithm 3Water-Filling-Based Power Allcoation
Input: User RB {RB1,RB2, , . . . ,RBU }, total power pmax;
Output: RBs power {PRB1,PRB2 . . . ,PRBF };
1: Sort resource blocks according to their channel coeffi-

cients.
2: Remove channels; Rems = 0.
3: Calculate the water line.
4: Power allocation to resource blocks, calculate RBs

power.
5: while Psum > Pmax) and (Rems < |Channels| do
6: Rems+ = 1.
7: Calculate the water line.
8: Power allocation to resource blocks.
9: end while
10: Divide the remaining power equally among the remain-

ing channels.
11: Obtain RBs power {PRB1,PRB2, . . . , ,PRBF }.

O
(
TU

(∑Lactor
l=0 π l

aπ
l+1
a +

∑Lcritic
l=0 π l

cπ
l+1
c

))
. Lactor (Lcritic)

(22) denotes the number of hidden layers in the actor (critic)
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network, while π l
c is the number of neurons in the l-th layer of

the critic neural network. Algorithm 2’s lower-level control
policy’s learning procedure’s complexity may be calculated
using the formulaO (TLUactive), where TL denotes TTI steps.
The number of active users is represented by Uactive.
The computational complexity of Algorithms 1 and 2

grows linearly with the number of epoch steps, TTI steps, and
active users in the neural network and quadratically with the
number of neurons in the neural network layer.

V. SIMULATION ANALYSIS
A. SIMULATION ENVIRONMENT SETTINGS
In this study, we consider a typical downlink cellular network
system with one BS, three different service types (VoLTE,
eMBB, and uRLLC), and related slices in a simulation region
with a radius of 100 m, where there are 120 UEs. Within the
cell service region, there exists a random distribution of three
different user types. The actor network and cirtic network
learning rates were set to 0.002 and 0.01, respectively.
Additionally, the entropy regularization used to promote
exploration was set to 0.001. Users move at the beginning
of each epoch and remain constant within each epoch, slices
of the same type share the same movement pattern and will
bounce symmetrically back into the cell when the user moves
out of the cellular boundary. The specific parameter settings
are shown in Table 2 [12].

B. BASELINE ALGORITHM
1) HARD-SLICING
Hard-slicing is a technique inwhich all the RBs are divided by
the number of slices. Each service slice is always allocated 1

N
of the entire bandwidth because there are N types of services.
wn,t = 1

N ·W , wn is the whole bandwidth of the n-th slice in
t-th TTI.

2) DQN [11]
When the experience is set as the state, action, and reward
simultaneously, the agent receives continuous experience

input over time. Time-series correlations between the data
are shown when learning is performed in the order that
experiences arrive. As a result, the DQN uses experience
replay to erase the correlation. Learning is randomly taken
from the memory after the events have been briefly stored
there to eliminate any correlation. The target value is yt is
given by

yt = rt+1 + Υmax
a∈A

Q (st+1, a; θ) , (30)

where θ denotes the neural network’s parameters. The agent
learns the value of the action by updating θ to approach yt . For
effective learning, the DQN also has a fixed goal Q-network
and an experience replay. DQN refers to the training data as
a target value and visualizes it as an action value. The error
was the TD error. Consequently, the loss function that must
be reduced is

L (θ) = E
[
(yt − Q (st , at : θ))2

]
. (31)

The goal update interval is referred to as the update interval
θ∗. A gradient-based strategy is frequently used to obtain θ

θ ← θ − α∇L (θ) . (32)

3) DUELING DQN
Using the dueling DQN method, (s, a), the value function
V(s) and advantage function A(s, a) are separated from the
Q-values [31]. The reward from state s is represented by
the value function V(s). Formula A(s, a) can be used to
determine the relative superiority of one action over the other
actions of the advantage function. By combining the value V
and advantage A for each activity, we were able to derive
Q-values:

Q (s, a, θ, α, β) = V (s, θ, β)+ A (s, a, θ, α) . (33)

We set the highest value in the advantage function to
zero, and all other values to negative numbers, forcing the
maximum Q-value to be equal to V. As a result, we will have

max
F∑
j=1

B


Q∑
q=1

log2

(
1+

ρpjλj,q
Mσ 2

)
−

√√√√√1
n

Q− Q∑
q=1

(
1+

ρpjλj,q
Mσ 2

)−2Q−1(ϵ)
In2


F∑
j=1

pj ⩽ Pmax. (26)

max
F∑
j=1

B


Q∑
q=1

log2

(
1+

ρpjλj,q
Mσ 2

)
−

√
Q
n

Q−1(ϵ)
In2

1−
1
2Q

Q∑
q=1

(
1+

ρpjλj,q
Mσ 2

)−2
F∑
j=1

pj ⩽ Pmax. (27)
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TABLE 2. Default parameter setting for network slicing.

a precise value for V that can be used to add all the advantages
and arrive at a solution:

Q (s, a, θ, α, β) = V (s, θ, β)

+

(
A (s, a, θ, α)− max

a′∈|A|
A
(
s, a′; θ, α

))
.

(34)

An alternate module substitutes an average for the max
operator:

Q (s, a, θ, α, β) = V (s, θ, β)

+

(
A (s, a, θ, α)−

1
|A|

A
(
s, a′; θ, α

))
.

