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ABSTRACT Healthcare for truck drivers is an important issue. To prevent fatigue-related collisions
among drivers, objective assessments of their physiological states are essential. A simple and quantitative
evaluation method for fatigue involves the use of autonomic nerve function (ANF) indices obtained from
heart rate variability analysis. However, predicting the occurrence of crashes using only physiological data
is challenging. In most previous studies, the targets of driving situations have been often limited, or the
prediction targets have been set as the driver’s internal state rather than the accident. In this paper, we propose
a novel collision risk prediction model using ANF and several simple external information types, which
can be extracted from standard in-vehicle sensors without limiting the driving scene. Our experiments using
actual truck drivers’ data reveal that the proposedmodel can achieve collision risk prediction for the following
30 min with an accuracy of 74.9% recall and 0.79 AUC. Furthermore, we discover that simple external
information obtained based on the vehicle speed significantly contributes to the prediction accuracy. As our
prediction method only requires commonly equipped sensors as the sources of external information, this
method is expected to be easily implemented not only for truck driving but also for general vehicle driving,
where crashes are often likely.

INDEX TERMS Autonomic nerve function, collision, deep learning, fatigue, heart rate variability, long
short-term memory, stress, time-series prediction, wearable device.

I. INTRODUCTION
Healthcare for professional drivers is an important issue.
Especially for truck drivers, daily health checks are partic-
ularly important because of their hard work and the risk
of accidents. Predicting traffic crashes caused by the bad
health conditions of drivers is an important but challeng-
ing issue. So far, related research has considered two main
perspectives for accident risk estimation. Among these, one
involves predicting the risk of all types of traffic accidents
from multiple types of extensive data. Previous studies
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on the prediction of accident occurrence [1] have primar-
ily utilized environmental information (i.e., weather con-
ditions and the traffic flow); however, driver-related data
have been rarely utilized, except static information such as
age [2], [3], [4]. For instance, Effati et al. [3] used driver
data and several environmental data types including vehicle
data, weather conditions, and road conditions to predict
the crash severity of vehicles. Although they implemented
driver-related data including the age, gender, and education
level, they did not use non-static information data, such as
physiological features. In this manner, most conventional
risk-predicting studies have been focused on public and static
datasets.

94218
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-0929-4418
https://orcid.org/0000-0002-8186-3603
https://orcid.org/0000-0001-6389-0221


N. Ito et al.: Prediction of Future Collision Risk for Truck Drivers Using the Time-Series ANF

The other perspective involves restricting the target of
estimation to use drivers’ physiological data. Li et al. [5]
proposed a method for predicting driving risk when drivers
performed high-risk driving operations such as changing
lanes. Based on physiological data (i.e., eye movement and
heart rate) and environmental information such as vehicle
speed, they evaluated whether lane changing was risky or
safe. Fruet et al. [6] focused on stress as a driving risk and
predicted the stress levels from physiological signals includ-
ing galvanic skin responses, electrocardiograms, electromyo-
grams, and breathing signals. These studies succeeded in
utilizing physiological data during driving by specifying the
situation and limiting the estimation target to the driver’s state
rather than crashes.

The common understanding for both perspectives is that a
complex causal relationship exists between driver physiology
and the occurrence of accidents. To resolve this complexity,
we aim to predict the accident risk in generic situations
by using driver biometrics. To achieve this aim, we focus
on fatigue as a generic element within the driver related to
accidents.

We assess fatigue based on heartbeat data obtained from
wearable devices, which can quantitatively express a person’s
internal state, including fatigue. As the sensors are easy
to wear, a versatile assessment is expected. Previously,
we developed a prediction method for the collision risk
from heartbeat data to realize safe truck driver opera-
tions [7], [8], [9], [10]. In these previous studies, we discov-
ered that several indices from heartbeat data are associated
with the risk of rear-end collision by truck drivers [8], [9].

In this paper, we propose a risk prediction method that
uses the driver’s physiological information and simple exter-
nal information obtained primarily from in-vehicle sensors.
To address the difficulty in handling physiological data
during driving, we performed three different preprocess-
ing steps on the physiological data. We also evaluated
the proposed method using real data obtained from truck
drivers.

II. PROPOSED METHODS
We utilize autonomic nerve function (ANF) indices for the
driver’s physiological data. The ANF can describe fatigue,
as derived from the heartbeat signals. It is obtained by heart
rate variability (HRV) analysis and changes owing to stress,
fatigue, and sleepiness [11]. The HRV-based ANF has been
widely used because heartbeat signals can be easily recorded
using wearable devices.

This paper proposes a collision risk prediction method
using an ANF based on a machine-learning time-series
model. We focus on professional drivers, such as truck
drivers, for whom fatigue-related accidents are a serious
problem. For the input data of the model, we extract simple
external data including the driver’s static data and environ-
mental data. The model comprises three key preprocessing
steps for physiological data during driving.

A. PREDICTION MODEL USING TIME-SERIES ANF DATA
Fig. 1 shows the flow of collision risk prediction using ANF
data during driving. In this study, a model was developed to
predict collision risk for 30 min after the time of measure-
ment; this ensured that drivers had a sufficient margin to act
after receiving an alert.

For the prediction, a deep-learningmodel was used, and the
input layer was set for time-series data. Previous reports have
shown that the ANF is useful for the prediction of a driver’s
health condition such as drowsiness [12] or stress [13].
In this study, based on the hypothesis that a driver’s health
condition affects the probability of an accident, we mainly
utilized the ANF to predict collision risk. Conventionally,
the ANF is recorded under stable conditions, such as resting
or with the eyes closed. In this study, however, the ANF
was obtained from drivers under constantly changing condi-
tions. To account for this, three types of preprocessing were
introduced.

FIGURE 1. Overview of collision risk prediction. The method is based on a
deep-learning time-series model. To extract features from complex and
irregularly varying heart rate data, three types of preprocessing were
applied.

First, HRV analysis was performed with a reasonable
analysis window width for application to the driving state.
In the HRV analysis, the ANF indicators were calculated
from R-R interval (RRI) by frequency, time, and nonlinear
domain analysis. In a time-series prediction, it is preferable to
have a high temporal resolution, i.e., a short analysis window.
However, if the time window is too short, the reliability of
the HRV analysis may be reduced, and a trade-off could
exist between the reliability and resolution. In a previous
study [9], we found that the appropriate analysis window
width for calculating the ANF is 2 min under several different
conditions during driving. Here, following the previous study,
we divided the measured RRI into 2 min segments without
overlapping intervals. The HRV analysis was then performed
on the segmented RRI data, and the ANF indices were calcu-
lated and combined to obtain the time-series data.

Second, we considered normalization focusing on individ-
ual differences in the ANF indices; notably, each type of ANF
has a different numerical scale. For example, the distribution
range of one ANF index is 101−104, whereas that of another
is 100−101. To properly learn the model parameters, the dis-
tribution range of each indicator must be normalized before
being input into the prediction model [14]. Min–max normal-
ization, which uses the maximum and minimum values of the
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measurements, and Robust Scaler [15], which uses the quar-
tile points, are commonly used. Robust Scaler, in particular,
is expected to be stable as it considers outliers. However, the
ANF indicator has large individual differences in distribution,
and Robust Scaler may excludemost of an individual’s data as
outliers. Therefore, we devised a normalization process that
considers the characteristics of the ANF data. We decided to
normalize the data using the following parameters, which are
more robust to outliers than Robust Scaler:

ANF ′
i = (ANF i − P50) /(P97.5 − P2.5), (1)

where ANF i represents the i-th type of ANF index.
P2.5 and P97.5 represent the 2.5 and 97.5 percentiles of the
data group containingX, respectively. To include both healthy
and fatigued states in the data and to exclude measurement
abnormalities such as noise, the significance level was set
at 5%. The values below the 2.5 percentile and above the
97.5 percentile of each ANF index measurement for all
subjects were treated as outliers.

