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ABSTRACT Mental fatigue is a psychophysical condition with a significant adverse effect on daily life,
compromising both physical and mental wellness. We are experiencing challenges in this fast-changing
environment, and mental fatigue problems are becoming more prominent. This demands an urgent need
to explore an effective and accurate automated system for timely mental fatigue detection. Therefore,
we present a systematic review of brain-computer interface (BCI) studies for mental fatigue detection using
artificial intelligent (AI) techniques published in Scopus, IEEE Explore, PubMed andWeb of Science (WOS)
between 2011 and 2022. TheBoolean search expression that comprised (((ELECTROENCEPHALOGRAM)
AND (BCI)) AND (FATIGUE CLASSIFICATION)) AND (BRAIN-COMPUTER INTERFACE) has
been used to select the articles. Through the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) methodology, we selected 39 out of 562 articles. Our review identified the
research gap in employing BCI for mental fatigue intervention through automated neurofeedback. The AI
techniques employed to develop EEG-based mental fatigue detection are also discussed. We have presented
comprehensive challenges and future recommendations from the gaps identified in discussions. The future
direction includes data fusion, hybrid classification models, availability of public datasets, uncertainty,
explainability, and hardware implementation strategies.

INDEX TERMS Brain-computer interface (BCI), electroencephalogram (EEG), mental fatigue detection,
PRISMA.

I. INTRODUCTION
Mental fatigue sometimes referred to as cognitive fatigue
or brain fatigue, is characterized by a sense of tiredness
or exhaustion that impairs a person’s capacity to focus
and think effectively. Many people have it, and it can
be caused by a variety of reasons such as stress, insom-
nia, workload, and continuous mental activity [1]. The
detrimental effects of mental fatigue have been frequently
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reported as a major risk factor in the occurrence of
automobile accidents [2]. It is alarming to note that fatigue
is responsible for 20 to 30 percent of all motor vehicle
collisions [3], where 5 to 15 percent of these accidents end in
fatality.

In the workplace, mental fatigue increases the risk of
errors. It was observed that mental fatigue caused a decline
in typing performance although employees were permitted
breaks at work [4]. Therefore, several studies have been
conducted to investigate the use of keystroke dynamics
features in the recognition of mental fatigue [5], [6].
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Mental fatigue among healthcare professionals is a major
concern. The ability of healthcare providers to do their jobs
has a significant impact on other people’s lives. A national
study conducted in Portugal in 2021 reported 66 percent
of physicians had high levels of emotional exhaustion,
33 percent had high levels of feeling self-disconnected or
detached, and 39 percent had high levels of reduction in self-
accomplishment due to excessive and prolonged stress when
performing duties at the workplace [7].

Recently, the correlation between mental fatigue on
physical endurance was studied. In addition to the psy-
chobiological state that is brought on by long durations
of mentally taxing activities and is characterized by feel-
ings of fatigue and an inability to muster up sufficient
amounts of energy [1], [8] mental fatigue affects athletic
performance in longer-duration sports where continual man-
agement of effort is required. It was reported that mental
fatigue has a negative impact on an individual’s ability
to run [9], cycle [10] and swim [11]. Similarly, it was
demonstrated that mental fatigue leads to a decline in a
soccer player’s physical and technical performance [12],
as well as an impairment in both their precision and speed of
decision-making [13].

From the clinical perspective, mental fatigue can cause
psychomotor deficits, which subsequently lead to other health
problems, in particular neurodegeneration [14], [15]. In the
early stages of Parkinson’s disease, patients were reported
to exhibit higher levels of physical and mental fatigue
compared to healthy persons [16]. Moreover, fatigue is one
of the most disabling symptoms for patients with Parkinson’s
disease [17], [18]. Thus, making it difficult for these patients
to participate in daily life activities.

In a nutshell, mental fatigue can lead to a reduction in
productivity and worsening quality of life. If left untreated,
it may eventually cause serious complications. The symptoms
of mental fatigue might not be apparent during the early
stages, thus making it difficult to detect until it is too late.
Many instruments have been devised to identify mental
fatigue, such as the NASA Task Load Index [19], Karolinska
Sleepiness Scale [20], Epworth Sleepiness Scale [21],
Checklist Individual Strength (CIS) [22] and Chalder Fatigue
Scale (CFS) [23]. However, these techniques are based on
subjective judgments and are prone to errors and biases.
Furthermore, mental fatigue is a cumulative process that
develops over a period of time [24], thus delaying its
detection and increasing the risks brought about by mental
fatigue.

Research on brain-computer interface (BCI) began in the
1970s [25]. BCI aims to explore the potential of using brain
signals as the source of instructions to perform tasks through
computer systems. BCI is a hardware and software frame-
work that allows machines and other communication devices
to be controlled based on brain signals. Different forms
of brain activation signals have been analyzed to perform
mental fatigue detection, including electroencephalogram
(EEG) [26]. Based on the type of brain activation, a BCI

system using EEG can be categorized as either active BCI,
passive BCI, or reactive BCI [27].

In recent years, there has been a growing interest in
applying artificial intelligence techniques to brain-computer
interfaces for the detection of mental fatigue, with stud-
ies extending to sleep analysis and drivers’ behaviors.
Specifically, for sleep-related investigations, researchers have
proposed a multi-modal approach based on the Squeeze-
and-Excitation Network with Domain Adversarial Learning
(SEN-DAL) to effectively capture features from electroen-
cephalogram (EEG) and electrooculogram (EOG) signals for
sleep staging [28]. Additionally, a novel Sleep Heterogeneous
Graph Neural Network (SleepHGNN) has been introduced,
leveraging the interactivity and heterogeneity of physiolog-
ical signals [29]. In a separate study, a novel Bayesian
spatial-temporal relation inference neural network, known as
the Bayesian spatial-temporal transformer (BSTT), has been
proposed for adaptive inference of brain spatial-temporal
relations during sleep, enabling the extraction of spatial-
temporal features [30]. Moreover, mental fatigue analysis
extends beyond sleep and also encompasses the analysis of
drivers’ behaviors [31]. These advancements hold promise
for further advancements in mental fatigue detection and
understanding human factors related to sleep and driving.

This paper presents a systematic review of studies pub-
lished between 2011 and 2022 on mental fatigue detection
using BCI. In the following section, the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)
method used in this review is described. The various machine
learning and deep learning models employed for automated
fatigue detection are discussed. Also, the challenges faced
and future directions are presented.

II. METHODOLOGY
The PRISMA guideline 2020 [32] was used to analyze the
most relevant studies on mental fatigue detection using BCI.
The search consisted of several sequential processes which
include identification, screening and inclusion, as depicted in
the PRISMA flowchart in Fig. 1.

In the identification stage, all publications up to 13th
September 2022 were compiled from searches made in
Scopus, IEEE Explore, PubMed and Web of Science (WOS)
databases. The retrieval was performed using the following
Boolean search expression for all articles and journal papers:
(((ELECTROENCEPHALOGRAM) AND (BCI))

AND (FATIGUE CLASSIFICATION)) AND
(BRAIN-COMPUTER INTERFACE)

Related articles written in English from 2011 to 2022 were
downloaded, not limited to the country or region of the author.
A total of 562 publications were extracted, 310 were obtained
from Scopus, 168 were retrieved from IEEE Explore, 38 were
retrieved from PubMed and 46 were retrieved from Web
of Science (WOS). The number was reduced to 429 after
removing 133 publications with duplicated titles.

In the screening stage, 1 review paper was further excluded
and another 14 were not accessible. Upon further screening
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FIGURE 1. PRISMA 2020 flow diagram used for BCI studies on automated mental fatigue detection.

of the articles, 375 were excluded from the list due to
the different study scopes. This included 7 articles that
did not address the implementation of BCI using EEG,
339 articles that did not cover mental fatigue, 4 articles
that presented the integration of BCI with other modalities,
and 25 articles that did not include the implementation of
supervised machine learning (ML) for mental fatigue detec-
tion. As a result, only 39 publications were selected for this
review.

III. MENTAL FATIGUE DETECTION USING BRAIN
COMPUTER INTERFACE
EEG refers to the recording of electrical waves emitted at
the scalp due to neuronal activations in the brain. EEG
is non-invasive, where electrodes are placed on the scalp
at specific locations to record brain activities. Moreover,
EEG is more portable, relatively cheaper and easy to

use compared to other neuroimaging machines such as
functional magnetic resonance imaging (fMRI) [33], positron
emission tomography (PET) [34], single-photon emission
computerized tomography (SPECT) [35], [36] and near-
infrared spectroscopy (NIRS) [37], [38]. In addition, EEG
produces signals with excellent temporal resolution. In other
words, recorded EEG signals contain details of brain
activities up to the order of milliseconds time instances.
Therefore, EEG has been widely used to study the cognitive
and affective states of mind. This includes mental fatigue
detection.

Using the supervised ML approach, many models have
been proposed to detect mental fatigue from EEG sig-
nals. It involves four fundamental steps which are signal
acquisition, pre-processing, feature extraction, and classifica-
tion [39], as depicted in Fig. 2. The ML and DL approaches
used for automated mental fatigue detection is shown in
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FIGURE 2. Illustration of ML and DL approaches used for automated mental fatigue detection.

FIGURE 3. Classification models comprised of artificial intelligence.

Fig. 2 and 3. The EEG signal acquisition is governed by
the (i) electrode placements and (ii) frequency bands. In the

preprocessing phase, artifacts are detected and removed
from the data. The feature extraction step helps transform
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FIGURE 4. 10 -20 EEG electrodes positioning system.

the data into a format that allows classification algorithms
to describe the phenomenon. Finally, the classification
algorithm differentiates the normal and fatigue states by
classifying the input features.

A. EEG SIGNAL ACQUISITION
EEG signal acquisition involves the recording of electri-
cal signals emitted from electrodes placed on the scalp
following the 10-20 international standard EEG electrode
placements [40], as depicted in Fig. 4. With the advancement
of technology, various EEG models of different designs and
functionalities are now available. Fig. 5 shows the different
EEG devices used in mental fatigue detection studies. Device
details such as the manufacturers, types and number of
electrodes are further elaborated below.

1) B-ALERT X24
B-Alert X24 is a medical-grade EEG system with a 20-
channel headset. It has an optional channel for electrocardio-
gram (ECG), electrooculogram (EOG), or electromyogram
(EMG). B-Alert X24 is produced by Advanced Brain
Monitoring, Carlsbad, CA, USA and is connected to the
computer using Bluetooth [41], [42].

2) BIOSEMI ACTIVE TWO SYSTEM
The Biosemi Active Two system is a wired EEG system
manufactured by Biosemi, the Netherlands. It includes
64 active electrodes mounted on a cap. For signal recording,
electrolyte gel is filled into each of the pre-amplified
Ag/AgCl electrodes [43].