(35)

The target Q value is computed using the following
formula, and the proposed model must approximate the target
Q value:

yt = rt+1 + γmax
a∈A

Q (st+1, a; θ, α, β) . (36)

Our model is trained to approximate yt , and using the gra-
dient descent method, all parameters are gradually updated to
reduce the mean square error ∥Q (st+1, a; θ, α, β)− yt∥2 as
follows:

θ ← θ − φ∇θ, α← α − φ∇α, β ← β − φ∇β, (37)

where φ denotes the learning rate.

C. EXPERIMENT RESULT
In this section, we contrast the Dueling DQN, DQN, and
hard slicing algorithm simulation results with those of the
proposed A2C algorithms.

The first aim was to test the spectrum efficiency of the
different methods. The variations in the spectrum efficiency
of the system with respect to the iteration index are shown
in Figure 3. It can be observed that the hard algorithm
has a fixed spectrum efficiency of approximately 250. The

FIGURE 3. Comparison of spectrum efficiency for different methods.

spectrum efficiency of the DQN and Dueling DQN do not
converge during the entire iteration, as they fluctuate in
the range of 50-500. In contrast, Dueling DQN has less
fluctuation than DQN. The A2C has a stable spectrum
efficiency of approximately 400 and a fast convergence rate,
which converges after approximately 2000 iterations. It can
be observed that A2C has the best results regarding the
effectiveness of the spectrum.

A performance comparison of QoE for each service is
presented in Figure 4-6. It can be seen that all three slices met
our expectations by learning from the viewpoint of QoE using
the A2C algorithm. In Figure 4, the VoLTE slice, its QoE is
stable at 1 by A2C, because its requirement is easy to meet
both in rate and packet delay. The QoE by Dueling DQN,
DQN, and hard slicing algorithms have some fluctuation,
not converging in the entire training process. The QoE by
Dueling DQN, DQN, and hard slicing algorithm in the range
of 0.994 to 1 has a similar convergence performance.
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FIGURE 4. QoE of VoLTE slice.

FIGURE 5. QoE of eMBB slice.

The QoE of eMBB is shown in Figure 5, where the QoE of
eMBB byA2C slicing converges at a fast speed andmaintains
a steady state with a higher value of approximately 1. The
Dueling DQN and DQN do not converge during the entire
iteration, but the Dueling DQN has much less fluctuation.
The QoE of the hard algorithm was stable at a lower value
of approximately 0.5.

The QoE of the uRLLC is shown in Figure 6. The uRLLC
QoE performance of A2C was stable at approximately 1.
The Dueling DQN, DQN algorithms, and hard do not have
convergence in the whole iteration process. It can be seen that
despite the uRLLC slice having strict latency requirements,
we can achieve better QoE performance using short packet
transmission. The QoE by Dueling DQN, DQN, and hard
slicing algorithm in the range of 0.996 to 1 has a similar
convergence performance.

As specified in (11), we can combine three RL algorithms,
one for each slice. QoE and SE each have importance weights
of ζ = [1, 1, 1] and µ = 0.01, respectively. The utility

FIGURE 6. QoE of uRLLC slice.

FIGURE 7. Utility function of all network slicing.

function can demonstrate how well RAN slicing control
works. In other words, the QoE and SE performance of
the network slices improves with increasing utility function
values. Figure 7 shows the utility values during the training.
The utility function values ranged widely between 2 and 8.
The utility value by the Dueling DQN and DQN algorithms
does not converge during all iterations. Hard slicing has
the worst utility value around 5. The A2C has a stable
utility of approximately 7, with a fast convergence rate of
approximately 2000 iterations. This shows that the utility
value of A2C is superior to Dueling DQN, DQN, and hard
slicing algorithms. From the above results, it is clear that
utility and spectrum efficiency have similar trends, which
stem from (11).

The packet drop rate is shown in Figure 8. Obviously,
the packet drop rate by A2C is the lowest, approaching 0,
followed by the hard algorithm. The DQN and Dueling DQN
have a high packet loss rate compared to A2C.
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FIGURE 8. Packet drop rate of all network slicing.

Overall, the slicing resource allocation by the A2C
algorithm has an advantage in terms of convergence speed,
QoE, and packet drop rate over the other three algorithms.
The problem with Dueling DQN and DQN is that they do
not converge. The hard slicing algorithm has a lower uRLLC
QoE and utility than the other three algorithms. Similar trends
are observed for all four algorithms mentioned above when
assessing their efficiency and utility.

VI. CONCLUSION
In this paper, we presented a DRL joint massive MIMO
resource allocation method in RAN slicing that aims to
optimize the long-term QoE of network slices while also
maximizing the SE. The main components of the proposed
solution are a lower-level controller and an upper-level
controller. To improve QoE and SE performance, the upper-
level controller applies the A2C algorithm to allocate the
bandwidth between slices in each epoch according to the
user mobility at a rough granularity. The lower-level PF and
WF controller adapter schedules each network slice’s active
UEs’ PRB and power allocation at a fine granularity, which
is combined with MIMO to increase the rate. Compared
with the Dueling DQN, DQN, and hard schemes, the
simulation results demonstrate that A2C provides higher
QoE and SE performance and stable convergence control
performance. The results prove that uRLLC slices with high
latency requirements have better results with short packet
transmission. In addition, it has a very low packet loss rate.
Future work will attempt to further improve the convergence
speed using a more effective algorithm.
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