
Received 29 June 2023, accepted 14 July 2023, date of publication 19 July 2023, date of current version 3 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296801

Design and Implementation of a Lightweight
Deep CNN-Based Plant Biometric
Authentication System
WENQING YAN 1, (Member, IEEE), JINGWEI TANG2, AND SANDRO STUCKI 1,3
1Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
2Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland
3Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland

Corresponding author: Wenqing Yan (yanw@ethz.ch)

This work was supported in part by the ETH Zürich Career Seed Grant under Grant 1-009041.

ABSTRACT The wide application of personal biometric information such as face, fingerprint, iris, and
voiceprint has simultaneously created many new ethical and legal issues, including the fraudulent use of
biometrics. A non-human biometric system is demanded as an alternative, which features no human private
information and can be replaced or renewed from time to time. The main objective of this study is to identify
wood or leaf biometric patterns and verify their identities by building their respective datasets. On this
basis, a plant biometric feature-based recognition system and authentication application were developed and
implemented by employing a deep convolutional neural network (CNN) architecture to learn the embedding
model using a distance-based triplet-loss similarity metric. We used two kinds of small datasets based on
wood and leaves, which are Spruce Cross-Section (SCS) dataset and Collinsonia Canadensis Leaf Abaxial
Surface (CCLAS) dataset. A series of artificial augmentations have been integrated into training to mimic
the changes in the images during the usage of keys in real-world scenarios. The final results achieve accuracy
values of 97.56% (validation set) and 96.06% (test set) on the Spruce Cross-Section (SCS) dataset and
99.11% (validation set) and 98.61% (test set) on the Collinsonia Canadensis Leaf Abaxial Surface (CCLAS)
dataset, indicating the high reliability of this non-human biometric authentication system.

INDEX TERMS Biometric authentication system, deep learning, leaf biometric recognition, Squeeze-Net,
wood biometric recognition.

I. INTRODUCTION
Authentication by human biometric verification has advanced
tremendously and is becoming increasingly prevalent in the
world today. This encompasses behaviour characteristics
such as gait [1], keystrokes [2], signatures [3], [4], specific
physiological characteristics like fingerprints [5], [6], [7],
facial features [8], iris [9], [10], [11], voice [12], [13], [14],
and internal biometric data such as heart rate and breath-
ing [1]. According to the 2021 Global Identity & Fraud
Report, although 74% of consumers prefer biometric authen-
tication as the primary security method, users deemed it the
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least secure [15]. When this intrinsically unique personal bio-
metric data is extensively used on versatile public occasions,
it involves more and more security issues. Our biometric data
can be leaked or hacked from the database, while replacing
or updating it with a new biological feature from time to
time is unlikely. Moreover, it is difficult to ensure that the
collection, storage and use of biometric data are conducted
in accordance with international human rights and privacy
laws [16]. In the case of password authentication systems,
such as knowledge-based authentication, individuals may
encounter difficulties remembering answers due to the wide
range of public records and information sources from which
the questions are generated. These questions can be distress-
ing as they delve into personal history or past relationships.
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FIGURE 1. a) Schemes and images of biometric features on wood and
leaf: a wooden block originated from a wood cross-section, which
consists of distinct early woods and late woods; a leaf biometric feature
is composed of midribs and veins. b) Demonstrative biometric patterns of
wood samples for verification. c) Wood biometric verification for a lock
system. d) A ‘‘leaf key’’ for security identification.

Additionally, the use of numbers, letters, or characters as
answers can lead to easy leakage during communication or
be known by acquaintances. In contrast, biometric patterns
are intricate and unique, enhancing security. Due to the high
efficiency of human biometric recognition and low system
cost, there are different degrees of abuse of face recognition
technology in shopping malls, scenic spots, communities,
and even at crime scenes. Besides the concern of fraudulent
use and leakage, the aging of the biometrics degrades the
performance of their recognition algorithms [17].

As a complementary solution, a non-human biological
verification system is proposed as an alternative to human
biometric recognition. Plant organs and tissues have charac-
teristics that are uniquely identifiable in terms of the form and
configuration of their patterning. Like human fingerprints,
no two growth ring sequences of wood or two leaves are
exactly identical.

Wood, one of the most abundant natural materials, is an
ultimate renewable and sustainable resource. The wood bio-
metric pattern features seasonal-generated annual rings of
varying width consisting of earlywoods and latewoods with
considerable differences in density and width, most pro-
nounced in softwoods and ring-porous hardwoods. The fine
structure of wood grain is composed of wood fibers, vessels,
and tracheids varying with different arrangement directions,
making wood a perfect material for identification (Figure 1a).
Similarly to wood, each leaf is also unique. The essential

structure of a leaf features a midrib and branches on each side
to produce veins of vascular tissue.

Computer vision (CV)-based identification on wood and
leaf features has been making steady progress to meet
the needs of the industry and market [18], [19]. Wood or
leaf recognition mainly contributes to the science of plant
classification, recognition, identification, plant education,

or environmental protection and exploration. This presented
work has been carried out with the goal of authentication for
lock systems and exhibits the following contributions.

• Develop CNN-based wood and leaf biometric recog-
nition systems, as sustainable alternatives to human
biometric security systems.

• Assess the feasibility of the proposed system using dif-
ferent evaluation matrices such as accuracy, precision,
recall, and F1 score.

• A learning-based method is proposed with an adapted
Squeeze-Net for feature extractions and verifications.
The model is trained with triplet loss to increase the
embedding distance of nonmatch-identity pairs and
decrease that of match-identity pairs. A simple decision
tree algorithm is adopted for determining the threshold
of classification of match- and nonmatch identities.

• Separate image datasets of wood and leaves are created
for training. A series of artificial augmentations, such
as image enhancement, rotation, and translations, are
integrated into training to mimic the changes in the
images during the usage of keys in real scenarios.

• This paper presents visualizations of the ground-truth
and predicted examples, to interpret the obtained results
and analyse the reliability of the models’ predictions.

II. RELATED WORK
According to purposes and motivations, research on
CV-based wood or leaf identification can be classified as fol-
lows: 1) Recognition and classification of species. Koch et
al. demonstrated computer-aided identification and descrip-
tion of trade timbers [20]. Lau and co-workers developed an
automated wood species recognition system and achieved a
recognition rate of 80.00% [21]. Souza et al. analysed timber
sections by using deep learning based on wood timber micro-
scope images with 281 species, which has helped efficiently
provide the timber certification and allow the application
of correct timber taxing [22]. A new Gabor based wood
recognition approach has been demonstrated by researchers
based on wood stereogram images, the performance of
recognition has been improved by extracting more efficient
and effective features from Gabor patterns and carrying out
in different areas [23]. Mouine et al. recognized leaf by
combining triangular approaches with a shape-context based
descriptor, and achieved a high retrieval accuracy [24]. 2)
Log traceability. Uhl and co-workers investigated biometric
log recognition using a texture feature-based fingerprint
matching technique [25] and evaluated the applicability in
real world identification scenarios [26]. To combat the ille-
gal logging more efficiently, a fully automated system has
been built by researchers in the same group by applying a
CNN-based segmentation and recognition [27]. 3) Surface
defect detection. Wang et al. studied three common defects
including dead knots, poles and living knots of wood based
on texture features, the highest recognition rate is 91.33%
corresponding to the network structure with 12 layers of
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hidden layers [28]. 4) Identification of disease for certain
species. Fang et al. achievedmacroscopic and dynamic detec-
tion of pine wood nematode disease with the help of CNN
remote sensing methods [29]. Brownspot or other color infor-
mation were used for leaf disease recognization [30], [31].
5) Waste recycling. Researchers in Belgium presented a
vision-based solution for such a wood waste sorting system.
They applied a classification algorithm to separates medium
density fibreboard (MDF), oriented strand board (OSB) and
other particleboard (grade B wood) from a mixed wood waste
stream [32]. This work has a strong positive impact on the
environment.

Among the above-mentioned applications, in the early
period, the most frequently used computer vision methods
were conventional machine learning methods, which are
based on hand-crafted features. These features are man-
ually engineered and can be determined by gray level
co-occurrence matrix (GLCM) [33], [34], [35], [36], local
binary pattern (LBP) [37], [38], [39], scale-invariant feature
transform (SIFT) [40], [41], [42], speeded up robust fea-
tures (SURF) [43], [44], oriented features-from-accelerated-
segment-test (FAST) [43], etc. With the development of deep
learning, high-level plant features can be learned by machine
automatically from a dataset in an incremental manner. This
eliminates the need of manual feature extraction by domain
expertise, making CV-based plant identification more widely
pervasive. Convolutional neural network (CNN) is the most
commonly applied deep neural network technique. Ding et
al. used the CNN algorithm to effectively extract the wood
defect contour and reached a wood defect recognition accu-
racy of 96.72% in a test time of only 187ms [45]. Zhou
et al. identified wood microscopic images based on CNN’s
precise wood specification identification model [46]. Jyothi
and co-authors proposed a modified version of CNN that
constituted multilevel layers and enabled testing on a system
with a very small and highly degraded dataset [47]. In order
to learn the representative features from the complex diseased
leaf images, a three-channel CNN model was constructed by
combining three color components, each channel is fed by
one of the three color components of the RGB image [31].

Deep learning networks have demonstrated their signif-
icance in plant identification, classification, and disease
recognition. A highly reliable plant-based biometric authen-
tication system is necessary to meet the needs of the industry
and market, simultaneously protecting human private infor-
mation from fraudulent use and illegal collection.

III. METHODOLOGY
A. SCS AND CCLAS DATASETS
We create two separate datasets for experiments by capturing
macroscale RGB images using a mobile phone (HUAWEI
P30 Pro). Each image sample has an original size of 3648 ×

2736 RGB images. The first dataset utilizes spruce cross-
section (SCS, figure 2a, cut by circular saw) planes, and the
second one comes from Collinsonia canadensis leaf abaxial

FIGURE 2. a) An exemplary image from SCS system and b) image from
CCLAS dataset.

surface (CCLAS, figure 2b, obtained from nature). This part
of the plant was chosen due to their characteristic textures
which are easily distinguishable by modern deep learning
methods. The image samples in SCS are cropped to remove
unimportant borders outside the object and resized, resulting
in images in pixels 899 × 311.
The images in CCLAS are roughly segmented according

to colours, and resized to 640 × 320. Examples of the dataset
can be seen in Figure 2. Each of the datasets contains three
subsets: 200 unique examples for the training set, 20 unique
samples for the validation set, and 20 unique samples for
the test set. To mimic the real-world key usage scenarios,
we randomly place each sample five times in both the val-
idation and test sets, and capture them in varying lighting
conditions. This results in effectively 100 samples in both
validation and test sets. It is worth noting that for the purpose
of saving materials, some independent images from the SCS
dataset are from different cross-section planes along the same
wood block with a vertical distance as low as 5 cm, which
could result in extremely similar textures and add difficulty
to verification. These samples account for roughly 50% of the
total SCS samples.

B. IMAGE PREPROCESSING AND TRIPLET LOSS
In recent developments in computer vision, several effec-
tive convolutional neural network architectures have been
developed for image classification purposes [48], [49], [50].
These architectures can usually be seen as general feature
extraction combined with one classification layer. In this
work, we utilize the feature extraction part of Squeeze-
Net [51] that is specifically created with a small number
of trainable parameters and thus low memory and power
consumption for easy incorporation into embedded systems.
The input to the network is a 3-channel RGB image of
arbitrary size. During training, we always use images of size
320 × 160. A pooling layer is added at the end of the archi-
tecture so that the network outputs a 1000-element feature
embedding.

The training process aims at encouraging the distances
between a pair of feature embeddings with the ‘‘same’’ iden-
tities to be smaller than the minimum distance of samples
between ‘‘different’’ identities. The triplet loss function [52]
developed in face recognition fields is a common way of
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achieving this purpose:
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where a stands for ‘‘anchor’’ sample, p for ‘‘positive’’ sample,
and n for ‘‘negative’’ sample. Anchor and positive samples
are of the same identity, while anchor and negative sam-
ples are of different identities. f (x) is the feature embedding
output of the neural network. Margin value α is a hyperpa-
rameter. In our experiments, we fix α = 111.384.

C. DECISION TREE FOR DISTANCE THRESHOLDING
The training results in the embeddings of the same-identity
features being closer and the embeddings of the different-
identities being further away. However, to verify whether the
incoming wood or leaf is of the same identity as the current
wood or leaf, a threshold value of embedding distances is
required. If the distance is below the threshold, it is recog-
nized that the incoming sample has the same identity as the
current sample, and vice versa.

In this study, a simple decision tree of depth one for thresh-
olding is adopted. The threshold value is computed purely
based on (augmented) training examples: all possible pairs in
the training set are selected to fit the decision tree. Once fitted,
the threshold value can then be used to determine (predict)
whether the pairs in the validation or test sets are of the
‘‘same’’ identity (1) or ‘‘different’’ identity (0).

D. DATA AUGMENTATION
To train the network to predict the same image under rota-
tion, translation, and lighting condition variation to have the
‘‘same’’ identity, a series of the above operations for data
augmentation are adopted.

In particular, each input image is rotated 0-20 degrees ran-
domly; translated 0%-10% of the total size in both horizontal
and vertical directions randomly; flipped horizontally with a
probability of 0.5; and adjusted on brightness, contrast, and
colour balance with factors sampled from a gaussian distri-
bution of mean 1.0 and standard deviation 0.2. The samples
are finally center-cropped and resized to 320 × 160 as input
for training. Examples of augmented samples can be seen in
Figure 3.

E. EVALUATION METRICS
The proposed system is primarily evaluated based on four
metrics. The system utilized the evaluation metrics for mea-
suring the effectiveness of the proposed system: accuracy,
precision, recall, and F1 score.

F. APPLICATION
The application setup has four parts: 1) Wood samples are
taken randomly from the test set. 2) The same mobile phone
(HUAWEI P30 Pro) is used for image capture. 3) Laptop
with CNN identification system in Python. 4) Python lock
with both lamp and motor systems. The setup consisted of

FIGURE 3. Examples from both SCS (top row) and CCLAS (bottom row)
dataset. a) is the original sample. b) – h) are augmented samples.

an Arduino Nano connected to a servo motor (SG90), a red
and green LED, and an HC-05 Bluetooth SPP (Serial Port
Protocol) module. The setup was powered by a 9-volt battery.
The HC-05 was connected to the Arduino and configured
in secondary mode to receive commands via Bluetooth. The
servo motor was used as a lock. In its ground state, the servo
motor is at 0◦ and locks the lid. Sending a pre-defined unlock
signal to the HC-05 activates the green LED and triggers the
servo motor to rotate 90◦ and unlock the lid. If the received
signal does not correspond to the unlock signal, the red LED
is activated and the lock remains closed.

IV. RESULTS AND DISCUSSION
The implementation details of our deep CNN in both training
and testing steps will be described in this section. We per-
form our experiments using the SCS and CCLAS datasets to
analyse the verification scenario. The result is compared with
other biometric verification systems.

We trained our model on GeForce GTX 1080 Ti (with
11GB of memory size) GPU tools and extensive amounts of
data. Figure 4 shows an overview of our model. At training
time, input images of different identities (ID0, . . . , IDm)
are preprocessed through the data augmentation technique
discussed in Section III-D. We created training pairs through
combining ID0 with other identities (ID1, . . . , IDm). Fea-
tures Embeddings of the images are then extracted by the
SqueezeNet Extractor. Triplet loss is subsequently applied
to train the neural network. At test time, two images from
the camera captures are passed through the feature extrac-
tor to get the embedding. The decision tree decides if
they are of the same identity based on the embedding
distances.

A. TRAINING OF SQUEEZE-NET ON A TRIPLET LOSS
FUNCTION
For detailed testing settings, the model supervised with triplet
loss is evaluated on the datasets. Figure 5 presents the prob-
ability density of the wood biometric system by using differ-
ent margins. There are some overlaps in distances between
100 and 200. This can be improved through better network
design and sample generation.
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FIGURE 4. A schematic diagram illustrating the constructing process of a deep Squeeze-Net models for wood recognition.
Here A stands for data augmentation, ID denotes identity. ‘‘1’’ is for ‘‘same’’ identity with the first sample (ID0), ‘‘0’’ is for
‘‘different’’ identity classification.

FIGURE 5. Left is the probability density of distance distribution from the
trained model for same-identity and different-identity pairs in the
training set. The curves show match rate and nonmatch rate for a given
threshold α over the embedding distance distributions. Right is the
decision tree visualization: The value 111.384 is the threshold value we
obtained. This value was used for the predictions in validation/test set.

Match rate is the percentage of match pairs whose embed-
ding distance are less than or equal to α, nonmatch rate is
the percentage of nonmatch pairs whose embedding distance
is less than α. The value of 111.384 is the threshold value
we obtained. We use this value for the predictions in the
validation or test set.

Four metrics are used as indicators to evaluate the per-
formance of plant biometric recognition. The accuracy (ξ )
is defined based on the percentage of correctly verified true
positives (TP) and true negatives (TN) over the total verified
samples, including false positives (FP) and false negatives
(FN) as shown in Eq. 2, precision, recall, and F1 score can
be calculated based on Eqs. 3, 4 and 5:

ξ =
TP + TN

TP + FP + FN + TN
×100% (2)

Precision =
TP

TP + FP
×100% (3)

Recall =
TP

TP + FN
×100% (4)

F1score =
2 × Precision × Recall
Precision + Recall

×100% (5)

FIGURE 6. Results of recognition on wood biometric images, including
correctly recognized a), b), c) and misclassified wood images d), e). The
higher label is ‘‘ground-truth → prediction’’. 1: same, 0: different. Dist:
distance.

where precision represents the positive predictive value,
recall stands for the sensitivity of the system.

Figure 6 depicts the correctly recognized and misclassi-
fied wood samples whose accuracy is 96.06%. The higher
label is ‘‘ground-truth → prediction’’. Figure 6 d) and e)
are examples of the wrong classification, which indicates
that the network is not able to 100% precisely predict the
result. This results in incorrect identification of the wood
key.
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FIGURE 7. Results of recognition on leaf biometric images, including
correctly recognized a), b), c) and misclassified d), e) leaf images. The
higher label is ‘‘ground-truth → prediction’’. 1: same, 0: different. Dist:
distance.

FIGURE 8. a) and d) are cosine distance distributions of different loss
functions on CCLAS dataset. Genuine and imposter distributions are
shown in blue and orange, respectively. The network on b) achives the
best separation of the genuine/imposter score distributions. a) without
the whole shape considered. b) with shape considered.

The sensitivity (recall) of the SCS dataset can be ame-
liorated from 67.00% to 89.50% for the test set simply by
applying more data augmentation, while simultaneously F1
score is improved from 60.63% to 68.19% (Table 1). How-
ever, there is no obvious difference between the four metrics
with or without using a large margin.