FIGURE 5. Sunburst plot of EEG devices. The first, second and third levels
indicate transmission, neuro headset, and sampling rates, respectively.

3) BRAINAMP
BrainAmp is a series of products produced by Brain Products
GmbH, German. It is a signal amplifier that can measure up
to 30 EEG channels (Fp1, Fp2, F3, F4, Fz, FC1, FC2, FC5,
FC6, T7, T8, C3, C4, Cz, CP1, CP2, CP5, CP6, TP9, TP10,
P3, P4, P7, P8, Pz, PO9, PO10, O1, O2, and Oz). It is also
equipped with 4 EOG channels [44].

4) EPOC+

EPOC+ is a wireless neuroheadset produced by Emotiv.
It consists of 14-channel wet Ag/AgCl electrodes including
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4.
In a study by Bin and Pan [45], the sampling rate was set
to 250 Hz.

5) GUSBAMP AMPLIFIER
The gUSBamp amplifier is manufactured by Guger Tech-
nologies. A gUSBamp amplifier set supports up to 16 EEG
channels using any compatible electrodes and headset. It can
easily connect to a computer through a USB socket [46], [47].

6) LIVEAMP
LiveAmp is another series of products produced by Brain
Products GmbH, German. It is a small, wireless EEG
amplifier for mobile EEG applications. In a study by
Massé et al. [48] on mental fatigue detection, LiveAmp was
connected to an R-Net helmet with 32 passive electrodes.
However, only 4 channels of Fz, Cz, Pz and Oz were analyzed
in the study.

7) MUSE
MUSE is a consumer EEG system produced by InteraXon,
Canada. It only contains 4 channels, i.e. AF7, AF8, TP9 and
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TP10. It supports wireless connectivity through Bluetooth
with a proprietary mobile app [41], [49].

8) NEUROSCAN
NeuroScan produces several total solutions consisting of
hardware and software for EEG analysis. The components
and platforms are not limited to a single field of study, allow-
ing for frequent and reliable transitions between recordings
in one field to another utilizing the same hardware setup.
Tian et al. [50] used a SymAmp2NeuroScan device to record
32 channels of EEG data, including two vertical-EOG and
horizontal-l EOG, at a sample rate of 1000Hz. Gao et al. [51]
and Li et al. [52] employed the NeuroScan system, which
included 40 electrodes with a sampling frequency of 1000 Hz
and was organized following the standard international
10/20 method. To record EEG data, Liu et al. [53] and
Khare et al. [54] used a NeuroScan NuAmps Express sys-
tem placed with 30 sintered Ag/AgCl EEG active elec-
trode sites and a unipolar reference. The sampling rate
was 500 Hz.

9) NEUROSKY
NeuroSky devices are well-known for their affordable cost,
ease of use, and quick data processing. However, they have
limited sensitivity and performance quality due to the use
of only one electrode [55]. NeuroSky Mindwave employs
a single-channel electrode that takes data from the Fp1
electrode using a 10/20 method. A1 electrode is utilized as
a reference electrode and is clipped to the left ear. The device
has a sampling rate of 512 Hz [56].

10) UWAKE
U-Wake is a mobile and wireless EEG device featuring one
frontal EEG channel and one clip that includes a Ground
channel (GND) and a Reference channel (REF). Bluetooth
is used for transmission. EEG signals can be recorded at
a 512 Hz sampling rate [57].

11) WAVEGUARD ORIGINAL
The Waveguard Original EEG cap is one of the products
offered by ANT Neuro. It is designed to work in con-
junction with ANT Neuro’s EEG amplifiers and recording
systems, ensuring compatibility and optimal performance.
It is equipped with up to 256 Ag-AgCl surface electrodes that
placed according to the international 10–20 system. In the
study by Li et al. [58], 64 wired electrodes are used to capture
EEG signals at the sampling rate of 1024 Hz.

B. EEG DATASETS
Many of the EEG datasets used were non-public data col-
lected in situ for the studies. The publicly available datasets
used for mental fatigue detection studies are summarized in
Table 1.

1) EEG MOTOR MOVEMENT/IMAGERY DATASET
The dataset consists of EEG recordings from 109 subjects.
The subjects performed various motor imagery tasks while
64-channel EEG was recorded using the BCI2000 system.
The motor imagery tasks include opening and closing the left
fist or right fist or both fists or feet, followed by visualizing
the physical movements made [59], [60].

2) SEED-VIG
The SEED-VIG dataset was created to investigate driver’s
vigilance using EEG and forehead EOG. It contains EEG
recordings of 12 channels (CP1, CPZ, CP2, P1, PZ, P2,
PO3, POZ, PO4, O1, OZ, O2, FT7, FT8, T7, T8, TP7 and
TP8) from 23 subjects. The SEED-VIG dataset was collected
while subjects were in a simulated driving system, which
has a massive screen showing a four-way highway scene
positioned in front of a real vehicle. To induce fatigue in
the participants, the road was straight and monotonous, and
the experiments were conducted in the early afternoon after
lunch. The duration of the experiment was approximately two
hours [61].

3) SUSTAINED-ATTENTION DRIVING DATASET (SADD)
The dataset consists of 62 sessions of 32-channel EEG data
from 27 subjects, who were instructed to maintain their
vehicle in the center of the lane while driving on a simulated
four-lane highway for 1.5 hours. Random lane-departure
events were programmed to steer the vehicle away from its
original path and into the left or right lane, hence inducing
mental fatigue. A complete trial included deviation onset,
response onset and response offset events. The next trial,
which instructed the subject to return to the initial cruising
lane, began 5–10 seconds after the conclusion of the previous
trial [62].

C. EEG SIGNAL PRE-PROCESSING
EEG signals are made up of electrical waves ranging from
0.5 cycles per second to 60 cycles per second measured
at the scalp. Mainly, the waves are identified based on the
different bandwidths including delta, theta, alpha, beta and
gamma [63]. Table 2 summarizes the frequency range of EEG
waves. Raw EEG signals may contain unwanted noise and
artifacts which come from various sources [64]. The noise
may be captured from the amplifier, power line, or faulty
setup of electrodes. Additionally, the artifacts are emitted
from the heart (electrocardiogram - ECG or EKG), cornea-
retinal (electrooculogram - EOG), and nerve’s stimulation
(electromyogram - EMG). Such noise and artifacts are
removed at the pre-processing phase via filters.

In general, filters are grouped into 3 main categories,
namely low-pass filter, high-pass filter and notch filter [65].
The low-pass filters, also known as high-frequency filters
(HFF), attenuate high frequencies and allow low frequencies
to ‘‘pass-through’’ with respect to the cutoff frequency.
On the other hand, high-pass filters, also known as
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TABLE 1. Summary of the dataset used for mental fatigue detection.

TABLE 2. Frequency range of various EEG waves.

low-frequency filters (LFF), allow high frequencies to ‘‘pass-
through’’ by filtering out the low pass frequencies. A notch
filter discard signals at a specific frequency, rather than
a range. Another type of filter is called the bandpass
filter which typically combines a low-frequency filter and
a high-frequency filter to limit the range of unwanted
low-frequencies and high-frequencies signals from passing
through.

Based on the articles reviewed, the bandpass filter is
most commonly employed in the pre-processing of EEG
signals for mental fatigue detection using supervised ML.
Not all EEG frequency waves were analyzed in the articles
reviewed. From the 35 articles in this review, only 2 studies
reported using all frequency waves for mental fatigue
detection [66], [67].

In addition to the frequency band selection, some studies
have proposed different approaches to discard unwanted
artifacts, mainly due to eye movement or eye blink and
muscle noise contamination. For removing artifacts due to the
eye blink movement, many of the studies apply independent
component analysis (ICA) [42], [44], [56], [66], [68], [69].
Other techniques proposed were enhanced automatic wavelet

ICA (EAWICA) [70], second-order blind identification
(SOBI) [67], [71] and a combination of digital filters and a
rule-based decision system [72]. Artifacts from muscle noise
contamination were removed using Canonical correlation
analysis [73], [74].

D. FEATURE EXTRACTION AND SELECTION
Feature extraction in supervised ML is extracting inde-
pendent variables for the classification task. For EEG, the
features or variables may not be apparent because the signals
are dynamic, volatile, non-linear, and non-stationary. Thus,
many feature extraction techniques have been proposed for
mental fatigue detection.

Power spectral density (PSD) is a widely used feature
extractor for classifying EEG signals. PSD is an average
power of a signal in a selected frequency range. It can be
calculated using different algorithms including fast Fourier
transform (FFT) [42], [44], [53], [57], [75], [76], [77],
Welch’s periodogram method [50], [78], continuous wavelet
transform (CWT) [52], [79] and power percentage [56].

Apart from power, the spatial patterns of EEG signal
activations were also extracted as features for mental fatigue
detection. This was carried out using an algorithm known
as common spatial patterns (CSP) [66], [67], [80]. CSP
is a technique that analyzes scatter plot spatial patterns of
signal activations from several EEG electrodes. It designs a
linear transform of spatial filters that maps the scatter plots
into a new discriminative space. In another study, spatial
features were combined with temporal features for mental
fatigue detection [51]. Feature extraction was also performed
through time-frequency analysis [69] and differential entropy
(DE) [58], [81], [82], [83], [84] based on a representation
of a random variable’s average surprisal in continuous
probability distributions. In addition to that, visual evoked
potential (VEP) that was derived from EEG through steady-
state VEP (SSVEP) [85] and steady-state motion VEP
(SSMVEP) [86] were also used as features for mental fatigue
detection.
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FIGURE 6. Sunburst plot of mental fatigue states assessment techniques.
First, second and third levels indicate modalities, measurements, and
self-reporting instruments, respectively.

E. CLASSIFICATION
Through a supervised ML method, various classification
algorithms were used to create mental fatigue detection
models from EEG. It entails training the models to minimize
error rates between the target in the training set and themental
fatigue states estimated by the trained model. The methods
for labelling the mental fatigue states and the various classi-
fication algorithms employed for mental fatigue detection are
discussed in this section.

1) MENTAL FATIGUE STATES ASSESSMENT
The labelling of mental fatigue states on EEG recordings was
determined using the self-reporting technique and observed
behaviors, as summarized in Fig. 6. Through self-reporting,
the target labels of mental fatigue were determined based on
feelings, attitudes or opinions of the subjects.

For example, each subject was prompted to report their
perceived levels of fatigue, frustration, and attention using a
five-point Likert scale on the expanded positive and negative
effect schedule (PANAS-X) [87]. The Karolinska sleepiness
scale (KSS) spans 9 levels (1 = extremely alert, 2 = very
alert, 3 = alert, 4 = rather alert, 5 = neither alert nor sleepy,
6 = some signs of sleepiness, 7 = sleepy, but no effort to
keep awake, 8 = sleepy, some effort to keep awake, 9 =

very sleepy, great effort keeping awake, fighting sleep) was
also used to capture the subject’s drowsiness levels [67], [88].
The KSS levels were also categorized differently in different
studies. In a study by Lee et al. [44], out of the 9 levels,
level 7 was excluded to make the categories more distinct.

FIGURE 7. Graph of number of studies versus various AI studies.

Levels 1 to 6 were considered normal state while levels 8 to
9 as fatigue. In other studies, KSS was divided into alert,
mild fatigue, and fatigue states [51], [76]. By combining
the output of the visual analogue scale-fatigue (VAS-F) [89]
and Chalder fatigue scale (CFS) [90], the mental fatigue
states were measured as low-fatigue and high-fatigue by
Talukdar et al. [80] and Sharma et al. [91].

Other than self-reporting, mental fatigue states are also
measured based on the observed behaviors of the respective
subjects. The majority of studies that were carried out on
drivers looked at the response time taken for a respective
driver to get back on track once distractions were simu-
lated [53], [68], [69], [75], [92]. Eye tracking analysis was
also performed to determine mental fatigue detection based
on vigilance [81].

Other than observed behaviors, the target labels of mental
fatigue states were also determined based on the relative
degree of meditation and attention [93]. Besides that, the
target is also labelled based on the types of stimuli played
during a driving simulation [66].

2) CLASSIFICATION ALGORITHMS
The classification algorithms employed in mental fatigue
detection can be categorized into several categories. They
are artificial neural networks, deep learning, and discriminant
analysis, fuzzy neural networks, nearest neighbor and support
vector.

As shown in Fig. 7, deep learning algorithms are the
most commonly used technique in performing mental
fatigue detection. Besides the simple form of deep learn-
ing algorithm, namely deep neural network (DNN) [83],
convolutional neural networks (CNN) have also been
often utilized to address classification problems. CNN
is typically used to analyze visual data [94] and has
been applied for detecting mental fatigue from EEG
images [74], [95], [96]. In other studies, customized CNN
for EEG signals was proposed, namely EEG-based spatial-
temporal CNN (ESTCNN) [51], [81]. It consists of two levels
of feature extraction, the first is the extraction of temporal
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dependencies, followed by using dense layers to fuse the
spatial from EEG data. A non-binary classification of mental
fatigue detection was proposed by Lee et al. [44] using
multiple features block-based CNN (MFB-CNN). In a study
where dilated shuffle CNN (DSCNN) [52] was employed,
multiple parallel expansion convolution layers were used
to extract the multi-scale time-frequency domain features.
DSCNN combines channel shuffle and group convolution
procedures that extract sequence information to increase the
efficiency of the entire network while decreasing the amount
of computation. Using a parallel design, the multiharmonic
linkage CNN (MHLCNN) [86] model was employed to
learn the spectrum distribution features under a range of
harmonic bands, that were attached to generate a string
that was used for the classification of mental fatigue states.
Aside from that, the simplified Bayesian CNN (SBCNN) was
also proposed for performing mental fatigue detection [85].
It employs a variational inference approach to learn the
posterior distribution of the weights of a neural network,
from which weights can be sampled via backpropagation.
In a separate study by Ming et al. [97], a deep Q-learning
(DQN) algorithm was proposed based on the improvement
of conventional reinforcement learning architecture involving
the target network and experience replay. A 3DConvolutional
Neural Network (3D CNN) primarily consists of the space-
time stream and the space-frequency stream, which aim
to capture and analyze discriminative features across the
dimensions of space, time, and frequency was proposed
in [78]. Each stream consists of 3D representations of
EEG signals for spatial information, attention mechanisms
for dynamic exploration of valuable dynamics, and 3D
convolutions for learning spatial, temporal, and spectral
dependencies.

In addition to that, an ensemble convolutional neural
network is employed to perform the identification of
mental fatigue levels in language understanding tasks by
Ye et al. [98].More traditional artificial neural networkswere
also used to classify mental fatigue states, such as annealed
chaotic competitive learning network (ACCLN) [93] and
radial basis function (RBF) network. Based on a recurrent
neural network that is excellent at processing temporal
data, a long short-term memory (LTSM) network was also
proposed for mental fatigue detection [45], [99].

Fuzzy neural network classifiers are among the com-
monly used classifiers. Recurrent self-evolving fuzzy neural
network (RSEFNN) was able to boost memory capability
for adaptive noise cancellation when assessing drivers’
mental states during a car driving task [53], [68], [92].
Besides RSEFNN, self-constructing neural fuzzy inference
network (SONFIN) and Takagi-Sugeno-Kang (TSK)-type
recurrent fuzzy network (TRFN) [53], [92] were also
employed.

Other classifiers that have been used to perform mental
fatigue detection were based on the generative domain adver-
sarial neural network (GDANN) [100], k-nearest neighbor
(KNN) [48], [83], [101], linear regression (LR) [50], [57],

FIGURE 8. Sunburst plot of classification algorithms used for mental
fatigue detection. First and second level indicate the supervised machine
learning algorithms.

negative unlabeled (NU) learning [76], LightFD tree [66],
bagged tree [74], random forest [84], Domain Adversar-
ial Sparse Learning (DASL) [79] and hybrid of particle
swarm optimization algorithm and extreme learningmachine,
namely (PSO-H-ELM) [101]. Support vector machine
(SVM) [42], [48], [56], [75], [77], [81], [82], [83], [101]
and support vector regression (SVR) [53], [92], [102] were
also widely used for mental fatigue detection. Support
vectors are normally employed to perform the classification
of dichotomous states. Several variants of discriminant
analysis algorithm were also employed to perform men-
tal fatigue detection including linear Discriminant anal-
ysis (LDA) [42], [48], [56], [80], [103], Fisher’s LDA
(FLDA) [67], quadratic discriminant analysis (QDA) [56] and
Naïve Bayes [42]. A summary of classification algorithms
used for mental fatigue detection is shown in Fig. 8.

IV. DISCUSSION
In general, most BCI studies on mental fatigue detection
using supervised ML were adapted from conventional
ML sequential processes which include signal acquisition,
pre-processing, feature extraction and classification. EEG
signal acquisition involves the recording of electrical signals
at the scalp based on the 10-20 international standard
EEG electrodes positioning system, as shown in Fig. 4.
In most studies, different types of electrodes, the number
of electrodes, transmission types and the sampling rate of
EEG devices produced by different manufacturers were used.
Various versions of EEG devices with different numbers of
electrodes ranging from 1 to 40 channels were used in the
brain-computer interface for mental tiredness detection based
on the compilation.
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The typical sampling rates used in the studies reviewed
were 256 Hz, 500 Hz, 512 Hz, and 1000 Hz. For pre-
processing, bandpass filters were commonly used to elim-
inate and filter undesirable noise and artifacts in the EEG
signals. All frequency waves of EEG (i.e. delta, theta, alpha,
beta and gamma) were reported in different studies.

From our analysis, we have observed that very few research
has been targeted on channel-wise analysis. Also, very few
techniques have been developed that present a brain-region
analysis. The majority of the research has been focused on
rhythm-based analysis and frequency-based analysis. From
our review, we have found that FFT-, filtering-, and wavelet-
based analysis have been the most frequently used analysis
models. Our analysis shows that spectral and entropy features
are the most widely used features used for the detection of
mental fatigue. Our analysis also revealed that wired-EEG
monitoring devices are commonly used devices for fatigue
analysis and detection. The highest number of subjects
used in fatigue detection is thirty-seven, while the least
number of subjects is six. The holdout validation technique
is commonly used for fatigue detection and prediction,
followed by Leave-One- Site-Out (LOSO) validation. Out
of 39 articles included in our review, seven articles have
used RMSE for detecting or predicting fatigue, twenty-
five articles used accuracy predictor for fatigue detection,
two articles included RMSE and accuracy measure for
the detection or prediction for fatigue detection, and the
status of one article is unknown. The overview from our
systematic review of automated fatigue detection is shown in
Fig. 9. The review analysis shows that fatigue detection with
ML models is common, followed by deep learning-based
classification. The neuroscan model has been widely used
for EEG acquisition. FFT-based spectral features have been
investigated the most for detection and prediction. RMSE is
used for prediction, while classification-based models used
accuracy to evaluate their model. SVM classifier has been
most effective among ML-based classification. CNN-based
classification has been widely used for fatigue detection.
The analysis reveals that the highest accuracy of 100%
has been obtained using FLDA-based classification with
CSP-based feature extraction and tenfold cross-validation
(CV) technique on twenty subjects [67]. On the other hand,
the least accuracy of 60% has been obtained with FBCSB
features and LDA classifier using holdout validation on thirty
subjects [104]. The regression-based analysis has used SVR
for their classification.

V. CHALLENGES
Fromour discussion, we have identified various research gaps
and challenges which are briefly discussed below:

A. DATASET AVAILABILITY
The accessibility of public datasets is crucial for researchers
and data scientists conducting studies, developing novel tech-
niques, and buildingmodels. However, theremay be a paucity
of publicly accessible data sets in some circumstances, which

can be a substantial problem for individuals working on the
subject. From our review analysis, we have analyzed that the
majority of the studies have used private datasets. Also, public
EEG-based fatigue detection datasets are scarcely available
for research. In addition, the number of subjects involved in
current studies is fewer, making it less reliable for real-time
implementation.

B. DATA IMBALANCE
A data imbalance occurs when the proportion of data
among distinct classes within a dataset is not equal. As a
result, certain classes may have many more or far fewer
instances than others. Data imbalance can be a significant
difficulty in ML because it can influence the correctness
of a model’s prediction. For example, if an algorithm for
classification is developed on a set of data with an uneven
class distribution, it may become biased toward the majority
of the class and perform badly on the minority class. This is
due to the possibility that the model will learn to prioritize
the dominant class to improve its overall accuracy while
negatively affecting the minority class.

C. BRAIN LOCALIZATION
The process of determining the precise location of a certain
function or activity within the brain is referred to as brain area
localization. This procedure is critical for comprehending
how the brain functions as well as detecting and treating
physiological conditions like fatigue. Current literature lacks
the ability to identify or present the brain-region or channel-
wise analysis [105]. This creates some opportunities for the
researchers to develop techniques for identifying potential
brain regions active during mental fatigue states.

D. ADAPTIVE ANALYSIS
EEG signals are highly nonlinear and non-stationary.
To detect the spontaneous variations within EEG signals
during fatigue states require adaptive analysis. The current
techniques majorly depend on frequency-based analysis for
feature extraction. However, to get a detailed insight into
the spontaneous variations in the EEG during the fatigue
state, it is necessary to have an adaptive analysis. Therefore,
analysis of EEG signals using powerful techniques like time-
frequency analysis (short-time Fourier transform, Wigner-
Ville distribution, Cohen’s class, etc.) [106], [107], adaptive
nonlinear decomposition (tunable Q wavelet transform, vari-
ational mode decomposition, FAWT, etc.) [91], [108], [109]
and their hybrid combinations.

E. FEATURE EXTRACTION AND SELECTION
Current studies have explored the limited utility of feature
analysis and selection. Features play a crucial role in data
analytics and classification. However, accurate analysis and
appropriate selection of features are important to maximize
the system performance [105]. The studies in our review
reveal that feature extraction and analysis have not been
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FIGURE 9. Overall observations of our systematic review for automated mental fatigue detection.

adopted to their full capacity. Therefore, there exists a huge
scope for a broader analysis of features like spectral, time-
frequency, nonlinear, statistical, and entropies for their role
in fatigue detection.

F. UNIFORMITY OF VALIDATION
MLmodels are susceptible to various threats that can result in
performance degradation. One such threat is the overfitting of
a model, where the model does not learn from new data and
thereby provides saturated decisions. The holdout validation
technique is one such threat to the overfitting of the model.
The existing research in our review reveals that the majority
of the developed algorithms use holdout validation, therefore,
the possibility of overfitting cannot be neglected. To make a
classification model more robust, it is necessary to validate
the performance on different scenarios with multiple trials.
In addition, validation based on k-fold cross-validation and
LOSO validation must be explored to their full capacity for
real-time realization of the developed system.

VI. FUTURE DIRECTION
From the review analysis and discussion, we have identified
the potential future directions and research recommendation
as shown in Fig. 10 and discussed in detailed in the following
subsections:

A. HYBRID AND EFFECTIVE CLASSIFICATION
In recent times, we have witnessed a boom in technological
advancements. This has resulted in multi-dimensional data
from different sources. This increase in data has brought
several opportunities for the development of an effective
fatigue detection system. Our analysis has shown that the
majority of current systems employ ML-based classification
models, especially using the SVM classifier. However, tradi-
tional ML-based classification is limited in their capacities
to sustain its performance with an increasing amount of
data. On the other hand, the deep learning models used
for fatigue detection in this review use mostly CNN-based
models. Though CNN is effective for handling big data
and provides better performance, they are not utilized to

its highest capacity and also requires huge computational
time [106], [110]. To overcome this, there is an urgent need to
develop an effective and lightweight model for the detection
and prediction of fatigue. Therefore, a hybrid combination
of lightweight transfer learning models (squeezeNet, ResNet,
XceptionNet, InceptionNet, etc.) with feature selection and
ML models can significantly enhance the system’s perfor-
mance with less training time.

B. MULTIMODAL DATASETS
Several factors cause a person to experience fatigue. Fatigue
affects the functionality of important body organs like
the heart, eyes, and brain, because of the autonomous
nervous system. The sympathetic and parasympathetic nerve
systems, which regulate blood pressure, heart rate, and other
cardiovascular processes, convey signals from the brain to
the heart. In reaction to stress or danger, the sympathetic
nervous system, for example, activates the ‘‘fight or flight’’
response, which elevates heart rate and blood pressure. The
heart, in turn, transmits signals to the brain via the vagus
nerve, which gives sensory data about the heart’s functioning
to the brainstem and other areas of the brain. According to
research, these signals can influence cognitive and emotional
processes such as focus, recall, and emotion [111], [112].
Therefore, the analysis of multimodal data can reveal the
changes in important organs during fatigue. In addition,
exploring multimodal data may help the researchers to
shift the paradigm from one electrophysiological analysis
like EEG to other like Photoplethysmography (PPG) and
ECG. In addition, acquiring EEG signals are difficult (due
to multichannel analysis, artefacts, and low signal-to-noise
ratio), costly, and requires special settings (dedicated room,
presence of expert). Therefore, the use ofmultimodal data can
open new research directions for shifting paradigms from one
modality to other.

C. EXPLAINABLE AI (XAI)
The advancements in feature engineering and boost in ML
techniques have resulted in significant improvements in sys-
tem performance. However, clinicians offer their resistance to
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FIGURE 10. Graphical overview of the research recommendations and future directions.

FIGURE 11. Snapshot of automated mental fatigue intervention edge- and cloud-based classification.

accepting the decision given by the automated classification
models [105], [113]. Also, the variations in the data,
system setting, and varying surrounding conditions affect
the system’s decision. These changes significantly affect the
decisions of ML or DL models making them less reliable.
To overcome this, explainable artificial intelligence (XAI) is
required. XAI not only provides the reason for individual
and overall decisions, but also enables the stakeholder to
understand when to trust the model, when the model fails,
and why the model has erred in the decisions. In addition,
with the help of XAI one can localize the brain region
or identify an effective channel that significantly reduces

computational power [105]. Not only this, XAI helps to
identify the contribution of individual feature in classification
and their importance to reduce feature dimensionality.

D. UNCERTAINTY
The reliability and robustness of the classification model
are crucial especially while deploying them in real-time
scenarios. This demands the model to be trained and tested in
different scenarios. However, our review show that the current
automated fatigue detection models are developed on cleaned
and pre-processed signals. In addition, the subjects included
in the dataset of current studies are included from a single
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FIGURE 12. Trend on mental fatigue detection.

geographical area, making it local for a particular application.
In real scenarios, such assumptions about cleaned data and
subjects within one geographical area may not hold, thus
negatively affecting the system’s performance. This negative
change in the system’s performance due to artefacts within the
data and change in geographical location or other factors can
cause uncertainty in the model. The sources of uncertainty
in data can be the result of the presence of noise in data,
a mismatch between testing and training sets, a mismatch
in geographical conditions, and variations in the acquisition
system [114], [115]. Such uncertainty in data makes the
developed classification model unreliable. Therefore, it is
required to measure the uncertainty within the model using
uncertainty quantification (UQ) [116], [117]. To investigate
UQ, a few well-known models such as Bayesian inference,
fuzzy systems, Monte Carlo simulation, rough classification,
Dempster-Shafer theory, and imprecise probability can be
used [117]. To resolve uncertainty, updating tuning param-
eters and noise reduction within the data is required.

E. DETECTION AND PREDICTION MODELS
Accurate detection and prediction of fatigue are crucial for a
healthy lifestyle. But over review analysis shows that only
two studies from one author group have explored fatigue
detection and prediction [57], [81]. Since fatigue can occur
at any instance due to a lack of rest and other factors, it is
important to track periodic changes in physiology to detect
and predict fatigue. Therefore, there still exists a vast scope
for the researcher to develop and implement a robust and
effective model for detecting and predicting fatigue in real
scenarios. Such models can alert an individual about their
current status and the probability of occurrence of fatigue in
the near future.

F. HARDWARE REALIZATION
While proposing any system, it is important to consider the
prototype and design realization of the proposed system.
The current review explored the utilization of EEG in
fatigue detection using supervised ML techniques. How-
ever, practically it is difficult to acquire EEG due to its
acquisition constraints and signal strength. Also, as EEG
signals are acquired from multi-channels, analyzing the data
from these multi-channels is computationally expensive and
difficult. To overcome this, brain-heart interaction due to the
autonomous nervous system can help to identify variations
in cardiac activities [111], [112]. As ECG can provide subtle
variations in cardiac activities, it can be used as an effective
measure for fatigue detection. Also, due to its high signal-
to-noise ratio and ease it acquisition, analysis of ECG is easy
and cost-effective. The variations in cardiac activities can also
be tracked from PPG, such signals may bring a revolution
in tracking neurological changes using ECG and PPG. PPG
also offers ease in signal acquisition, cost-effective, portable,
and provides a faithful representation of cardiac activities.
Therefore, the realization of hardware using such effective
and portable wearables can be of merit to study neurological
conditions.

For future research, the model can be expanded to include
a neurofeedback-based automatic mental fatigue intervention
system. A snapshot of automated mental fatigue intervention
edge- and cloud-based classification is shown in Fig. 11.
It has two main processes: mental fatigue detection and
mental fatigue intervention using edge- and cloud-based
decisions. The mental fatigue detection process is performed
continuously until the mental fatigue state is detected. Once
detected, the mental fatigue intervention process takes place
by sending an alert to the user to carry out mental fatigue
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TABLE 3. Summary of list of BCI studies on mental fatigue detection using supervised machine learning that have been published from 2011-2022.

intervention such as performing physical exercises to reduce
mental fatigue [104]. Alternatively, an automated interven-
tion can be performed by adjusting other parameters that may

reduce mental fatigue, such as brightness [118], [119] and
temperature [120], [121]. In other words, the system is able to
teach the subject how to control his/her brain processes [122].
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TABLE 3. (Continued.) Summary of list of BCI studies on mental fatigue detection using supervised machine learning that have been published from
2011-2022.
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TABLE 3. (Continued.) Summary of list of BCI studies on mental fatigue detection using supervised machine learning that have been published from
2011-2022.
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TABLE 3. (Continued.) Summary of list of BCI studies on mental fatigue detection using supervised machine learning that have been published from
2011-2022.
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TABLE 3. (Continued.) Summary of list of BCI studies on mental fatigue detection using supervised machine learning that have been published from
2011-2022.
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TABLE 3. (Continued.) Summary of list of BCI studies on mental fatigue detection using supervised machine learning that have been published from
2011-2022.

Changes in brain activity that result in mental fatigue can
be counteracted as soon as they are identified to avert more
severe outcomes.

VII. CONCLUSION
This review looks at studies published between 2011 and
2022 on mental fatigue detection. As depicted in Fig. 12,
the number of publications on the subject increases steadily
over the years. As the topic is just beginning to gain traction,
this review includes 39 studies on brain-computer interface
implementations for detecting mental exhaustion using
supervised machine learning. Mental fatigue detection using
EEG signals can be performed through conventional machine
learning using any common supervised machine learning
algorithms for classification. With the recent developments
in neuroimaging, studies can be expanded to real-time
neurofeedback-based automatic mental fatigue detection for
early intervention.

In summary, the significance of this review is as follows:
• Out of 562 studies, 39 have been selected for this review.
The studies were categorized according to the EEG
devices used for signal acquisition, the feature extraction
techniques, labelling techniques and classifiers used for
mental fatigue detection.

• As there was no common standard used by the various
authors in the signal acquisition, feature extraction,
labelling the targets and classification, this makes the
comparison of results impossible.

• The classification performance of using either wireless
or wired neuroheadset is comparable.

• The advantages of this review are:
• A systematic review of automated fatigue detection
using EEG signals.

• Comprehensive analysis and discussion on developed
automated systems.

• Identification of potential challenges in existing auto-
mated fatigue detection models.

• Important future directions and research recommenda-
tions of researchers for future development of effective
fatigue detection systems.

• There are several limitations of this review:
• Only BCI studies that analyzed EEG as the acquired
brain signals were reviewed. Studies employing other
neuroimaging techniques were excluded. