
Received 22 June 2023, accepted 9 July 2023, date of publication 18 July 2023, date of current version 21 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296606

A Lightweight and Multi-Stage Approach for
Android Malware Detection Using Non-Invasive
Machine Learning Techniques
LEONARDO DA COSTA 1 AND VITOR MOIA1,2
1Samsung Research and Development Institute Brazil (SRBR), Campinas, São Paulo 13097-104, Brazil
2Eldorado Institute, Campinas, São Paulo 13083-898, Brazil

Corresponding author: Leonardo da Costa (leonardo.bc@samsung.com)

Part of the results presented in this work was obtained through the Defeat Exploits (DEFEX) project, funded by Samsung Eletrônica da
Amazônia Ltda., under the Brazilian Informatics Law 8.248/91.

ABSTRACT Android has been a constant target of cybercriminals that try to attack one of the most used
operating systems, commonly using malicious applications (denominated malware) that, once installed on
a device, can harm users in several ways. Existing malware detection solutions are usually invasive as
they obtain classification features by performing reverse engineering, decompilation, or disassembly of the
analyzed application, which infringes licenses and terms of use of applications. In addition, these solutions
often employ a single machine learning (ML) model to detect various types of malware, resulting in several
false alarms. In this context, we propose an approach to detect Android malware consisting of a set of
specific-type detectors in which each one performs a multi-stage analysis, based on rules andML techniques,
in different phases of the application cycle (before and after its installation). Our approach also differs
from state-of-the-art solutions by being non-invasive, since it leverages a process to obtain application’s
features that does not infringe licenses and terms of use of applications. In addition, according to experiments
performed on a real Android smartphone, our proposal presents the following additional advantages over
state-of-the-art solutions: a more efficient process to classify applications that is three times faster and
requires ten times less CPU usage in some cases (saving device energy); and a better detection performance,
with higher balanced accuracy, nine times less false positive cases, and ten times less false negative cases.

INDEX TERMS Android, machine learning, malware detection, multi-stage analysis, non-invasive feature
extraction.

I. INTRODUCTION
Android has been constant target of attacks through the use
of malicious applications (malware) that can harm users, for
instance, by leaking sensitive data (e.g., bank account details),
blocking access to information and demanding monetary
compensation for the ransom, or even leveraging social engi-
neering scams. A large number of malicious applications is
distributed in a daily basis through different distribution vec-
tors [1], such as application markets, including official and
third party stores, or untrusted sources like Web repositories.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

The huge number of existing Android malware [2], and the
high speed in which new malicious applications are cre-
ated have motivated the security community to design and
continuously improve solutions to detect this threat.

AnAndroid application is distributed via an APK (Android
Application Package) file, containing all the necessary data to
install the application on a device. Although the processing
power of mobile devices has been evolving over the years,
these devices are still restricted to their battery life, and it is
paramount to continue creating applications and solutions for
such devices that do not significantly impact their resources.
For this reason, a common approach employed to analyze
Android applications for malicious behavior is still through

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 73127

https://orcid.org/0000-0002-4803-6737
https://orcid.org/0000-0003-0261-4068


L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

static analysis, using data obtained from the APK file without
the need for running the application. Some of the components
that can be verified during this analysis are:

• Manifest file: contains metadata related to the applica-
tion, such as permissions and intents. Permissions are
elements of the Android framework that allow users
to control which applications can have access to cer-
tain device resources. For example, the CALL_PHONE
permission allows an application to place phone calls.
All permissions that the application will request for the
user at some point must be declared in the Manifest
file. In turn, an intent is a messaging object used to
request an action from another application component.
For instance, the DIAL intent can be employed by an
application to dial a phone number in the phone call
application and show it to the user.

• DEX files: these are files in the Dalvik Executable
format related to the application source code. Android
applications are generally written in the Java or Kotlin
programming languages, compiled to bytecodes under-
standable by the virtual machines corresponding to
these languages, and then translated to Dalvik bytecodes
stored in the DEX files. These files are used to execute
the application on Android devices.

• Assets folder: contains files of different formats (e.g.,
audio, image) used by the application.

State-of-the-art solutions based on static analysis employ
signature-based detection of malware APK files which is
known for not being effective to identify modified and new
malware patterns [3], [4]. To address this limitation, detectors
based on machine learning (ML) have been proposed. They
are capable of learning patterns of malware compositions
and behaviors, and effectively detecting samples never seen
before. Android malware detectors based on static analysis
and ML have used different APK features. For example,
metadata (e.g., permissions) declared in theManifest file can
form part of data (i.e., the feature vector) given as input
to an ML model. Another example are API (Application
Programming Interface) calls that can provide information on
which Android API methods and classes the application uses
in its source code, indicating its basic functionalities.

Previous ML-based solutions present drawbacks. First,
they usually execute after the application installation on the
device. Second, most of the solutions perform reverse engi-
neering, decompilation, or disassembly of the APK file to
obtain the data (i.e., the classification features) given to the
ML classifier [5], [6], mostly related to API calls. These
practices infringe many licenses and terms of use that devel-
opers create to protect their applications. Besides, the process
to obtain the features and the large set of features used by
previous solutions to perform classification can be ineffi-
cient and consume a considerable amount of the device’s
resources. Finally, previous solutions [7], [8], [9], [10], [11]
usually employ a single and general detector to perform the
classification of different types of malware, which may mis-
classify applications (i.e., benign applications are classified

as malware - false positive case - or malware applications
are classified as benign - false negative case) and make users
eventually lose their trust on the security system given the
many false alarms.

Solutions based on dynamic analysis and ML have been
proposed with the aim of reducing the number of false
alarms [12], [13]. They employ features obtained from the
application execution, such as system calls, network data,
performance metrics, etc. However, dynamic analysis is com-
putationally expensive as it requires constantly monitoring
the execution of an application, which can be even more inef-
ficient whenmonitoring several applications at the same time.
This is a paramount limitation due to the energy constraints
of most Android devices. Moreover, dynamic analysis cannot
be freely executed given the nature of the Android system that
isolates applications using the sandbox model [14].

Solutions based on ML and dynamic analysis are more
suitable when performed via an external (cloud) server (off-
device analysis), to where the application is sent to be
executed on an isolated environment for the detection of
any malicious behavior. However, off-device and dynamic
analysis-based solutions also contain major practical con-
straints. For example, the solution may either keep the user
waiting for an analysis on the cloud and block the application
installation on the device, or analyze the application in paral-
lel, while the user runs it, blocking the application only in case
malicious behavior is identified. Both approaches have draw-
backs, since the first one will annoy users, while the second
may be insecure (e.g., in case of a ransomware application).
Other limitations are related to sending the (large-size) appli-
cations to the cloud for analysis or deciding for how long to
perform the analysis (given that both it is difficult to find and
trigger the malicious behavior, and emulated devices have
restrictions [15]).

This work presents Malware APK Detection Solu-
tion (MADS), a novel approach to detect Android malware
based on rules and machine learning techniques that over-
comes the aforementioned limitations. Our approach consists
of one or more detectors, wherein each detector is carefully
designed to identify a singlemalware type (e.g., ransomware)
using APK features obtained without the need to decom-
pile or disassemble applications (i.e., without infringing
licenses and terms of use of applications). Instead, features
are obtained from the operating system in a non-invasive fash-
ion by employing native functions of the Android operating
system [16]. MADS detectors classify an APK asmalware or
undetected and comprises three analysis steps. The first one,
based on a set of lightweight rules, checks for specific APK
file characteristics (e.g., permissions requested) to indicate
whether the application is a potentialmalware of interest. The
second step analyzes the APK file based on a first ML model
execution that receives as input a set of features obtained
before the application installation. Last, the third analysis step
employs a second ML model execution, which takes as input
features that can be obtained after the APK file installation.
Each analysis step of MADSmay output a final classification

73128 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

label for an APK file, meaning that running the three steps is
not always necessary. We stress that this paper is based on the
patent files submitted in Brazil (INPI: BR 10 2022 000128 6)
and USA (USPTO: 17/689,365).

In summary, our work brings the following contributions:
• By employing native functions of the Android operat-
ing system to obtain features from an APK file, our
solution (MADS) executes in a lightweight fashion and
does not infringe licenses and terms of use of appli-
cations. In contrast, state-of-the-art solutions extract
features directly from theAPKfile, which is not efficient
and infringes licenses and terms of use of applications,
since this requires the reverse engineering, disassembly,
or decompilation of the APK.

• Previous proposals generally consist of a single analysis
step, based on a single or ensemble of classifiers, which
aims at detecting several malware types. In contrast,
MADS is based on specific-type detectors with stronger
capacity to learn the specificities of each malware type
or malware with particular behavior (e.g., those abus-
ing accessibility features to harm users or those that
encrypt data). Besides a MADS detector comprises a
multi-stage analysis, wherein the first analysis step uses
a set of rules to filter only applications of interest.
These design choices of MADS contribute to reduce the
number of misclassified applications and avoid unneces-
sarily analyzing all applications in a deeper fashion with
ML-based classifiers.

• We collected a dataset of benign and malicious Android
applications. After careful processing and analysis of all
samples, we created sets with particular malware types,
i.e., banking, ransomware, and phone scam. These spe-
cially created sets were used to train and test MADS,
since public datasets were found to be outdated, unbal-
anced, having duplicated samples (at a feature vector
level), and in some cases, with wrong labels.

• We implemented a prototype of both MADS and
the state-of-the-art solutions’ most common detection
approach, and tested them, in a Samsung Galaxy S21+
device, using the aforementioned dataset. The results
show that MADS can reduce nine times the number
of false positive cases, and ten times the number of
false negative cases, compared to the state-of-the-art
approach. In addition, we observed that MADS is three
times faster to analyze applications and consumes less
CPU while obtaining features. There were scenarios in
whichMADSwas even ten times more efficient than the
state-of-the-art approach in terms of CPU consumption.

The remainder of this paper is organized as follows.
Section II presents related work on Android malware detec-
tion. Next, section III describes MADS, while section IV
presents the evaluation performed to compare MADS with
the state-of-the-art’s most common approach to detect
Android malware. Section V describes limitations of this
work. Finally, section VI concludes this paper and points out
future work.

II. RELATED WORK
In this section, we present related work developed to detect
Android malware using ML-based techniques. In general,
existing proposals rely on features obtained through static
and/or dynamic analysis of APK files. The analysis is per-
formed on-device or off-device (i.e., using a cloud service
to make the processing) to classify applications as benign or
malware. Next, we briefly describe the proposals and point
out their limitations, which are addressed by MADS. Table 1
summarizes and compares the main characteristics of related
work and MADS.

Salah et al. [10] present an approach based on static anal-
ysis to detect Android malware using ML and a technique to
reduce the number of features used by the ML model. The
approach obtains features from the Manifest file and from
the disassembled DEX code of applications, including fea-
tures related to permissions, application components, intents,
API calls, and URL strings. A similar approach is presented
by Fereidooni et al. [8]. The authors employ an ML-based
approach to classify Android malware according to their
families, using static features such as intents, permissions,
system commands, suspicious API calls, and others related
to malicious activities through a Dalvik bytecode analysis
(e.g., reading IMEI, loading native, dynamic, and reflection
code, etc.). The problem about these two proposals is related
to the invasive feature obtainment process adopted, which
requires disassembling the application to obtain the features,
violating licenses and terms of use employed by Android
applications.

Pektas and Acarman [17] leverage another static approach
using API call graphs and deep learning to detect Android
malware. Their idea is to capture all execution paths in terms
of the invoked APIs from an analyzed application and con-
struct an API call graph of each execution path. The graphs
are processed and transformed into features given as input to
a deep neural network for classification. Gao et al. [18] pro-
pose a similar idea by reconstructing the connections between
applications and APIs, as well as between APIs and APIs,
and giving them as input to a graph convolutional network
model. Although adopting API calls for detection of Android
malware is an interesting alternative, the detection solutions
of these papers infringe terms of use and licenses of several
applications by collecting the invoked APIs through source
code analysis. In addition, these methods also suffer from the
inefficient process of obtaining the features.

By adopting an approach based on dynamic analysis,
Sanz et al. [19] rely on features extracted from the header
of network packets sent and received by the analyzed appli-
cation. Using these features, the solution employs two ML
models (AdaBoost and Random Forest) to analyze network
behaviors of suspicious applications. Sihag et al. [12] use
network traffic for detection as well. To classify an appli-
cation, they log its corresponding traffic and represent it as
gray-scale images given as input to a neural network model.
Relying on dynamic analysis based on network data is not
efficient and may represent a risk, since the classification of

VOLUME 11, 2023 73129



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

TABLE 1. Comparison between the characteristics of related work based on ML and MADS.

an APK file may not occur on time for preventing malicious
actions (e.g., from a ransomware application).
Other authors rely on the combination of static and

dynamic analysis. Gharib and Ghorbani [20] propose a
solution for the detection of Android ransomware, called
DNA-Droid, using ML techniques. The solution first ana-
lyzes an application employing static features related to
strings (having content regarding encryption, locking, threats,
pornography, or money), images (logos), API calls, and per-
missions. It classifies an application as benign, suspicious,
or malware. In case the application is marked as benign or
malware, the analysis is finished. For suspicious applica-
tions, the solution uses dynamic features (API call sequences)
to detect malicious behavior. The static features used by
DNA-Droid requires disassembling the APK file, which is
prohibited by licenses and terms of use of Android applica-
tions. Besides, it also suffers from the limitations regarding
efficiency of using dynamic analysis.

Another proposal that shows the benefits of com-
bining both static and dynamic analysis is due to
Alzaylaee et al. [13], who use a deep learning system to
detect Android malware. The authors first employ dynamic
features (i.e., API calls and intents) to evaluate a deep
learning-based neural network model. After this, they com-
bine the dynamic features with static features to create
another model and compare it with the previously evaluated

model. Their results show that the second model outper-
formed the first one. By relying on dynamic analysis, their
proposal is not suitable for practical scenarios, especially to
analyze several applications at the same time. Moreover, it is
limited for detecting malicious applications only after their
installation.

Pierazzi et al. [11] propose an off-device detection
approach based on static and dynamic features obtained by
running Android applications on Koodous platform [27].
Multiple classifiers are used and their results are combined
by an Ensemble Late Fusion algorithm. The static features
employed are the hash of the certificate used to sign the appli-
cation, the set of used permissions, and the number of some
application components. The dynamic features correspond
to read and write operations, started background processes,
load of DEX files, cryptographic operations, outgoing and
incoming network activity, and SMS messages sent.

Another off-device approach is proposed by Mahindru
and Sangal [21], who design a web-based Android malware
detection framework. In order to analyze an application, its
APK file is sent to the web-based system, which executes the
application to extract permissions and API calls. The system
also collects ratings and number of user downloads related to
the application. The obtained features are evaluated by using
models constructed with different ML techniques (e.g., deep
learning and farthest first clustering). The problems of both

73130 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

off-device proposals are related to the implementation on
real world scenarios. They require the analyzed applications
to be sent to external servers in order to be executed and
analyzed. This is inefficient and may require users to wait
long time periods for the analysis result, leading to negative
user experience.

Kim et al. [22] propose the use of convolutional neural
network (CNN) to find common features of API call graphs
of Android malware. When classifying an application, the
system extracts the graph of the application and compares it
with the graphs created with the CNN in the training phase.
This comparison indicates whether the application is mali-
cious or not. A similar idea is proposed byWu et al. [25], who
also leverage API call graphs for detection. Jerbi et al. [23]
employ API calls to create rules to detect Android malware
through a bi-level optimization problem, wherein the upper
level designs a set of effective malware detection rules, and
the lower level generates a set of artificial patterns of each rule
with the aim of improving detection performance. By using
API calls, these proposals not only are inefficient, since
they require performing reverse engineering, but also infringe
licenses and terms of use of applications.

Atacak [24] introduces a detection system comprising a
fuzzy inference approach that combines and interprets the
output scores of several ML models created with different
algorithms. The use of multiple models is an approach due to
Sahin et al. [26] as well, who propose a set of linear regres-
sion classifiers. In addition to employing several models in
the classification task, which is not efficient, the authors of
bothworks propose the decompilation ofAPKfiles to analyze
them, infringing applications’ licenses and terms of use.

To overcome the limitations of the literature, we propose
in this paper MADS. By obtaining features from the APK
file via the operating system, MADS is more efficient and
does not infringe licenses and terms of use of Android appli-
cations. Besides, while related work is based on a single ML
detector and one stage only, our detection solution is based
on a lightweight and multi-stage approach using specific-
type detectors, aiming to reduce the number of misclassified
applications. MADS is able to analyze applications before
their installation in an on-device fashion, and does not require
(although the last analysis step can be performed right after
the installation or may involve) the execution of the appli-
cation. This prevents some applications (e.g., ransomware)
from performing their malicious actions, which can be dan-
gerous and too late if an analysis is performed during or after
their execution.