Figure 7 shows some examples of correctly and falsely
recognized leaf images, including the true negative and true
positive samples in a), b), and c). The matching is performed
by establishing feature correspondences based on their deep
embeddings.

Figure 8 depicts the genuine or imposter cosine distance
distributions on the CCLAS validation and test sets. Kernel
Density Estimation (KDE) is applied to measure the proba-
bility density of cosine distances. Fromfigure 8 a), we can see
a large overlap between the genuine and imposter distribution
curves. This implies that some features of different leaf keys
are incredibly close, leading to a low positive predictive value
(precision). A clear separation can be observed between the

TABLE 1. Results of SCS biometric recognition.

FIGURE 9. Comparison of leaf biometric recognition using CNN with
validation set a), and test set b).

two curves in Figure 8 b), this is consistent with the good
performance evaluated by metrics.

To increase the reliability of the leaf biometric system, the
performance of the leaf biometric network is studied with
and without considering the leaf shape parameter. We found
that after considering the whole leaf shape, the network has
outperformed the previous one by an improvement of 7.1% in
accuracy, 50.0% in F1 score, 30.5% in precision, and 53.1%
in recall. This works both in the validation set and the test
set. The system was designed such that it was able to achieve
three main things; recognize with 99.11% accuracy and an f1
score of 88.54%, recognize and identify its type with 98.61%
accuracy and an f1 score of 89.50%. The graph shown in
Figure 9 illustrates the results in further detail.
Table 2 demonstrates that our system has achieved an accu-

racy value that surpasses the majority of previously reported
systems in terms of accuracy. Notably, numerous studies
focusing on wood or leaf recognition have reported systems
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TABLE 2. Comparison of the results obtained from our system (in bold) with those reported in state-of-the-art publications.

FIGURE 10. Diagram for the whole application setup.

for species recognition or classification. In such cases, the
variations between different species are considerably larger
than the differences within the same species. Our accuracy
values (96.06% for wood and 98.61% for leaf) are based
on discerning differences within the same species, includ-
ing instances where the samples were taken from the same
trunk with a vertical distance of just 5 cm, as explained
in Part III. A.

V. APPLICATION AND DISCUSSION
Figure 10 and 11 illustrates a proof-of-concept application
that involves a camera system, a Python CNN system, and
a Python lock. The camera captures images, specifically of
wood, and extracts the encodings of the wood biometric

feature. These encodings are then compared to those stored
in the database for verification. If the encoding matches (α ≤

111.384), the green light turns on, indicating that the door
is opened. Conversely, if the wood feature is unknown (α >

111.384), the red light turns on, indicating that the door
remains closed.

The verification process is documented, and the corre-
sponding distance value is displayed on the CNN network.
Figure 11b shows a screenshot of the output. In the first
section, 10 wood blocks are designed as ‘‘false keys’’ that do
not match, while one wood block is defined as the ‘‘correct
key’’ that matches the stored encodings. By using the ‘‘correct
key,’’ the green light is automatically turned on, indicating a
successful door opening. However, if any of the 10 ‘‘wrong
keys’’ are used, the red light is illuminated.

In the second section, the system verifies the repositioning
of the ‘‘correct key’’ and the upside-down placement of the
‘‘wrong keys.’’ This further demonstrates the reliability of
the system in correctly identifying the wood feature and
distinguishing between the correct and incorrect keys.

While using wood or leaf biometrics for authentication in
a lock system may offer certain advantages such as natural
and renewable features, it also presents several challenges
and disadvantages that need to be carefully considered before
implementation. Firstly, Wood and leaves can be affected by
environmental conditions such as humidity, temperature, and
natural decay. These factors can alter the biometric character-
istics of the material, potentially leading to false readings or
inconsistencies in authentication. Secondly, Wood and leaves
can deteriorate over time, especially when exposed to outdoor
or harsh conditions. This can lead to changes in their biomet-
ric characteristics, affecting the accuracy of authentication.
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FIGURE 11. Examplenary application setup of wood biometric
authentication system. a) Overview of the four composites: keys, image
aquasition, CNN indentification implemented in Python, a lock controlled
by Python. b) a switch order sent from Python depended on distance
value. c) Green light represents for ‘‘open the door’’, red light means ‘‘not
open the door.’’

Additionally, wear and tear can occur with repeated use,
potentially rendering the biometric data less reliable or inef-
fective. Therefore, a proper encapsulation process is neces-
sary for successfully commercialization in real-world appli-
cations commercialization in real application scenario.

VI. CONCLUSION
Considering the increasing fraudulent use and other legal
issues of applications related to human biometric authentica-
tion, there exists a need for employing an alternative system to
protect human biometric information. In this paper, we imple-
mented a deep learning technique, CNN, for the recognition
and identification of wood and leaf biometric patterns. The
proposed system was trained and tested using the datasets,
and the experimental results deduced indicate the feasibility
and effectiveness of using plant-based biometric patterns in
conjunction with CNN in a authentication system. In a nut-
shell, bothwood and leaf biometric recognition systems result
in accuracy values above 96% in the validation set and the test
set. The application further demonstrates its high reliability
and practicability in real-world scenarios.

ACKNOWLEDGMENT
(Wenqing Yan and Jingwei Tang contributed equally to this
work.)

REFERENCES
[1] S. Vhaduri, S. V. Dibbo, and W. Cheung, ‘‘HIAuth: A hierarchi-

cal implicit authentication system for IoT wearables using multi-
ple biometrics,’’ IEEE Access, vol. 9, pp. 116395–116406, 2021, doi:
10.1109/ACCESS.2021.3105481.

[2] M. L. Ali, K. Thakur, C. C. Tappert, andM.Qiu, ‘‘Keystroke biometric user
verification using hidden Markov model,’’ in Proc. IEEE 3rd Int. Conf.
Cyber Secur. Cloud Comput. (CSCloud), 2nd IEEE Int. Conf. Scalable
Smart Cloud (IEEE SSC), Beijing, China, Jun. 2016, pp. 204–209, doi:
10.1109/CSCloud.2016.23.

[3] G. S. Eskander, R. Sabourin, and E. Granger, ‘‘A bio-cryptographic sys-
tem based on offline signature images,’’ Inf. Sci., vol. 259, pp. 170–191,
Feb. 2014, doi: 10.1016/j.ins.2013.09.004.

[4] A. Kholmatov and B. Yanikoglu, ‘‘Biometric cryptosystem using online
signatures,’’ in 21st Int. Symp. Comput. Inf. Sci. (ISCIS), in Lecture Notes
in Computer Science, vol. 4263, İstanbul, Turkey, Nov. 2006, p. 981.

[5] J. Baidya, T. Saha, R. Moyashir, and R. Palit, ‘‘Design and implementation
of a fingerprint based lock system for shared access,’’ in Proc. IEEE 7th
Annu. Comput. Commun. Workshop Conf. (CCWC), Las Vegas, NV, USA,
Jan. 2017, pp. 1–6.

[6] I. F. Ismail, M. Fawzi, W. A. W. Jamaludin, R. H. Madon, A. F. Abdullah,
and M. A. Abdullah, ‘‘Development of a lock biometric authentication
system for a battery powered locking device,’’ Int. J. Integr. Eng., vol. 13,
no. 2, pp. 16–23, 2021.

[7] M. Szczepanik, I. J. Jozwiak, T. Jamka, and K. Stasinski, ‘‘Security lock
system for mobile devices based on fingerprint recognition algorithm,’’
in Proc. 36th Int. Conf. Inf. Syst. Archit. Technol. (ISAT), in Advances in
Intelligent Systems and Computing, vol. 431, Karpacz, Poland, Sep. 2015,
pp. 25–35, doi: 10.1007/978-3-319-28564-1_3.

[8] M. Doi, Q. Chen, K. Sato, and K. Chihara, ‘‘Lock-control system using
face identification,’’ in Audio- and Video-based Biometric Person Authen-
tication (Lecture Notes in Computer Science), vol. 1206, J. Bigun, G.
Chollet, and G. Borgefors, Eds. Berlin, Germany: Springer-Verlag, 1997,
pp. 361–368.

[9] T. Ko, ‘‘Iris recognition for biometric identification,’’ in Proc. 9th
World Multi-Conf. Syst., Cybern. Inform., Orlando, FL, USA, Jul. 2005,
pp. 263–268.

[10] P. P. Polash and M. M. Monwar, ‘‘Human iris recognition for biometric
identification,’’ in Proc. 10th Int. Conf. Comput. Inf. Technol. Dhanmondi,
Bangladesh: United International University, Dec. 2007, p. 44.

[11] O. Seyeddain, H. Kraker, A. Redlberger, A. K. Dexl, G. Grabner, and
M. Emesz, ‘‘Reliability of automatic biometric iris recognition after pha-
coemulsification or drug-induced pupil dilation,’’ Eur. J. Ophthalmol.,
vol. 24, no. 1, pp. 58–62, Jan. 2014, doi: 10.5301/ejo.5000343.

[12] A. Alruwaili and S. Hendaoui, ‘‘Improved multi-layer authentication
scheme by merging one-time password with voice biometric factor,’’ Int.
J. Comput. Sci. Netw. Secur., vol. 21, no. 9, pp. 346–353, Sep. 2021, doi:
10.22937/ijcsns.2021.21.9.45.

[13] M. Ghalandari, I. Mahariq, F. Ghadak, O. Accouche, and F. Jarad,
‘‘Dynamic audio-visual biometric fusion for person recognition,’’ Com-
put., Mater. Continua, vol. 71, no. 1, pp. 1283–1311, 2022, doi:
10.32604/cmc.2022.021608.

[14] R. A. Rashid, N. H. Mahalin, M. A. Sarijari, and A. A. A. Aziz,
‘‘Security system using biometric technology: Design and implementa-
tion of voice recognition system (VRS),’’ in Proc. Int. Conf. Comput.
Commun. Eng., Kuala Lumpur, Malaysia, May 2008, pp. 898–902, doi:
10.1109/iccce.2008.4580735.

[15] Experian. (2021). 2021 Global Identity and Fraud Report. [Online].
Available: https://www.experian.de/content/dam/noindex/emea/
germany/Experian-Global-Identity-Fraud-Report-2021.pdf

[16] M. Smith and S. Miller, ‘‘The ethical application of biometric facial
recognition technology,’’ AI Soc., vol. 37, no. 1, pp. 167–175, Mar. 2022,
doi: 10.1007/s00146-021-01199-9.

[17] F. M. Z. Heravi, E. Farazdaghi, R. Fournier, and A. Nait-Ali, ‘‘Impact of
aging on three-dimensional facial verification,’’ Electronics, vol. 8, no. 10,
Oct. 2019, Art. no. 1170, doi: 10.3390/electronics8101170.

[18] S.-W. Hwang and J. Sugiyama, ‘‘Computer vision-based wood identi-
fication and its expansion and contribution potentials in wood science:
A review,’’ Plant Methods, vol. 17, no. 1, Apr. 2021, Art. no. 47, doi:
10.1186/s13007-021-00746-1.

[19] S. Sachar and A. Kumar, ‘‘Survey of feature extraction and classification
techniques to identify plant through leaves,’’ Expert Syst. Appl., vol. 167,
Apr. 2021, Art. no. 114181, doi: 10.1016/j.eswa.2020.114181.

VOLUME 11, 2023 79991

http://dx.doi.org/10.1109/ACCESS.2021.3105481
http://dx.doi.org/10.1109/CSCloud.2016.23
http://dx.doi.org/10.1016/j.ins.2013.09.004
http://dx.doi.org/10.1007/978-3-319-28564-1_3
http://dx.doi.org/10.5301/ejo.5000343
http://dx.doi.org/10.22937/ijcsns.2021.21.9.45
http://dx.doi.org/10.32604/cmc.2022.021608
http://dx.doi.org/10.1109/iccce.2008.4580735
http://dx.doi.org/10.1007/s00146-021-01199-9
http://dx.doi.org/10.3390/electronics8101170
http://dx.doi.org/10.1186/s13007-021-00746-1
http://dx.doi.org/10.1016/j.eswa.2020.114181


W. Yan et al.: Design and Implementation of a Lightweight Deep CNN-Based Plant Biometric Authentication System

[20] G. Koch, I. Heinz, and H. G. Richter, ‘‘Demonstration of the database
macroHOLZdata computer-aided identification and description of trade
timbers,’’ inProc. 8thHardwoodConf. NewAspects HardwoodUtilization,
From Sci. Technol., Sopron, Hungary, Oct. 2018, pp. 72–73.

[21] J. Y. Tou, Y. H. Tay, and P. Y. Lau, ‘‘Rotational invariant wood species
recognition through wood species verification,’’ in Proc. 1st Asian Conf.
Intell. Inf. Database Syst., Dong Hoi, Vietnam, Apr. 2009, pp. 115–120,
doi: 10.1109/aciids.2009.10.

[22] A. R. de Geus, S. F. D. Silva, A. B. Gontijo, F. O. Silva, M. A. Batista,
and J. R. Souza, ‘‘An analysis of timber sections and deep learning for
wood species classification,’’Multimedia Tools Appl., vol. 79, nos. 45–46,
pp. 34513–34529, Dec. 2020, doi: 10.1007/s11042-020-09212-x.

[23] H.-J. Wang, H.-N. Qi, and X.-F. Wang, ‘‘A new Gabor based approach for
wood recognition,’’ Neurocomputing, vol. 116, pp. 192–200, Sep. 2013,
doi: 10.1016/j.neucom.2012.02.045.

[24] S. Mouine, I. Yahiaoui, and A. Verroust-Blondet, ‘‘Combining leaf salient
points and leaf contour descriptions for plant species recognition,’’ in
Proc. 10th Int. Conf. Image Anal. Recognit. (ICIAR), in Lecture Notes
in Computer Science, vol. 7950, Povoa de Varzim, Portugal, Jun. 2013,
pp. 205–214.

[25] R. Schraml, J. Charwat-Pessler, and A. Uhl, ‘‘Temporal and longitudinal
variances in wood log cross-section image analysis,’’ in Proc. IEEE Int.
Conf. Image Process. (ICIP), Paris, France, Oct. 2014, pp. 5706–5710.

[26] R. Schraml, J. Charwat-Pessler, A. Petutschnigg, and A. Uhl, ‘‘Towards
the applicability of biometric wood log traceability using digital log end
images,’’ Comput. Electron. Agricult., vol. 119, pp. 112–122, Nov. 2015,
doi: 10.1016/j.compag.2015.10.003.

[27] G.Wimmer, R. Schraml, H. Hofbauer, A. Petutschnigg, and A. Uhl, ‘‘Two-
stage CNN-based wood log recognition,’’ in Proc. 21st Int. Conf. Comput.
Sci. Appl. (ICCSA), in Lecture Notes in Computer Science, vol. 12955,
Cagliari, Italy, Sep. 2021, pp. 115–125, doi: 10.1007/978-3-030-87007-
2_9.

[28] X. YongHua and W. Jin-Cong, ‘‘Study on the identification of the wood
surface defects based on texture features,’’ Optik, vol. 126, no. 19,
pp. 2231–2235, Oct. 2015, doi: 10.1016/j.ijleo.2015.05.101.

[29] J. Huang, X. Lu, L. Chen, H. Sun, S. Wang, and G. Fang, ‘‘Accurate
identification of pine wood nematode disease with a deep convolution
neural network,’’ Remote Sens., vol. 14, no. 4, Feb. 2022, Art. no. 913, doi:
10.3390/rs14040913.

[30] S. M. M. Hossain, M. M.M. Tanjil, M. A. B. Ali, M. Z. Islam, M. S. Islam,
S. Mobassirin, I. H. Sarker, and S. M. R. Islam, ‘‘Rice leaf diseases recog-
nition using convolutional neural networks,’’ in Proc. 16th Int. Conf. Adv.
Data Mining Appl. (ADMA), in Lecture Notes in Artificial Intelligence,
vol. 12447, Foshan, China, Nov. 2020, pp. 299–314, doi: 10.1007/978-3-
030-65390-3_23.

[31] S. Zhang, W. Huang, and C. Zhang, ‘‘Three-channel convolutional neural
networks for vegetable leaf disease recognition,’’ Cogn. Syst. Res., vol. 53,
pp. 31–41, Jan. 2019, doi: 10.1016/j.cogsys.2018.04.006.

[32] M. Verheyen, W. Beckers, E. Claesen, G. Moonen, and E. Demeester,
‘‘Vision-based sorting of medium density fibreboard and grade a wood
waste,’’ in Proc. IEEE 21st Int. Conf. Emerg. Technol. Factory Autom.
(ETFA). Berlin, Germany: OWL Univ. of Applied Sciences and Arts,
Sep. 2016, pp. 1–6.

[33] K. Kobayashi, M. Akada, T. Torigoe, S. Imazu, and J. Sugiyama, ‘‘Auto-
mated recognition of wood used in traditional Japanese sculptures by tex-
ture analysis of their low-resolution computed tomography data,’’ J. Wood
Sci., vol. 61, no. 6, pp. 630–640, Dec. 2015, doi: 10.1007/s10086-015-
1507-6.

[34] B. G. de Andrade, V. M. Basso, and J. V. de Figueiredo Latorraca,
‘‘Machine vision for field-level wood identification,’’ IAWA J., vol. 41,
no. 4, pp. 681–698, Jun. 2020, doi: 10.1163/22941932-bja10001.

[35] R. Yusof, M. Khalid, and A. S. M. Khairuddin, ‘‘Application of kernel-
genetic algorithm as nonlinear feature selection in tropical wood species
recognition system,’’ Comput. Electron. Agricult., vol. 93, pp. 68–77,
Apr. 2013, doi: 10.1016/j.compag.2013.01.007.

[36] P. M. Devi and M. Sornam, ‘‘Classification of ancient handwritten Tamil
characters on palm leaf inscription using modified adaptive backpropa-
gation neural network with GLCM features,’’ ACM Trans. Asian Low-
Resour. Lang. Inf. Process., vol. 19, no. 6, pp. 1–24, Nov. 2020, doi:
10.1145/3406209.

[37] M. Nasirzadeh, A. A. Khazael, and M. B. Khalid, ‘‘Woods recognition
system based on local binary pattern,’’ in Proc. 2nd Int. Conf. Comput.
Intell., Commun. Syst. Netw., Liverpool, U.K., Jul. 2010, pp. 308–313, doi:
10.1109/CICSyN.2010.27.

[38] J. Martins, L. S. Oliveira, S. Nisgoski, and R. Sabourin, ‘‘A database for
automatic classification of forest species,’’Mach. Vis. Appl., vol. 24, no. 3,
pp. 567–578, Apr. 2013, doi: 10.1007/s00138-012-0417-5.

[39] Z. Lv and Z. Zhang, ‘‘Research on plant leaf recognition method based on
multi-feature fusion in different partition blocks,’’ Digit. Signal Process.,
vol. 134, Apr. 2023, Art. no. 103907, doi: 10.1016/j.dsp.2023.103907.

[40] K. Kobayashi, T. Kegasa, S.-W. Hwang, and J. Sugiyama, ‘‘Anatomical
features of Fagaceae wood statistically extracted by computer vision
approaches: Some relationships with evolution,’’ PLoS ONE, vol. 14, no. 8,
Aug. 2019, Art. no. e0220762, doi: 10.1371/journal.pone.0220762.

[41] P. Barmpoutis, K. Dimitropoulos, I. Barboutis, N. Grammalidis, and
P. Lefakis, ‘‘Wood species recognition through multidimensional texture
analysis,’’ Comput. Electron. Agricult., vol. 144, pp. 241–248, Jan. 2018,
doi: 10.1016/j.compag.2017.12.011.

[42] S. Lavania and P. S. Matey, ‘‘Leaf recognition using contour based edge
detection and SIFT algorithm,’’ in Proc. IEEE Int. Conf. Comput. Intell.
Comput. Res. Coimbatore, India: Park College of Engineering and Tech-
nology, Dec. 2014, pp. 275–278.

[43] S.-W. Hwang, K. Kobayashi, and J. Sugiyama, ‘‘Detection and visualiza-
tion of encoded local features as anatomical predictors in cross-sectional
images of Lauraceae,’’ J. Wood Sci., vol. 66, no. 1, Mar. 2020, Art. no. 16,
doi: 10.1186/s10086-020-01864-5.

[44] M. F. Kazerouni, J. Schlemper, and K. D. Kuhnert, ‘‘Automatic plant
recognition system for challenging natural plant species,’’ in Proc. 25th
Int. Conf. Central Eur. Comput. Graph., Vis. Comput. Vis. (WSCG), in
Computer Science Research Notes, vol. 2702, Pilsen, Czech Republic,
May/Jun. 2017, pp. 81–90.

[45] Y. Yang, X. Zhou, Y. Liu, Z. Hu, and F. Ding, ‘‘Wood defect detection based
on depth extreme learning machine,’’ Appl. Sci., vol. 10, no. 21, p. 7488,
Oct. 2020, doi: 10.3390/app10217488.

[46] Z. Zhao, X. Yang, Z. Ge, H. Guo, and Y. Zhou, ‘‘Wood micro-
scopic image identification method based on convolution neural net-
work,’’ BioResources, vol. 16, no. 3, pp. 4986–4999, May 2021, doi:
10.15376/biores.16.3.4986-4999.

[47] R. L. Jyothi and M. A. Rahiman, ‘‘A multilevel CNN architecture for
character recognition from palm leaf images,’’ in Proc. 3rd Int. Conf.
Intell. Comput. Commun. (ICICC), in Advances in Intelligent Systems and
Computing, vol. 1034. Bengaluru, India: Dayananda Sagar Univ., 2020,
pp. 185–193, doi: 10.1007/978-981-15-1084-7_19.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017, doi: 10.1145/3065386.

[49] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[50] B. Li, W. Wei, A. Ferreira, and S. Tan, ‘‘ReST-Net: Diverse activation
modules and parallel subnets-based CNN for spatial image steganalysis,’’
IEEE Signal Process. Lett., vol. 25, no. 5, pp. 650–654, May 2018.

[51] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50× fewer param-
eters and <0.5 MB model size,’’ 2016, arXiv:1602.07360.

[52] K. Q. Weinberger and L. K. Saul, ‘‘Distance metric learning for large
margin nearest neighbor classification,’’ J. Mach. Learn. Res., vol. 10,
pp. 207–244, Jun. 2009.

[53] L. G. Esteban, P. de Palacios, M. Conde, F. G. Fernández, A. García-Iruela,
and M. González-Alonso, ‘‘Application of artificial neural networks as a
predictive method to differentiate the wood of Pinus sylvestris L. and Pinus
nigra Arn subsp. salzmannii (Dunal) Franco,’’Wood Sci. Technol., vol. 51,
no. 5, pp. 1249–1258, Sep. 2017, doi: 10.1007/s00226-017-0932-7.

[54] T. Pahlberg, O. Hagman, and M. Thurley, ‘‘Recognition of boards using
wood fingerprints based on a fusion of feature detection methods,’’
Comput. Electron. Agricult., vol. 111, pp. 164–173, Feb. 2015, doi:
10.1016/j.compag.2014.12.014.

[55] K. Turhan and B. Serdar, ‘‘Support vector machines in wood identification:
The case of three Salix species from Turkey,’’ Turkish J. Agricult. Forestry,
pp. 249–256, Jan. 2013, doi: 10.3906/tar-1205-47.

[56] P. Huang, F. Zhao, Z. Zhu, Y. Zhang, X. Li, and Z. Wu, ‘‘Application
of variant transfer learning in wood recognition,’’ BioResources, vol. 16,
no. 2, pp. 2557–2569, Feb. 2021, doi: 10.15376/biores.16.2.2557-2569.

[57] P. P. Htun, M. Boschetti, A. Buriro, R. Confalonieri, B. Sun, A. N. Htwe,
and T. Tillo, ‘‘A lightweight approach for wood hyperspectral images
classification,’’ in Proc. IEEE Int. Conf. Multimedia Expo Workshops
(ICMEW), Jul. 2021, pp. 1–4, doi: 10.1109/ICMEW53276.2021.9455943.

79992 VOLUME 11, 2023

http://dx.doi.org/10.1109/aciids.2009.10
http://dx.doi.org/10.1007/s11042-020-09212-x
http://dx.doi.org/10.1016/j.neucom.2012.02.045
http://dx.doi.org/10.1016/j.compag.2015.10.003
http://dx.doi.org/10.1007/978-3-030-87007-2_9
http://dx.doi.org/10.1007/978-3-030-87007-2_9
http://dx.doi.org/10.1016/j.ijleo.2015.05.101
http://dx.doi.org/10.3390/rs14040913
http://dx.doi.org/10.1007/978-3-030-65390-3_23
http://dx.doi.org/10.1007/978-3-030-65390-3_23
http://dx.doi.org/10.1016/j.cogsys.2018.04.006
http://dx.doi.org/10.1007/s10086-015-1507-6
http://dx.doi.org/10.1007/s10086-015-1507-6
http://dx.doi.org/10.1163/22941932-bja10001
http://dx.doi.org/10.1016/j.compag.2013.01.007
http://dx.doi.org/10.1145/3406209
http://dx.doi.org/10.1109/CICSyN.2010.27
http://dx.doi.org/10.1007/s00138-012-0417-5
http://dx.doi.org/10.1016/j.dsp.2023.103907
http://dx.doi.org/10.1371/journal.pone.0220762
http://dx.doi.org/10.1016/j.compag.2017.12.011
http://dx.doi.org/10.1186/s10086-020-01864-5
http://dx.doi.org/10.3390/app10217488
http://dx.doi.org/10.15376/biores.16.3.4986-4999
http://dx.doi.org/10.1007/978-981-15-1084-7_19
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/s00226-017-0932-7
http://dx.doi.org/10.1016/j.compag.2014.12.014
http://dx.doi.org/10.3906/tar-1205-47
http://dx.doi.org/10.15376/biores.16.2.2557-2569
http://dx.doi.org/10.1109/ICMEW53276.2021.9455943


W. Yan et al.: Design and Implementation of a Lightweight Deep CNN-Based Plant Biometric Authentication System

[58] G. Figueroa-Mata, E. Mata-Montero, J. C. Valverde-Otárola,
D. Arias-Aguilar, and N. Zamora-Villalobos, ‘‘Using deep learning
to identify Costa Rican native tree species from wood cut images,’’
Frontiers Plant Sci., vol. 13, Apr. 2022, Art. no. 789227, doi:
10.3389/fpls.2022.789227.

[59] G. de Souza Vieira, M. M. D. Ponte, V. P. Moutinho, R. Jardim-Gonçalves,
C. P. Lima, and M. de Albuquerque Vinagre, ‘‘Identification of wood from
the Amazon by characteristics of Haralick and neural network: Image
segmentation and polishing of the surface,’’ iForest, Biogeosci. Forestry,
vol. 15, no. 4, pp. 234–239, Aug. 2022, doi: 10.3832/ifor3906-015.

[60] F. Ni and B. Wang, ‘‘Integral contour angle: An invariant shape descriptor
for classification and retrieval of leaf images,’’ in Proc. 25th IEEE Int.
Conf. Image Process. (ICIP), Athens, Greece, Oct. 2018, pp. 1223–1227.

[61] C. Caballero and M. C. Adranda, ‘‘Plant species identification using leaf
image retrieval,’’ in Proc. ACM Int. Conf. Image Video Retr. (CIVR), 2010,
pp. 327–334.

[62] Y. Herdiyeni, D. I. Lubis, and S. Douady, ‘‘Leaf shape identification of
medicinal leaves using curvilinear shape descriptor,’’ inProc. 7th Int. Conf.
Soft Comput. Pattern Recognit. (SoCPaR). Fukuoka, Japan: Kyushu Univ.,
Nov. 2015, pp. 218–223.

[63] R. H. Hridoy, T. Habib, I. Jabiullah, R. Rahman, and F. Ahmed, ‘‘Early
recognition of betel leaf disease using deep learning with depth-wise
separable convolutions,’’ in Proc. IEEE Region 10 Symp. (TENSYMP).
Jeju, South Korea: Good Technologies for Creating Future, Aug. 2021,
pp. 1–7, doi: 10.1109/TENSYMP52854.2021.9551009.

[64] T. K. N. Thanh, Q. B. Truong, Q. D. Truong, and H. H. Xuan, ‘‘Depth
learning with convolutional neural network for leaves classifier based on
shape of leaf vein,’’ in Proc. 10th Asian Conf. Intell. Inf. Database Syst.
(ACIIDS), in Lecture Notes in Artificial Intelligence, vol. 10751, Dong
Hoi, Vietnam, Mar. 2018, pp. 565–575, doi: 10.1007/978-3-319-75417-
8_53.

[65] K. Sentamilselvan, M. H. Rithanya, T. V. Dharshini, S. Kumar, and
R. Aarthi, ‘‘Maize leaf disease detection using convolutional neural net-
work,’’ in Proc. 3rd Doctoral Symp. Comput. Intell. (DoSCI), in Lecture
Notes in Networks and Systems, vol. 479. Lucknow, India: Institution
of Engineering and Technology, Mar. 2022, 2023, pp. 247–260, doi:
10.1007/978-981-19-3148-2_21.

WENQING YAN (Member, IEEE) received the
B.S. degree in materials science and chemistry
from Northwest University, Xi’an, China, in 2013,
the M.S. degree in polymer science from the Uni-
versity of Freiburg, Freiburg, Germany, in 2017,
and the Ph.D. degree in materials science from
ETH Zürich, Zürich, Switzerland, in 2020. She is
currently a Senior Researcher with the Department
of Civil, Environmental and Geomatic Engineer-
ing, ETH Zürich. Her research interests include

polymerization mechanisms, advanced image processing and analysis,
as well as digital image correlation and tracking.

JINGWEI TANG received the B.S. degree in
physics from Nanjing University, Nanjing, China,
in 2016, and the M.S. degree in computational
science and engineering and the Ph.D. degree
in computer science from ETH Zürich, Zürich,
Switzerland, in 2018 and 2022, respectively. Since
2022, he has been an Associate Research Sci-
entist with DisneyResearch|Studios, Zürich. His
research interests include physics-based simula-
tions for computer graphics, machine learning, and

deep learning techniques, with a focus on artistic simulation controls. He was
a recipient of the Günther Enderle Best Paper Award from Eurographics
2021.

SANDRO STUCKI received the B.S. degree in
food technology from the Zurich University of
Applied Sciences (ZHAW), in 2014, and the
M.S. degree in food science from the Swiss
Federal Institute of Technology (ETH Zürich),
Switzerland, in 2017. He is currently pursuing
the Ph.D. degree with the Wood Material Sci-
ence Group, ETH Zürich, and the Cellulose and
Wood Materials Group, Swiss Federal Laborato-
ries forMaterials Science and Technology (Empa),

Switzerland, under the supervision of Prof. Dr. Ingo Burgert. In 2018, he was
a Research Assistant with the Soft Materials Laboratory, ETH Zürich. His
research interests include novel glueing techniques and wood-based com-
posites, with a focus on characterizing and improving the moisture stability
of bonded wood joints.

VOLUME 11, 2023 79993

http://dx.doi.org/10.3389/fpls.2022.789227
http://dx.doi.org/10.3832/ifor3906-015
http://dx.doi.org/10.1109/TENSYMP52854.2021.9551009
http://dx.doi.org/10.1007/978-3-319-75417-8_53
http://dx.doi.org/10.1007/978-3-319-75417-8_53
http://dx.doi.org/10.1007/978-981-19-3148-2_21