Third, interpolation of the time-series ANF data was per-
formed. For time-series ANF in driving, in some cases, the
data were partially missing (e.g., in the case of a vehicle
driving in a tunnel, poor communication conditions, a vehicle
stopping for several minutes, and noise generation such as
luggage being carried). Pseudo-missing data were randomly
added to the dataset with no missing data. Then, after opti-
mizing, the interpolation was applied to the dataset with true
missing data in the actual measurements.

B. EXTRACTION OF EXTERNAL INFORMATION
External factors (EXTs) were defined to complement the
information required for risk prediction. EXTs refer to all
factors that a driver may encounter during an accident, other
than their own physiological factors. Table 1 shows the candi-
date EXT types considered in this study. EXTs can be divided
into two types. First, environmental data can be recorded
by sensors mounted inside and outside the vehicle; such
data may include the presence of oncoming or following
vehicles, the presence of pedestrians, road type, traffic con-
gestion, weather, time of day, delivery delays, and vehicle
speed. Second, EXTs also include static data about the driver,
such as age, personality, and driving skills. Thus, various
EXTs provide useful information for prediction, but not all of
them are necessarily available owing to the limited number
of modalities provided by transport companies. Therefore,
we limited the scope to a few modalities that are commonly
or easily obtained.

We extracted the factors as EXTs closely related to the
occurrence of driver fatigue and crash accidents. First, from
environmental data that can be easily obtained from sensors
installed inside and outside the vehicle, the vehicle speed
and TIME OF DAY were selected; the vehicle speed was
converted into two indices, DRIVING TIME and DRIVING
STATE, to more clearly express the working conditions.
DRIVING TIME is a numeric variable representing the time
elapsed since the start of driving in a day. DRIVING STATE

is a categorical variable (general road, highway, company
premises, and stopped) that is estimated from the vehicle
speed. Next, from the drivers’ static data, AGE was chosen.

These four EXT indicators were chosen not only because
they are basic data commonly handled by many trans-
portation companies but also because they are associated
with the ANF indices or the occurrence of driving crashes.
Previous studies have reported changes in the ANF behavior
with AGE in personal attribute data [16]. TIME OF DAY
and DRIVING TIME can express the working conditions
of drivers. A fatigue analysis study on logistics drivers in
Japan [17] confirmed a significant relationship between vari-
ables representing working conditions, such as working hours
and fatigue appearing in the ANF. Furthermore, it has been
reported that the frequency of fatal crashes varies depending
on the TIME OF DAY and that the type of behavior that
mainly causes fatal crashes varies greatly depending on the
DRIVING STATE (e.g., public roads and highways) [18].
Based on these findings, AGE, TIME OF DAY, DRIVING

TIME, and DRIVING STATEwere inputted as EXT data into
the model, in addition to the ANF indices.

TABLE 1. Environmental-factor (EXT) candidates.

The four underlined EXTs were included as input to con-
tribute to the prediction.

C. STRUCTURE OF THE RISK PREDICTION MODEL
The structure of the prediction model was fine-tuned using
a machine-learning deep neural network. First, we adjusted
the size of the prediction model, i.e., the number of layers
in the model and the number of nodes per layer. Based
on the preliminary hyperparameters search in terms of the
prediction accuracy, five layers were chosen as the number
of layers ranged from two to ten. The number of nodes for
each layer was also compared for accuracy from 32, 64,
128 and 256 candidates. The number of nodes in the first
layer was 128, halving to 64, 32 as one went through the
layers, and doubling to 64 in the final layer. Second, the type
of layers in the model was determined. Table 2 details the
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structure of the model. A feature extraction policy was set up
so that the time-series characteristics of each indicator were
extracted independently, and the interrelationships between
indicators were captured. With this policy, we introduced
long short-term memory (LSTM) [19] in the first layer of the
model and a dense layer (fully connected layer) in layers 2–5.
The model was set to solve a binary classification task to
identify high and low collision risk.

The preprocessed ANF data (see section A) and the EXT
data selected in section B were inputted into the model to
learn collision risk prediction.

TABLE 2. Parameters of each layer in the proposed time-series prediction
model.

III. EXPERIMENT
A. DEFINITION OF CRASH RISK
We defined the accident risks to be predicted by the model.
The crashes considered in this study was limited to rear-
end collisions, as this type of collision risk can be estimated
from the driver’s level of fatigue [8], [9]. Because the data
on actual crashes are rare and insufficient for analysis, this
study focuses on ‘‘near-miss situations,’’ which may lead to
rear-end collisions [9]. A classifier developed in a previous
study [8] to detect near misses from vehicle behavior data was
used, and the detected near-miss probability was considered
as the collision risk. Among the near misses detected by
the classifier, when a collision warning was issued owing to
insufficient distance between vehicles, the scene was targeted
for detection. The classifier outputted a continuous value of
zero–one, which represents the probability of a near-miss.
An output value of 0.83 was used as the decision threshold
for near misses, where the classifier had a detection perfor-
mance of 50% or more in terms of the recall [8]. In this
study, the time range to be predicted was set at 30 min to
give the driver sufficient time to act if a risk was detected.
If the predicted value exceeded the threshold value of 0.83 at
least once during the 30 min period, the interval was labeled
‘‘near-miss;’’ if it never exceeded the threshold value, the
interval was labeled ‘‘not near-miss.’’

B. DATA MEASUREMENT AND EXTRACTION
To confirm the validity of the proposed method, we evalu-
ated the performance on a real-world dataset obtained in a
previous study [9]. The data corresponding to 26 drivers
who were in daily truck transport operations were recorded
over a period of approximately 3 months. Drivers with noisy

or unusual HRV data, such as arrhythmias, and drivers with
very limited experience were excluded from the analysis. The
measurement data of the remaining 20 drivers were used
as evaluation data for the model. This study’s data were
obtained according to the standards of internal review board
on Research & Development group, Hitachi, Ltd., and the
study was conducted in accordance with the Declaration of
Helsinki. All participants provided written informed consent
before enrollment in this study.

The RRI of drivers during driving was measured using
a wearable ECG-type heartbeat sensor (myBeat WHS-1,
UNION TOOL CO., Tokyo, Japan) with a belt-type electrode
on the chest. After measurement, the data were selected with
correct measurements, normal arrival and departure times,
and the majority of working hours spread throughout the
day. The ANF indices were calculated from the RRI data
based on HRV analysis. They represent sympathetic and
parasympathetic nervous system activities and are used in
clinical medicine as a means of quantifying and evaluating
the degree of fatigue [20]. Following the analysis method
guidelines [21], the RRI data were segmented using a mov-
ing window with a width of 120 s and a moving width of
120 s. The ANF indices shown in Table 3 were then cal-
culated. The ANF can be quantified by frequency-domain
analysis, time-domain analysis, and nonlinear analysis of
RRI data [21], [22]. For example, the total power (TP)
and sympathetic/parasympathetic activity balance (LF/HF),
which is calculated based on the power spectrum obtained
by frequency analysis, have been reported to correlate with
subject fatigue in clinical science and automobile driving
studies [20], [23]. Because the relationship between each
ANF and the risk of a crash while driving is unknown,
we decided to comprehensively utilize the ANF indices in
Table 3. Henceforth, the ANF groups listed in Table 3 are
expressed as ANFs. The calculated ANFs were combined in
a time series every 30 min.

EXTs were measured in the same interval in which RRIs
were measured. EXTs were obtained at each 2 min range and
combined every 30 min (i.e., 15 time points). The mean of
AGE was 48.0 ± 8.37, and the mean of DRIVING TIME
was 4.31 ± 1.40 h. Note that DRIVING TIME is not the
time of continuous driving but the total driving time during a
single working day. Fig. 2 shows the distribution of the most
frequent DRIVING STATE over 30 min. DRIVING STATE
is estimated from the vehicle speeds every 2 min. The most
frequent DRIVING STATE was general road, and the least
frequent DRIVING STATE was stopped.

C. EVALUATION
The proposed method was evaluated from two different
perspectives. First, we evaluated the effect of the presence or
absence of actual missing data on the prediction performance.
Two types of data were prepared: one with no missing data at
all during the measurement period and one that always con-
tained missing data. Then, after a preliminary experimental

VOLUME 11, 2023 94221



N. Ito et al.: Prediction of Future Collision Risk for Truck Drivers Using the Time-Series ANF

TABLE 3. Calculated autonomic nerve function (ANF) indices.

FIGURE 2. Near-miss and not near-miss data in each DRIVING STATE
class. General road has the highest near-miss rate, and highway has the
highest near-miss rate.

TABLE 4. Number of data with and without missing data in 30 min
dataset.

comparison, mean-value interpolation was applied to the
missing data. Table 4 shows the sizes of the 30 min input
datasets with and without missing data. For the dataset with
no missing data, the number of usable samples decreased
from 49517 to 12437, and interpolation restored the number
of samples to 49380. Second, we evaluated the effects of
the changes in the types of input indicators: we trained and
evaluated the ANFs only, EXTs only, and ANF plus EXT
data. In addition, evaluation by ablation of the EXT indices
was also performed. For the same trained model, each of
the four EXTs was pseudo-missing, and the accuracies were
compared. From this ablation experiment, it is possible to
determine which of the EXTs contribute to the model’s pre-
dictions. In these evaluations, if the data were pseudo-missed,
the number was replaced by zero. In terms of the DRIVING
STATE, which was represented as one-hot encoding, all
elements of the one-hot vector were also replaced by zero
when pseudo-missed.

We evaluated the accuracy of the proposed method to dis-
cuss its suitability for predicting the occurrence of collisions.
The prediction model was optimized by Adam and trained
with a learning rate of 0.001. Binary cross entropy was used
as the loss function. As evaluation metrics, we used recall
and the area under the curve (AUC), which represents the
area under the receiver operating characteristic curve. The
AUC was used to evaluate the discriminative ability to detect
the presence or absence of near misses. Recall was used to
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evaluate the ability to detect near misses. Three-fold cross-
validation was used for the evaluation. The original dataset
was randomly assigned to three groups by subject. Data pre-
processing, model training, and evaluation were conducted
using Python 3.6, including Tensorflow 1.14, Keras 2.2, and
scikit-learn 0.22.

IV. RESULTS
Table 5 compares the prediction accuracy with and without
missing time-series data and with and without interpolation
processing for missing data. The recall was 30.3%, and the
AUCwas 0.15 lower in the dataset with missing data than that
in the dataset without missing data, but the recall recovered
by 5.8% after interpolation. Table 6 compares the prediction
performance for each combination of indices which are the
input of the model. The accuracy was the best at 74.9% for
recall and 0.70 for the AUC when both ANFs and all EXTs
were used as input data. From ablation of EXTs, recall was
most decreased when AGE was missing, and the AUC was
most decreased when DRIVING STATEwas missing. Across
all evaluation results, the best performance was achieved
when ANFs and all EXTs were used and trained on input data
with a time range of 30 min without missing data.

TABLE 5. Comparison of time-series predictions with and without
missing measurements (30 min dataset).

V. DISCUSSION
In this study, we developed a risk prediction model
using physiological and simple external data, considering
the importance of dealing with multimodal data sources.
Compared with existing models, the proposed model has no
restrictions in driving situations, such as lane changing, but
always predicts the risk of rear-end collisions. Our exper-
imental results showed the high predictive performance of
future accident risk during driving (recall, 74.9%; AUC, 0.79)
and the effectiveness of the combination of the two types of
input indices.

A. PERFORMANCE OF THE PROPOSED METHOD
First, interpolation increased the amount of usable data,
as shown in Table 4, but significantly reduced performance,
as shown in Table 5. Although interpolation improved the
recall by 5.8%, it was not sufficient for practical use. The
interpolation process was introduced to increase the amount
of available data by dealing with missing measurements
of physiological data during driving. These results suggest
that our proposed method can only be applied during stable

TABLE 6. Comparison of prediction accuracy for each combination of
indicators.

measurement situations, such as expressway driving, where
no missing data are generated during the 30 min period.

Second, the contributions of the EXT indices were eval-
uated in the ablation experiments (Table 6). When the
DRIVING STATE was pseudo-missing, the AUC seemed to
decrease most effectively, whereas the recall did not decrease
considerably. This indicates that whenDRIVINGSTATEwas
missing, the ability to determine the presence or absence of a
near-miss was greatly reduced, and the model tended to clas-
sify the scene as a ‘‘near-miss,’’ independent of the input. This
is probably owing to the existence of label bias related to the
DRIVING STATE. Fig. 2 shows the number of labels in each
of the four states of the DRIVING STATE. The general road
with the largest number of labels (7473) has a near-miss rate
of 0.17. Conversely, 1358 of the 3501 highway data include
near misses, which corresponds to a value of 0.39, more than
twice that for the general road data. The likelihood of crashes
is considered to be closely related to both the environment
and internal conditions such as the driver’s nervousness.
External information on the driving speed was shown to be a
potentially effective factor in controlling models that predict
crashes from physiological data.

B. COMPARISON OF PREVIOUS STUDIES AND
PROPOSED METHOD
Our results show that DRIVING STATE made a significant
contribution to prediction. In a previous study [3], drivers’
data (age, gender, and education level) and environmental
data (vehicle data, weather conditions, and road infrastruc-
ture) were used to predict crashes; the prediction accuracy
was 81.8% for the recall and 0.81 for the AUC. Their perfor-
mance was better than the best results of our study: 74.9% for
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recall and 0.79 for AUC. They also suggested that high-speed
drivingwas one of themost important causes of motor vehicle
fatalities. As DRIVING STATE contributed the most to the
prediction accuracy among the EXT data, our results also
indirectly support their results.

The result of index ablation also showed the importance of
using the ANF indices for risk prediction. Most crash predic-
tion studies usingmachine learning have utilized real data [1].
Most of the information on the environment is publicly avail-
able and easy to obtain, but personal information is not. It has
been suggested [1] that this data bias should be eliminated,
and emphasis should be placed on hard-to-obtain data such as
driver information. In our experiments, we extracted the ANF,
i.e., physiological data that can represent the driver’s internal
state at a temporal resolution of 2 min. Although predicting
crash risk using ANF data alone is difficult, we achieved an
AUC performance of 0.79 by adding simple environmental
data and drivers’ static data. The effectiveness of using both
environmental and personal information, the importance of
which has been previously highlighted, was confirmed in this
study.

C. LIMITATIONS AND FUTURE RESEARCH
One of the limitations of this study is the type of data.We pro-
posed four EXTs, DRIVING TIME, DRIVING STATE,
TIME OF DAY, and AGE, related to small-scale modal-
ities that many companies can provide. However, not all
EXT options could be verified. Future studies would include
expanding the type of data. For example, the location data of
individual drivers can be monitored by adding one condition:
the driver is carrying a smartphone. Once the location over
time is known, the four EXT indices could be estimated and
obtained through applications and networks, even without in-
vehicle sensors. Furthermore, we would be able to utilize
public environmental information such as weather and traffic
congestion, which have been used in many previous studies.

VI. CONCLUSION
To prevent fatigue-related accidents, we proposed a model
for predicting future accident risk using driver ANF data
and simple external information (EXT). Using the model
with 34 ANFs and 4 EXT indicators, we predicted the acci-
dent risk within 30 min into the future with a recall of 74.9%
and an AUC of 0.79 for a real-world truck drivers’ dataset.
The ablation evaluation of the input indicators showed that
ANF and EXT each contributed to the prediction of the
model. Our results suggest that the use of driver physiological
and environmental data is effective for accident prediction,
which finally contributes to accident prevention. If high-
quality physiological data can be obtained appropriately,
it may be possible to predict the occurrence of crashes related
to a driver. Introduction of both ANF and EXT indicators
to accident prediction studies will be useful for future driver
safety management in the workplace.

APPENDIX
In this study, we set input time-series ANF data of 30 min
for the evaluation. Here, we describe how we determined the
input time range. As a preliminary study, the suitable input
length was confirmed. Fig. 3 shows the process of creating
time-series datasets in several different time ranges. If the
RRI data for 2 min up to a point in time t are expressed
as RRI tt−2, each of the ANF indices calculated in the HRV
analysis and the risk calculated by the model are expressed
by the following equations:

ANF i,t = HRV (RRI tt−2, i), (2)

X (t, n) =



ANF1,t−2(n−1) · · · ANF1,t
...

. . .
...

ANF i,t−2(n−1) · · · ANF i,t
EXT 1,t−2(n−1) · · · EXT 1,t

...
. . .

...

EXT j,t−2(n−1) · · · EXT i,t


, (3)

risk = model {X (t, n)} . (4)

First, the ANF and EXT were calculated from RRI. i is
the number of ANF index types, and j is the number of EXT
index types. In this study, i takes values from one to 34, and
j takes values from one to four, representing 34 ANF indices
and four EXT indices, respectively. t is the end time of the
measurement in minutes. Here, ANF i,t is calculated from
the 2 min RRI tt−2 by the function HRV . HRV applies the
corresponding calculation formula depending on the type of
ANF index i. EXT i,t is the external information in the interval
for which RRI tt−2 was measured. Second, the time-series data
X (t, n) are constructed. n is the number of data in the time
series for each analysis window width. As the analysis win-
dow width was determined to be 2 min, for example, n=15 is
used to represent a 30 min RRI, and the most past-time point
is represented by t − 2(n − 1) = t − 28 [min]. Finally, the
time-series data X (t, n) are input to the model proposed in
this study, which outputs the predicted value risk .
As shown in Fig. 3, the time lengths of the input data

ranged from 6 to 60 min in 6 min increments (i.e., 10 window
conditions). The number of data pieces ranged from 3 to

FIGURE 3. Generation of time-series datasets in different time ranges.
The ANF indices are calculated from 6–60 min RRI data at a 2-min time
width; thus, the dataset length is 3–30.
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30 in length, respectively. Table 7 shows the total amount of
data for each input time width. Only datasets not containing
missing data in each time width are counted here. The time
range for the future prediction was fixed at 30 min.

TABLE 7. Number of data samples for each input time range (without
missing dataset).

TABLE 8. Comparison of time-series forecasting accuracy for different
time ranges of input data.

Table 8 shows the application results of the proposed
method for each input time range. The highest accuracy was
obtained for the input time width of 30 min for both recall
and the AUC. These results can be interpreted from the
following points. In general, prediction accuracy is affected
by the training data size of the model. The word ‘‘data size’’
has two meanings here: the number of data samples and the
time length of a single piece of data. Because we used a
dataset without missing, the number of samples tends to be
larger for shorter time widths. As a result, the dataset with a
shorter time width is considered to be successful in learning
different ANF patterns, leading to an improvement in the
generalizability of the model. Conversely, longer input data
sizes have richer time-domain features and are considered to
be more effective for future prediction. Therefore, our results
suggest that, in our condition, the 30 min time width provided
the best compromise. Finally, we decided to set the input time
range to 30 min.
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