III. PROPOSED SOLUTION
A. OVERVIEW
In this section, we present Malware APK Detection Solu-
tion (MADS), a lightweight, on-device, and multi-stage
approach to detectmalware of specific types created to run on
Android devices, without the need of internet connection. The
aim ofMADS is to efficiently and accurately analyzeAndroid

applications without infringing their licenses or terms of use
that forbid reverse engineering, decompilation, or disassem-
bly of the APK file. More specifically, MADS consists of one
ormore detectors, wherein each detector is carefully designed
to identify a singlemalware type (e.g., ransomware, banking)
using APK features obtained from the operating system in a
non-invasive fashion.

For the sake of simplicity, here we will first present MADS
having a single detector employed on it; later, we will cover a
use case of MADS with multiple detectors working together.
Figure 1 depicts, in the offline steps ofMADS (leftmost part),
an overview of how to build a detector to be employed in
MADS. The first step consists of creating a set of rules to
cover the indispensable characteristics and behaviors that an
application must present to be considered as a potential mal-
ware of a certain type of interest. These rules will compose
the lightweight analysis module of a detector. Next, a dataset
of APK files is created, comprising samples of the malware
type of interest and benign samples. This dataset is employed
to train ML models using only features that can be obtained
employing Android native functions (which does not infringe
licenses and terms of use of applications). These models will
be components of the deep analysis module of a detector.

FIGURE 1. Design overview of MADS (with a single detector).

By having at least one detector modeled, MADS can be
deployed on an Android device, as shown in Figure 1 (right-
most part). During its execution, MADS monitoring module
monitors the device for the presence of APK files. Upon
identifying a file, MADS employs, in sequence, its two anal-
ysis modules to analyze the application for malicious traces.
Each module obtains a specific set of features from the APK
file, using Android native functions, and outputs a classifica-
tion result for the application. First, the lightweight analysis

VOLUME 11, 2023 73131



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

module is executed to check whether the application is a
potentialmalware of interest, by comparing the APK features
with the lightweight rules. If no potential malware behavior
is identified, an undetected label is returned (meaning that
non-malicious behavior was found). Otherwise, the analysis
goes on; i.e., the deep analysis module classifies the applica-
tion, based on ML models, and outputs a classification result
(malware or undetected) for the analyzed application. The
result of the analyses is forwarded to the messaging module
that finally presents it for the user.

It is important to highlight that while the lightweight analy-
sis module is always executed, the deep analysis module runs
depending on the outcome of its preceding module, which
can save resources and processing time, as we will show
in section IV-E. In the rest of this section, we first present
in more detail how a MADS detector is designed. Next,
we describe MADS workflow in detail while executing in an
Android device with multiple detectors.

B. RULES CREATION
While designing a MADS detector, the first step consists of
creating a set of rules (which will compose the lightweight
analysis module) to map the characteristics of the malware
type or specific behavior of interest for the detector. Here,
we focus on identifying, by the use of rules, potential mal-
ware with specific behaviors related to certain attack mecha-
nisms (e.g., encryption of users data). Each detector contains
a different set of rules according to the malware type it
aims at identifying. In essence, the rules should encompass
lightweight features that can be obtained before the applica-
tion installation using Android native functions. An example
of rule could be, for instance, the presence of certain Android
permissions used by the application that are indispensable
for a specific type of malware to perform its malicious
behaviors.

To conceive the rules, for instance, based on only per-
missions, the malware type of interest must be studied to
understand which permissions (and their combinations) it
requires to perform a malicious action. The rules designer
may opt to create a preliminary dataset with samples of the
malware type of interest to analyze real samples in order to
obtain insights about the characteristics and behaviors of the
malware type. These insights may help the designer to learn
which features can be obtained and used for analysis before
the APK file installation.

Suppose the threat of interest of a detector is phone
scam [28], whose main activity is to intercept phone calls and
redirect them to attackers. One can create rules that include
this type of activity, which will be applied during an APK
file analysis. One example of permission that can be used
is PROCESS_OUTGOING_CALLS that allows applications
to block and redirect phone calls. This way, an application
having this permission is a possible candidate to be phone
scam. Other types of permissions (and their combinations),
or even other elements that can be obtained from the APK

files in a lightweight fashion, can compose the rule set of the
lightweight step of the phone scam detector.

C. DATASET CREATION
Another step of the design of a MADS detector consists of
creating a dataset of malware and benign APK files that
should be used to construct the ML models (components
of the deep analysis module). The dataset elaboration must
take into account the specificities introduced by the MADS
analyses modules, as follows.

As introduced before, the lightweight analysis of a MADS
detector identifies whether an application is a potential mal-
ware based on a set of rules encompassing characteristics of
themalware type of interest. As wewill discuss in more detail
later, the lightweight analysis is the first step of a detector
and the deep analysis only executes if the lightweightmodule
flags the application as potential malware. Therefore, the
deep analysis module will only analyze applications having
the characteristics defined in the lightweight analysis.

For the aforementioned reasons, the dataset employed to
design the ML models must be elaborated to comprise only
APK files with the characteristics covered by the lightweight
rules defined for a particular detector. Suppose again we
are building a detector for phone scam malware. Both the
malware and benign samples collected to model a detector
of this threat must encompass phone call activities, since the
main activity of suchmalware type is to intercept phone calls.
This dataset creation requirement guarantees that the ML
models can be built to better distinguish between malware
and benign applications that present the characteristics of
interest. In section IV, we show the impact of this design
choice, which helps reduce the number of false alarms trig-
gered by ML-based detectors.

With the dataset established, the corresponding APK files
are given as input to a feature extraction tool that employs
Android native functions to obtain features from the appli-
cations. These features must represent characteristics of the
applications that can be obtained before and/or after the
application installation on an Android device. The feature
obtainment process of MADS does not infringe licenses and
terms of use of applications since all the features are obtained
from information provided by the Android operating system.
Besides, the features should undergo through appropriate
preprocessing steps according to the dataset designer expecta-
tions about a suitable processed dataset. For example, missing
feature values should be handled, duplicate samples based on
feature values may be removed, and samples with outliers on
specific feature values may also be dropped. In section IV,
we also show that using a restricted set of features, compared
to state-of-the-art solutions that adopts a broader set of fea-
tures (employing API calls, for instance), does not reduce the
detection capabilities of our detectors.

D. MODEL MODELING
In addition to lightweight rules, a MADS detector is also
comprised of ML models that make part of the deep analysis

73132 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

module. This module comprises two steps, wherein each step
is based on an ML model. Except for the set of features
obtained from the APK files, the ML models of both deep
steps are generated according to the same workflow, as pre-
sented in Figure 1 (leftmost part) and explained as follows.

Recall that, at this point, a dataset of benign and malware
APK files has been already created and properly prepro-
cessed, resulting in a set of samples, wherein each sample
comprises two sets of features obtained via Android native
functions. One set consists of static features that can be
obtained before the APK installation and is used to build a
first ML model (component of the first deep analysis step).
One can employ different categories of features for this
model, including those related to permissions [29], hardware
components [30], and application components [31]. Common
types of Android application components are activities, ser-
vices, receivers, and providers.

The other set of features can be obtained after the APK
installation and is employed to construct a secondMLmodel,
which will compose the second deep analysis step. This set
of features can be obtained from static (e.g., features related
to intents [32], assets, etc.) and/or dynamic analysis (e.g.,
features related to behaviors monitored during the application
execution, such as system calls performed). Notice that this
ML model may use all the features that can be extracted from
the APK file using Android native functions, including those
employed to build the first model. Thus, the second model
is intended to present stronger analysis capacity compared to
that of the first model, since the second model may employ a
broader set of features.

After obtained, the features are given as input to a feature
selection technique to filter out those that are not informative
to the classification task, as a form to decrease the complexity
of theMLmodel by using a smaller number of features. There
are many techniques to this end (e.g., Recursive Feature
Elimination [33], SelectFromModel [34], among others) and
a combination of them is also a suitable alternative. The same
or a different approach of feature selection used to build the
first model can be applied to construct the second model.
Next, the selected features are provided to an ML training
algorithm such that a model can be trained. The outputted
model is evaluated and, if it has suitable classification results
(which depend on the designer’s criteria), the corresponding
model data is generated and can be deployed on the Android
device. Otherwise, feature selection and model training and
evaluation are repeated until a suitable model is found.

For the two generated models, the confidence level (CL)
of the models regarding the classification labels given to
the dataset samples should be analyzed in order to establish
a threshold CL value. This threshold will indicate when a
malware label outputted by the model should be accepted as
the final label for an analyzed application. For instance, in an
ML approach that employs an ensemble of classifiers of the
same type (e.g., Random Forest), the CL value may consist
of the proportion of classifiers that labeled the analyzed APK
file with the malware label. In case the proportion is higher

than the chosen threshold, the malware label is accepted;
otherwise, the label undetected is returned instead.

E. MADS DETECTORS WORKFLOW
After properly designed, a MADS detector can be deployed
on an Android device. MADS can work with one or more
detectors, wherein each detector aims at detecting applica-
tions of a particular malware type or behavior. The detailed
workflow of MADS with multiple detectors is illustrated
in Figure 2. First, the user invokes the installation of an
application on her/his device.MADS identifies an application
installation event and starts the analysis of the application
before it is installed.

The application is given as input for the MADS detectors
deployed on the device. Although we present here a scheme
where the detectors are disposed in a sequential order, oper-
ating one after the other, for efficiency reasons (as explained
later), we emphasize that all the detectors can also be used in
parallel to analyze a given application.

Considering that the detectors are executed sequentially,
the application under analysis is first given as input for
Detector 1. Employing Android native functions, Detector 1
obtains a first set of features related to the rules created for the
lightweight analysis of the type of malware of interest. Next,
the detector performs the lightweight analysis of the APK file
and verifies whether the rules of the corresponding malware
type of interest apply to the analyzed application. In a positive
case, the application is forwarded to the deep analysis module
of Detector 1 to continue the analysis. However, in case the
lightweight analysis rules of Detector 1 does not apply, the
APK is forwarded to the next detector (i.e.,Detector 2), which
will repeat the same process, but using its specific set of
rules and components, comparing to a possible different set
of features obtained from the APK. This analysis process is
performed by all MADS detectors available. If no rule of any
of the lightweight analysis from all N detectors apply to the
APK, then this application is labeled as undetected and the
analysis ends, as no malicious traces of interest were found,
and the APK can be immediately installed on the device.

Notice that the lightweight analysis does not always
provide a final classification for the analyzed application.
Instead, it indicates whether the application has characteris-
tics of a known type of malware of interest and it is the deep
analysis that can finish an analysis procedure by providing
a final result. Recall that this second analysis module is
composed of twoMLmodels, wherein eachmodelmakes part
of one step of the module execution, i.e., deep analysis before
installation and deep analysis after installation. The steps are
executed as explained next.

Suppose the rules of the lightweight analysis of Detector 1
apply to the APKfile. In this case, the detector’s deep analysis
module obtains a second set of features before the APK
installation using Android native functions. With this new set
of features, Detector 1 executes the first ML model (from
the deep analysis before installation). The model outputs a
classification label for the analyzed APK file and a CL value

VOLUME 11, 2023 73133



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

FIGURE 2. Workflow of the Android malware detection solution proposed.

indicating how confident the model is about the outputted
label. If theCL value is above the threshold predefined for the
first model, then the outputted label is accepted. Moreover,
in case the classification of Detector 1 is accepted and the
result is themalware class, the analysis is finished right away
and the label returned to the user, alarming him about the
danger of continuing with the installation process of this par-
ticular APK file. Notice that in such a case, the execution of
the other detectors available in MADS will not be necessary,
since a malicious behavior was already found. On the other
hand, if the label returned is undetectedwith the classification

being accepted due to a sufficient CL value, Detector 1 does
not execute the next step of its deep analysis module (after
installation) and finishes its analysis procedure.

When the CL is below the predefined threshold for both
classes, the classifier is not confident about the classification
for the APKfile, thus the application is flagged to be analyzed
later by the deep analysis after installation of that particular
detector that returned this result. In this case, the following
step is to forward the APK to the next MADS detector to
continue the analysis procedure and so on. If all detectors
that perform the deep analysis before installation output no

73134 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

confidence enough about a malware label, the APK can be
installed in the device. The next analysis, also part of the
deep analysis module, is executed in a different moment
(after the application installation), using a different set of
features obtained about the application after its installation,
as described in the following.

Suppose Detector 1 was not confident enough about its
outputted classification label during the deep analysis before
installation. In such a case, Detector 1 collects a third set of
features that can only be obtained after the APK installation
using Android native functions. The third set of features is
given as input to a second ML model, from the deep analysis
after installation, which performs the last application analysis
step. Similar to the first model, the second one outputs a
classification label and a CL value. If a malware label is
outputted and the CL is above a threshold predefined for the
second model, then the outputted label is accepted and the
analysis provides the respective result to the user. Otherwise,
the subsequent detectors will proceed with the analysis by
executing their deep analysis after installation in case they
flagged the APK in their previous analysis step. If no detec-
tors output a malware label with CL above the predefined
thresholds, the analysis has been completed with no concrete
confidence about the application label, thus the APK file is
finally classified as undetected. Alternatively, one can ignore
the CL returned by the second model and accept its result
as final. We emphasize that when one of the detectors flag
the APK for further analysis and there is still other detectors
to evaluate the APK, in case a malware label with high
confidence is found, the APK file is flagged as such and no
further analysis is necessary anymore.

We use two threshold values for accepting a classification
returned by the ML model, one for the malware class and
another for the undetected one. These thresholds are spe-
cific for each detector and may impact the results of the
solutions regarding false positive and false negative results.
Their choice is a trade-off between these metrics, and for
that reason, must be chosen based on a study of the detec-
tors classification results and users’ needs (which will cause
less impact on users: a false alarm or being infected by a
malware?).
We highlight that some of the steps presented in Figure 2

are redundant and can be easily performed just once. For
instance, the feature obtainment process can be performed
one time and used by all detectors in the later steps.
We present the figure with such redundant steps for the
sake of understanding and to highlight the specificities of
each detector. During the prototype creation (detailed in the
next section), we will optimize the steps to avoid redundant
work.

IV. EVALUATION
In order to assess the benefits of our proposal, we developed
two Android applications: one representing MADS and hav-
ing three different detectors working together, one after the
other and based on different threats of interest (e.g., banking,

ransomware, and phone scam), and another representing
a general approach used by most state-of-the-art solutions
(referred as general solution), using only a single model
to detect all of the same threats addressed by the MADS
application.

For the general solution, we used the APKParser tool [35]
for feature extraction, since it obtains features using the
state-of-the-art’s most common approach, i.e., performing
the reverse engineering, disassembly, and decompilation of
the APK files. In turn, for MADS, we used Android native
functions [16], our proposed alternative. We optimized the
feature extraction process of MADS (based on Figure 2) to
extract the features from the APK file only once and then use
these features during the whole classification cycle, feeding
each detector with the features needed for the classification
task of each one of them.

We testedMADS and the general solution regarding detec-
tion capabilities and resources consumption, using a dataset
we designed composed of 2,944 APK samples (736 for each
class: benign, ransomware, banking, and phone scam). This
dataset was used to train theMLmodels used by the two solu-
tions. In this section, we present details about our evaluation
and results. We first describe the use case scenario considered
to perform the evaluation and draw research questions we
aim at answering. Next, we detail how the two solutions
were designed. Finally, we present the tests performed and
evaluation results.

A. USE CASE AND RESEARCH QUESTIONS
To measure the effects of MADS in a practical scenario,
we consider a use case of detection of three types of Android
malware, as follows:

• Phone scam: this threat consists of malicious applica-
tions that can intercept users’ outgoing calls and forward
to cybercriminals, who will be able to perform voice
phishing attacks (e.g., to gain access to personal and
financial information from users).

• Banking: malware that aims to steal banking credentials
of users, at rest in the device or given as input by users,
and send to attackers for financial gain.

• Ransomware: type of malware that demands a sum of
money from victims while promising to ‘‘release’’ a
hijacked resource of the device in exchange.

Considering this use case scenario, we created a proof-
of-concept application of MADS. This solution is composed
of one detector for each malware type of interest (with the
behaviors described above), wherein each detector comprises
two analysis steps (lightweight and deep analysis before
installation). Notice that we did not take into account the
second model, from the deep analysis after installation,
in our evaluation. The reason is threefold. First, the goal
of the evaluation is to draw a fair comparison between
MADS and the general solution, which usually employs
a single ML model. Second, the use of the CL threshold
of the first model may vary according to criteria of the
solution designer and the first model results on the testing

VOLUME 11, 2023 73135



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

FIGURE 3. Workflow adopted to collect and process the benign samples used in our evaluation.

TABLE 2. Examples of rules created for our evaluation.

dataset. Third, using the deep analysis after installation
would only improve the results obtained with the first deep
analysis.

Different from MADS, state-of-the-art solutions usually
adopt a single analysis step comprising anMLmodel to detect
several types of malware with different behaviors. Thus,
we designed a single ML model to represent this general
detection approach. We emphasize that we decided to create
such solution to compare results, since many works proposed
in the literature do not make their solutions available for
tests. Besides, the datasets used for the experiments are not
shared with the community in the majority of the cases,
which makes the process of replicating their experiments
impossible. To overcome this limitation, some authors use
publicly available datasets, such as Drebin [7], but this set
contains outdated applications from 2010 to 2012, which
do not correspond to the characteristics of applications seen
nowadays.

By testing MADS and the general solution to detect phone
scam, banking, and ransomware, our evaluation aims at
answering three research questions:
(i) By using specific-type detectors in a multi-stage fash-

ion, can we improve the classification capabilities of
ML-based solutions in relation to general classifiers?

(ii) Even though MADS uses additional steps during classi-
fication, can we have a more efficient analysis process,
requiring less time than the general solution?

(iii) Can we perform a more efficient analysis process, con-
suming less resources (CPU and RAM) than the general
solution during Android application analysis?

B. RULES AND DATASETS CREATION
The first design step of MADS is the creation of a set of rules
for the lightweight analysis module of each detector (refer
to section III-B). We studied papers and technical reports
of security specialists and analyzed many applications to
understand the well-known and main malicious behaviors of
phone scam, banking and ransomware applications. Based
on our studies, we created a set of rules to identify possible
applications of each threat. Table 2 provides examples of rules
we created for our evaluation.

The second design step of MADS is the creation of a
dataset of APK files (refer to section III-C) used to build
the models of the deep analysis. To create a model for each
of the three detectors, MADS requires a specific dataset
havingmalware applications for the threat type or behavior of
interest, and benign applications with similar characteristics
to themalicious ones, i.e., the benign applicationsmust match
the rules of the lightweight analysis for the specific threat.
In contrast, the general solution tries to detect the three types
of malware with a single detector and, therefore, requires a
dataset of benign applications with as many characteristics
as possible, and malware applications of the three types.
In view of the specificities of each solution, we created two

73136 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

FIGURE 4. Workflow adopted to collect and process the malware samples used in our evaluation.

datasets composed of benign and malware Android applica-
tions. The first one, named MADS dataset (MD), was used
to design the detectors that embody the idea of the proposed
solution. The second one, named general dataset (GD), was
used to model the detector based on the general solution
approach.

We collected and processed benign applications according
to the workflow presented in Figure 3. First, we crawled
the Google Play Store and downloaded samples that match
the rules of the lightweight analysis modules of MADS to
compose MD. In turn, most solutions of the state-of-the-art
use benign datasets having the most downloaded applications
from the Play Store, since it is believed that such a dataset
ensures the variability required by a general model to perform
accurate classification of different threats having a diverse
range of behaviors. For this reason, to collect samples for
GD, we used the AppBrain [36] platform to search for the
package name of the applications with the highest number
of downloads in several countries (e.g., Brazil, USA, India,
France, etc.) and downloaded the corresponding applications
from the Play Store. After this, we uploaded the downloaded
APKfiles to VirusTotal (VT) [37], a popular platform capable
of analyzing the files using several antivirus (AV) engines,
wherein each engine outputs a label indicating whether the
file is malicious or benign. To guarantee benign datasets
without malicious traces in our evaluation, we removed every
file to which at least one engine outputted a malicious label.

Afterwards, we obtained features about the remaining
benignAPK files. As discussed in detail later, we employed a
single process and the same input features to generate the ML
models of both MADS and the general solution’s approach.
Besides, since only the deep analysis before installation is
considered for our solution in the experiments reported in this
paper, the use case presented here encompasses only static
features that can be obtained before the APK installation.
As MADS obtains features from the Android operating sys-
tem, we adopted Android native functions to obtain features
about the APK files of MD. In turn, the general solution’s
approach obtains features directly from APK files. Thus,
we used APKParser to obtain features from applications
of GD.

We obtained more than 200 features from the benign APK
files and then removed duplicates based on their feature

TABLE 3. Examples of APK features used in our evaluation.

TABLE 4. Examples of dataset samples employed in our evaluation with
the values of some of the obtained features.

values. Table 3 presents examples of features employed in
our evaluation, which can be obtained before APKs instal-
lation. Permissions are used as binary categorical features,
wherein possible values are 1 for permissions the applica-
tion requests, and 0 for permissions the application does
not request. Examples are READ_SMS, CALL_PHONE and
RECEIVE_SMS. The same applies for hardware components,
which are binary categorical features indicating whether the
application requests access to a hardware component of
the device. Example features are hardware_camera, hard-
ware_microphone and hardware_location. In turn, for app
components, we count the number of specific components the
application contains. Example features are activities_count,
services_count and providers_count. Table 4 presents an
example of benign sample with the values of some obtained
features.
Malware applications were collected and processed by

following the workflow depicted in Figure 4. Phone scam
applications were shared with us by the Korea Internet Secu-
rity Agency (KISA) and the security researcher Min-chang
Jang, who has reported the collection of samples in a previous
work [28]. In turn, banking and ransomware samples were
obtained from the following datasets:CIC-AndMal2017 [38],

VOLUME 11, 2023 73137



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

TABLE 5. Datasets used in our evaluation.

CICMalDroid 2020 [39] and R-PackDroid [40]. In addition,
we searched for the hash of other samples in security reports
(e.g., available onMalpedia [41]) and downloaded the corre-
sponding APK files from Koodous, a popular web repository
of APK files. Next, in order to ensure the obtained APK
files are indeed banking or ransomware applications, we used
analysis data from VT and Euphony, a tool that receives
as input the AV engines’ labels for an APK file and gives
as output a family name to which the APK belongs [42].
We selected only samples that were labeled as malicious by
at least 14 AV engines on VT and were labeled with a family
name related to ransomware or banking by either Euphony
or at least 4 AV engines. We created a list of families to
consult from by researching the literature for known family
names of banking and ransomware. Thereafter, we obtained
the same set of features from all the selected malware APK
files, as done for the benign samples, and removed duplicate
ones (based on their feature vector). Notice that, for phone
scam, the step of verifying that an APK file is malware or
not, and to which family it belongs to, was not necessary,
since a third party already confirmed this. Table 4 presents an
example ofmalware sample with the values of some obtained
features.

We used the processed APK files to construct the MD
and GD datasets according to their specificities. Each dataset
comprised training and testing sets balanced between the
classes (benign, phone scam, banking, and ransomware).
We chose to split each class of samples into 70% for the train-
ing set and 30% for the testing set. Sincewe obtained different
numbers of samples for each class after the processing step
described before, we decided to remove some samples from
each set and keep the same number of samples for all sets.
To determine the number of samples of each class allocated
in each set, we took into account the smaller set of samples
between the dataset classes. As ransomware was the class
with the smaller number of samples obtained (1,052) after
the dataset processing, we defined 736 (i.e., 70% of 1,052) as
the number of samples the training set should contain for a
given class and used this same number for the other classes
too. In turn, we determined 316 (i.e., 30% of 1,052) as the
number of samples for the testing set for each class.

Table 5 presents a summary of the datasets. TheMD train-
ing set was comprised of 736 specific benign samples that
matched the lightweight rules of all the three detectors (phone
scam, banking, and ransomware). Each specific-type detector
used the same 736 benign samples to train the ML mod-
els, in addition to the same number of malware samples of
each detector. To perform a fair comparison between MADS
and the general solution’s approach, GD was composed of

the same samples of malware contained in MD, 736 for
each threat. However, the GD training set differed from MD
by having 736 benign samples from the most downloaded
applications of the Play Store. With the aim of testing the
two solutions with the same set of samples and drawing a
fair comparison, both MD and GD had the same testing set,
comprising 316 samples of each threat, 316 benign samples
that matched the lightweight rules of all the three detectors,
and 316 benign samples from the most downloaded ones
of the Play Store. We stress that there were no duplicate
samples among the training and testing sets of both datasets
(MD and GD).

C. MACHINE LEARNING MODELS MODELING
After creating the datasets, we modeled the ML models of
bothMADS and the general solution’s approach. ForMADS,
we generated three models, one for each detector. For the
phone scam detector’s model, we used the 736 benign and
736 phone scam samples of theMD training set. To generate
the models of the banking and ransomware detectors, we also
adopted the benign samples of theMD training set, however,
using the 736 banking samples and 736 ransomware appli-
cations, respectively. For the general model of the general
solution’s approach, we employed all the samples from the
GD training set (736 samples for each class: benign, phone
scam, banking and ransomware).
To perform a fair comparison between MADS and the

general solution, we used the more than 200 input features
(available before the APK file installation) and a single work-
flow to generate all the models, employing the scikit-learn
API [43]. First, we employed a feature selection to filter out
features that do not effectively contribute to the classifica-
tion process. Here, we used a model-based feature selection
method named SelectFromModel. This method selects the
most important features for the model by using importance
values assigned by the model to the features according to
their importance in the classification task. As ML algorithm,
we selected Random Forest (with 50 estimators) since it is
generally reported to be one of the ML algorithms with the
best results in the Android malware literature [44], [45].

As a result, the MADS detectors had their models gen-
erated with 27, 30, and 31 features for the ransomware,
phone scam, and banking models, respectively. In turn, the
model for the general solution’s approach was modeled with
43 features. We can observe that the approach of our proposal
results in the creation of simpler models compared to the gen-
eral solution’s approach. As advantages of simpler models,
the classification task can be performed more efficiently and
the models can be easily interpreted in order to understand

73138 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

TABLE 6. Results of testing MADS and the general solution on samples from the testing sets, wherein FP, TN, FN, and TP mean number of false positives,
true negatives, false negatives, and true positives, respectively.

which features are more important while classifying given
applications. For our evaluation, all the models were cre-
ated with a CL threshold of 50%, meaning that if a model
outputs the malware classification label for an application,
the label will only be accepted if the corresponding CL is
above 50%.

D. DETECTION RESULTS
To answer research question (i), the created models were
tested on the samples of the testing set. Recall this set
comprises 316 samples of each threat (phone scam, bank-
ing, and ransomware), 316 benign samples that matched
the lightweight rules of all the three MADS detectors
and 316 samples from the most downloaded ones of the
Play Store.

Each model was tested on the samples whose class is
addressed by the model. For example, as the phone scam
detector’s model was trained with benign and phone scam
samples, it was tested on samples of the same classes from
the testing set. Although some rules of each detector may be
similar in some specific cases, we argue that the lightweight
analysis module will perform this filtering process during
execution, and in practical scenarios, we expect this behav-
ior. Notice that this choice does not affect the results, since
the same benign samples will be evaluated by all detectors.
In case of malware samples, the same occurs; a malicious
sample may not be classified as malware by a detector spe-
cific for a different type ofmalware (if, otherwise, the sample
is classified as malware, it will only improve the results),
but when it reaches its intended detector, it will be properly
classified as malware. Differently, the model of the general
solution’s approach was tested on all the samples, since it was
trained with all classes of APK files.

We emphasize that among the 316 samples from the most
downloaded applications of the Play Store, there were sam-
ples which did not match the lightweight rules of some or
any of MADS detectors. As these samples have no malicious
traces regarding the threats of interest, they did not even need
to be analyzed by the MADS models and, therefore, were
immediately classified as undetected.
Table 6 presents the classification results obtained after

testing MADS specific-type models (phone scam, banking,
and ransomware, respectively), and the model of the general
solution’s approach. The metrics presented are calculated

based on number of false positives (FP), true negatives (TN ),
false negatives (FN ), and true positives (TP), as follows:

False positive rate (FPR) =
FP

FP+ TN

False negative rate (FNR) =
FN

FN + TP

Balanced accuracy =
1
2

(
TP

TP+ FN
+

TN
TN + FP

)
F1 score =

2 ∗ TP
2 ∗ TP+ FP+ FN

The results show that MADS specific detectors presented
low numbers of false positive cases (seven in total - average
FPR rate of 0.003%, considering the three threats) compared
to the general model (64 in total - average FPR of 0.017%).
This represents nine times less false positive cases than the
general model. Moreover, one of the MADS detectors did
not misclassify any benign sample, while the general detector
misclassified several benign samples as phone scam, banking,
or ransomware. This indicates a strong advantage of our
proposal, i.e., decrease on the number of false positive cases.
Reducing the number of false alarms is a strongly desirable
feature in the literature ofmalware detection, which improves
the credibility of the detection solution and causes a positive
impact on user’s experience.

The MADS detectors also presented better performance
than the general solution when classifying malware samples.
These detectors had only four false negative cases (average
FNR of 0.004%, considering the three detectors), which rep-
resents ten times less false negatives than the general detector
that presented 40 cases (average FNR of 0.042%). Banking
and ransomware are the types of malware to which the gen-
eral model mostly assigned wrong labels. This shows how
challenging it is for the general solution to predict the true
label of banking and ransomware applications. In contrast,
the MADS detectors are able to learn the specificities of each
malware type. The results also show that MADS presented an
average balanced accuracy of 99,60% (considering the three
detectors), which is 2.56% better than the general solution’s
average balanced accuracy (97.04%).

E. PERFORMANCE RESULTS
To answer research questions (ii) and (iii), we evalu-
ated the performance of MADS and the general solution’s

VOLUME 11, 2023 73139



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

TABLE 7. Information on the APK sets used for performance evaluation.

approach regarding the execution time and resources
(CPU and memory) consumed to perform classification.
To collect performance results, we executed both solutions
on a Samsung Galaxy S21+ device, equipped with the Qual-
comm SM8350 Snapdragon 888 chipset and 8 GB of RAM.
All tests related to execution time and resources consump-
tion were performed for one APK file at a time. To collect
execution time results, we used the SystemClock Android
native class [46]. In turn, to collect resources consump-
tion data, we plugged the Samsung device in a laptop with
Android Studio installed and, upon running an APK analysis
on the device, we observed the Android Studio’s Profiler
window [47], which shows information on CPU and RAM
consumed by the solution application.

We selected some benign and malware samples with dif-
ferent characteristics from the MD and GD datasets to run
the performance evaluation. Our aim was to observe how
MADS and the general solution’s approach perform in dif-
ferent classification scenarios (e.g., when a sample matches
the lightweight rules of a MADS detector and when a sample
does not). We split the selected samples into sets of two
(2) samples according to their characteristics, as shown in
Table 7. The reason for using such a small number of samples
in each set is due to the complexity of the resources consump-
tion evaluation, which required to be manually performed to
not invalidate the results.

Table 8 presents results for the execution time evalua-
tion. Notice that, for MADS, we present the execution time
of the feature obtaining procedure (using Android native
functions), lightweight analysis, and deep analysis steps
separately. For the execution times of the lightweight and

TABLE 8. Average time to obtain features and perform each analysis step
of MADS and general solution.

deep analyses, we considered the corresponding times of
all executed detectors. For instance, if the deep analysis
of the phone scam and banking detectors were executed
for an APK set, then the time shown is for the sum of
the execution times of both detectors. Since the general
solution presents a single analysis step based on a general
ML model, Table 8 shows the execution time of its feature
obtainment procedure (using APKParser) and its analysis
procedure.

In Table 8, we can observe results showing that the feature
obtainment procedure of MADS is at least four times faster
than the general solution’s procedure. There are cases (e.g.,
for APK set #3) in which MADS feature obtainment is even
twelve times faster. The reason is that while the general

73140 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

TABLE 9. Execution time of the solutions to obtain features and analyze
all samples from the APK sets.

solution directly manipulates the APK file to obtain features,
MADS obtains features using information available through
Android native functions, having a significant advantage in
relation to execution time and also not infringing licenses or
terms of use of applications. The general solution’s analysis
procedure andMADS deep analysis present similar execution
times when the deep analysis of a single MADS detector
(i.e., an ML model) is executed. However, in case the deep
analysis of more than one MADS detector is executed (e.g.,
for APK sets #5 and #9), the general solution’s analysis
procedure becomes faster, since more than one MADSmodel
analyzes the application. In scenarios where the application
does not match any of the MADS detectors’ lightweight rules
(e.g., for APK set #1), MADS is highly efficient, as only the
lightweight analysis is executed. Since this analysis consists
of a simple comparison between variables, it occurs in a short
time period, close to zero, thus we round its time to 0.1 ms.
MADS lightweight analysis is at least four times faster than
the general solution’s analysis procedure.

In Table 9, we show that the whole process of our pro-
posal (considering feature obtainment and analysis steps)
is three times faster than the general solution’s approach
(more specifically, 3.64 times), taking into account the anal-
ysis of all tested samples. Hence, the results demonstrate
the lightweight characteristic of our detection solution with
respect to execution time. The results also indicate that,
mostly, the size of an APK file does not introduce significant
impact on the execution time of MADS analysis (including
the feature obtainment procedure), since most features used
in the experiments are easy to obtain and do not require
processing every element of the APK file (e.g., most fea-
tures used in our evaluation are available in the Manifest
file).

In Table 10, we present the results of device resources
(CPU and memory) consumed by MADS in comparison to
the general solution’s approach, considering initialization
and idle state of the solutions applications, feature obtain-
ment, and analysis procedures. It is important to highlight
that CPU usage is proportional to energy consumption, thus
the lower, the better. The results, shown as an average of the

peak values obtained during each test, indicate that the CPU
usage during initialization, idle state, and analysis procedures
is similar between the solutions. However, MADS consumes
less CPU while obtaining features, being even ten times
more efficient than the general solution’s approach when
considering the APK set #4. Therefore, MADS is able to per-
form a lighter application analysis compared to the general
solution’s approach in terms of CPU consumption. Regard-
ing RAM consumption, the results indicate that, in general,
the solutions required similar amounts of memory to exe-
cute. Finally, the results show that the APK file size does
not introduce significant impact on the amounts of memory
consumed by MADS.

V. LIMITATIONS
In this section, we discuss the limitations of our work.

A. USE OF SPECIFIC-TYPE DETECTORS
One may argue that using specific-type detectors may not
guarantee optimal detection performance. We argue that
although this approach may suffer from scalability issues (it
is hard to map every single malware type/class/family in the
wild), for the malware types or behaviors of interest, the
detection performance of this approach is superior to that of a
general detector that tries to identify manymalware types and
behaviors at once (see section IV-E for more details). Besides,
if we focus onmalware behavior only, the number of possible
malicious behaviors (e.g., locking a device, encrypting users’
data) is restricted and easier to map.

Our goal by using such specific-type detectors is to allow
for focusing on the most dangerous malware types or behav-
iors. Note that we can either have a detector specific to, for
example, the ransomware type or one focused on detect-
ing applications that perform unauthorized lock of devices.
Besides, we showed in this work that by using specific-type
detectors, we can also have a better performance regarding
the use of device resources.

B. NECESSITY OF EXPERT KNOWLEDGE
Crafting rules is a task that requires expert knowledge on the
threats of interest. Although this may seem a limitation, such
task is performed by those implementing the specific-type
detectors, who already have the required expertise. Besides,
this task is executed once and then requires changes only
when either the Android architecture changes or a new detec-
tor must be created.

C. LACK OF COMPARISON WITH PUBLIC DATASETS
Using public datasets is the preferred alternative to assess
and compare ML solutions to understand their pros and
cons regarding performance. However, many publicmalware
datasets available contain outdated applications that are not
possible to use anymore in recent versions of the Android
operating system. For instance, the Drebin dataset contains
apps from 2010 to 2012, which were built for old Android

VOLUME 11, 2023 73141



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

TABLE 10. Resources consumption of MADS and the general solution’s approach during the classification steps.

versions with different characteristics from the most recent
versions.

Other datasets are unbalanced, and contain many appli-
cations with different characteristics and, in some cases,
wrongly labeled. Another problem is that although the hash of
the samples may differ in some cases, when we extracted the
features of these applications, many were identical (consider-
ing more than 200 features extracted). Using many duplicate
samplesmay create biasedmodels. The existence of duplicate
samples can be explained by considering a developer that
creates a malware application and then slightly changes it
so that it can appear to be different, evading signature-based
detectors (e.g., detectors based on the samples hash).

In our work, we created datasets with specific character-
istics of the threats of interest. Besides, we adopted prac-
tices during the dataset processing to avoid problems with
wrongly labeled samples, unbalanced sets, and also with
duplicate samples (considering the samples’ feature vector
values). Moreover, we collected more recently developed (or
at least updated)malware and benign applications (created or
released in the period of 2017 - 2022).

VI. CONCLUSION
In this work, we presented Malware APK Detection
Solution (MADS), a novel, lightweight, and non-invasive
approach to detect Androidmalware. We showed that using a
set of specific-type detectors, in amulti-stage analysis fashion
combining rules and machine learning techniques, we can

overcome strategies often used by state-of-the-art solutions
in terms of detection capabilities and performance (execution
time and resources usage).

MADS specific-type detectors obtained a significant
reduction of nine times less false positive cases than a general
model, related to state-of-the-art solutions, which was trained
with three different malware types at once. This benefit also
comes with a reduction in the resources consumed by MADS
in relation to the same state-of-the-art approach under com-
parison; the total execution time for all tested applications
was three times faster, and MADS consumed ten times less
CPU resources in some cases.

In addition to the performance advantages obtained, the
proposed solution is also in compliance with licenses or terms
of use adopted by mobile applications that forbid reverse
engineering, decompilation or disassembly of the applica-
tion under analysis. Future work encompasses a detailed
analysis of how variations on the threshold for the CL (Confi-
dence Level) values affect the classification results, as well
as the impact of concept drift in relation to the classifi-
cation of Android malware. An evaluation of adversarial
machine learning-based attacks is also in the scope of next
steps.

ACKNOWLEDGMENT
The authors would like to thank Allisson Andrade Franco,
Valdir Souza Junior, and Gabriel de Alcantara Bomfim
Silveira for their contributions.

73142 VOLUME 11, 2023



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

REFERENCES
[1] P. Kotzias, J. Caballero, and L. Bilge, ‘‘How did that get in

my phone? Unwanted app distribution on Android devices,’’
in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA,
USA, May 2021, pp. 53–69. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document/9519429

[2] J. Johnson. (2021). Development of Android Malware Worldwide From
June 2016 to March 2020. Accessed: May 31, 2022. [Online]. Avail-
able: https://www.statista.com/statistics/680705/global-android-malware-
volume/

[3] N. Peiravian and X. Zhu, ‘‘Machine learning for Android malware detec-
tion using permission and API calls,’’ in Proc. IEEE 25th Int. Conf. Tools
with Artif. Intell. Herndon, VA, USA: IEEE Computer Society, Nov. 2013,
pp. 300–305.

[4] M. Christodorescu and S. Jha, ‘‘Static analysis of executables to detect
malicious patterns,’’ in Proc. 12th USENIX Secur. Symp. Washington,
DC, USA: USENIX Association, Aug. 2003, pp. 169–186. [Online].
Available: https://www.usenix.org/legacy/events/sec03/tech/full_papers/
christodorescu/christodorescu.pdf

[5] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. S. Subrahmanian,
‘‘DBank: Predictive behavioral analysis of recent Android
banking trojans,’’ IEEE Trans. Depend. Sec. Comput., vol. 18,
no. 3, pp. 1378–1393, May/Jun. 2019. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8684321

[6] S. Alsoghyer and I. Almomani, ‘‘Ransomware detection system for
Android applications,’’ Electronics, vol. 8, no. 8, p. 868, Aug. 2019.
[Online]. Available: https://www.mdpi.com/2079-9292/8/8/868

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Androidmalware in your pocket,’’ in
Proc. Netw. Distrib. Syst. Secur. Symp., vol. 14, 2014, pp. 23–26. [Online].
Available: https://prosec.mlsec.org/docs/2014-ndss.pdf

[8] M. Weizhi, Ed., Protecting Mobile Networks and Devices: Challenges
and Solutions. Boca Raton, FL, USA: Taylor & Francis, 2016. [Online].
Available: https://repository.ubn.ru.nl/handle/2066/166088

[9] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, ‘‘Significant
permission identification for machine-learning-based Android
malware detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7,
pp. 3216–3225, Jul. 2018. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document/8255798

[10] A. Salah, E. Shalabi, and W. Khedr, ‘‘A lightweight Android malware
classifier using novel feature selection methods,’’ Symmetry, vol. 12,
no. 5, p. 858,May 2020. [Online]. Available: https://www.mdpi.com/2073-
8994/12/5/858

[11] F. Pierazzi, G. Mezzour, Q. Han, M. Colajanni, and V. S. Subrahmanian,
‘‘A data-driven characterization of modern Android spyware,’’ACMTrans.
Manage. Inf. Syst., vol. 11, no. 1, pp. 1–38, Mar. 2020. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3382158

[12] V. Sihag, G. Choudhary, M. Vardhan, P. Singh, and J. T. Seo, ‘‘PICAn-
dro: Packet inspection-based Android malware detection,’’ Secur. Com-
mun. Netw., vol. 2021, pp. 1–11, Nov. 2021. [Online]. Available:
https://www.hindawi.com/journals/scn/2021/9099476/

[13] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘DL-droid: Deep
learning based Android malware detection using real devices,’’ Com-
put. Secur., vol. 89, Feb. 2020, Art. no. 101663. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404819300161

[14] Android Sandbox. (2023). Sandbox Documentation. Accessed:
Jun. 3, 2023. [Online]. Available: https://source.android.com/security/app-
sandbox

[15] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘EMULATOR vs REAL
PHONE:Androidmalware detection usingmachine learning,’’ inProc. 3rd
ACM Int. Workshop Secur. Privacy Anal., Mar. 2017, pp. 65–72. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3041008.3041010

[16] Android Open Source Project. (2023). PackageManager. Accessed:
Jun. 3, 2023. [Online]. Available: https://developer.android.com/
reference/android/content/PM/PackageManager

[17] A. Pektaş and T. Acarman, ‘‘Deep learning for effective Android
malware detection using API call graph embeddings,’’ Soft Com-
put., vol. 24, no. 2, pp. 1027–1043, Jan. 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s00500-019-03940-5

[18] H. Gao, S. Cheng, and W. Zhang, ‘‘GDroid: Android malware
detection and classification with graph convolutional network,’’ Com-
put. Secur., vol. 106, Jul. 2021, Art. no. 102264. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821000882

[19] I. J. Sanz, M. A. Lopez, E. K. Viegas, and V. R. Sanches,
‘‘A lightweight network-based Android malware detection system,’’
in Proc. IFIP Netw. Conf., Paris, France, Jun. 2020, pp. 695–703.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9142796

[20] A. Gharib and A. A. Ghorbani, ‘‘DNA-Droid: A real-time
Android ransomware detection framework,’’ in Network and
System Security (Lecture Notes in Computer Science), vol. 10394.
Helsinki, Finland: Springer, Aug. 2017, pp. 184–198. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-319-
64701-2_14

[21] A. Mahindru and A. L. Sangal, ‘‘MLDroid—Framework for Android
malware detection using machine learning techniques,’’ Neural Comput.
Appl., vol. 33, no. 10, pp. 5183–5240, May 2021. [Online]. Available:
https://link.springer.com/article/10.1007/s00521-020-05309-4

[22] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, ‘‘MAPAS:
A practical deep learning-based Android malware detection
system,’’ Int. J. Inf. Secur., vol. 21, no. 4, pp. 725–738,
Aug. 2022.

[23] M. Jerbi, Z. C. Dagdia, S. Bechikh, and L. B. Said, ‘‘Android malware
detection as a bi-level problem,’’ Comput. Secur., vol. 121, Oct. 2022,
Art. no. 102825.

[24] İ. Atacak, ‘‘An ensemble approach based on fuzzy logic using machine
learning classifiers for Android malware detection,’’ Appl. Sci., vol. 13,
no. 3, p. 1484, Jan. 2023.

[25] Y. Wu, J. Shi, P. Wang, D. Zeng, and C. Sun, ‘‘DeepCatra:
Learning flow- and graph-based behaviours for Android
malware detection,’’ IET Inf. Secur., vol. 17, no. 1, pp. 118–130,
Jan. 2023.

[26] D. Ö. Sahin, S. Akleylek, and E. Kiliç, ‘‘LinRegDroid: Detection
of Android malware using multiple linear regression models-
based classifiers,’’ IEEE Access, vol. 10, pp. 14246–14259,
2022.

[27] Koodous. (2023). Collaborative Platform for Android Malware Analysts.
Accessed: Jun. 3, 2023. [Online]. Available: https://koodous.com/

[28] M.-C. Jang, K.-J. Kwak, J. Kim, and S. Kim. (2019).When Voice Phishing
Met Malicious Android App. Accessed: May 31, 2022. [Online]. Available:
https://www.blackhat.com/asia-19/briefings/schedule/

[29] Android Permissions. (2023). Android Permissions Doc-
umentation. Accessed: Jun. 3, 2023. [Online]. Available:
https://developer.android.com/reference/android/Manifest.permission

[30] Android Hardware Components. (2023). Android Hardware
Components Documentation. Accessed: Jun. 3, 2023. [Online].
Available: https://developer.android.com/guide/topics/manifest/
uses-feature-element#hw-features

[31] Android Application Components. (2023). Android Application
Components Documentation. Accessed: Jun. 3, 2023. [Online]. Available:
https://developer.android.com/guide/components/fundamentals#
Components

[32] Android Intent Filters. (2023). Android Intent Filters Doc-
umentation. Accessed: Jun. 3, 2023. [Online]. Available:
https://developer.android.com/guide/components/intents-filters

[33] RFE. (2023). Recursive Feature Elimination Documentation.
Accessed: Jun. 3, 2023. [Online]. Available: http://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

[34] SelectFromModel. (2023). SelectFromModel Documentation. Accessed:
Jun. 3, 2023. [Online]. Available: http://scikit-learn.org/stable/
modules/generated/sklearn.feature_selection.SelectFromModel.html

[35] Jared Rummler. (2023). APKParser, 2023. Accessed: Jun. 3, 2023.
[Online]. Available: https://github.com/jaredrummler/APKParser

[36] AppBrain. (2023). Top Android Apps and Games on Google Play.
Accessed: Jun. 3, 2023. [Online]. Available: https://www.appbrain.com/

[37] VirusTotal. (2023). Analyse Suspicious Files, Domains, IPS and URLs
to Detect Malware and Other Breaches, Automatically Share Them With
the Security Community. Accessed: Jun. 3, 2023. [Online]. Available:
https://www.virustotal.com/

[38] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, ‘‘Toward
developing a systematic approach to generate benchmark Android
malware datasets and classification,’’ in Proc. Int. Carnahan Conf.
Secur. Technol. (ICCST), Montreal, QC, Canada, Oct. 2018, pp. 1–7.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8585560

VOLUME 11, 2023 73143



L. da Costa, V. Moia: Lightweight and Multi-Stage Approach for Android Malware Detection

[39] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and
A. A. Ghorbani, ‘‘Dynamic Android malware category classification
using semi-supervised deep learning,’’ in Proc. IEEE Int. Conf.
Dependable, Autonomic Secure Comput., Int. Conf. Pervasive
Intell. Comput., Int. Conf Cloud Big Data Comput., Int. Conf.
Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberSciTech),
Calgary, AB, Canada, Aug. 2020, pp. 515–522. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9251198

[40] D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and
F. Martinelli, ‘‘R-PackDroid: API package-based characterization
and detection of mobile ransomware,’’ in Proc. Symp. Appl. Comput.,
Marrakech, Morocco, Apr. 2017, pp. 1718–1723. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3019612.3019793

[41] Malpedia. (2023). Resource for Rapid Identification and Actionable Con-
text When Investigating Malware. Accessed: Jun. 3, 2023. [Online]. Avail-
able: https://malpedia.caad.fkie.fraunhofer.de/

[42] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé,
Y. L. Traon, J. Klein, and L. Cavallaro, ‘‘Euphony: Harmonious
unification of cacophonous anti-virus vendor labels for Android
malware,’’ in Proc. IEEE/ACM 14th Int. Conf. Mining Softw.
Repositories (MSR). Buenos Aires, Argentina: IEEE Computer Society,
May 2017, pp. 425–435. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/7962391

[43] Scikit-Learn. (2023).Machine Learning in Python. Accessed: Jun. 3, 2023.
[Online]. Available: https://scikit-learn.org/

[44] P. Agrawal and B. Trivedi, ‘‘Machine learning classifiers for Android
malware detection,’’ in Data Management, Analytics and Innovation,
N. Sharma, A. Chakrabarti, V. E. Balas, and J. Martinovic, Eds. Singapore:
Springer, 2021, pp. 311–322.

[45] M. S. Rana, C. Gudla, and A. H. Sung, ‘‘Evaluating machine learning
models for Android malware detection: A comparison study,’’ in Proc. VII
Int. Conf. Netw., Commun. Comput., Taiwan, Dec. 2018, pp. 17–21.

[46] SystemClock. SystemClock—Android Developers. Accessed:
Jun. 3, 2023. [Online]. Available: https://developer.android.com/reference/
android/os/SystemClock

[47] Profile. (2023). Profile Your App Performance—Android Develop-
ers. Accessed: Jun. 3, 2023. [Online]. Available: https://developer.
android.com/studio/profile

LEONARDO DA COSTA received the first M.Sc.
degree in computer science from the Stevens
Institute of Technology, USA, and the second
M.Sc. degree in computer science from Univer-
sidade Federal do Pará (UFPA), Brazil, where
he is currently pursuing the Ph.D. degree. Since
2020, he has been working as a Cybersecu-
rity Researcher with the Samsung Research and
Development Institute Brazil (SRBR). His main
research interests include cryptographic protocols,

blockchain, health records security, network security, android security, and
machine learning applied to security.

VITOR MOIA received the Computer Engineering
degree from the Centro Regional Universitário de
Espírito Santo do Pinhal in 2013, the master’s
degree in computer engineering from the Uni-
versity of Campinas (Unicamp), Brazil, in 2016,
and the Ph.D. degree from Unicamp in February
2020, working in the digital forensics field. During
his master’s thesis, he conducted a study about
the security and privacy on cloud data storage.
He worked for about three years as a Security

Researcher with the Samsung Research and Development Institute, where he
became a Project Leader and conducted applied research activities in mobile
and network security. Since September 2022, he has been working as a Cyber
Security Consultant at Eldorado Institute, Brazil, in red team activities and
secure software development lifecycle (SSDLC) adoption.

73144 VOLUME 11, 2023


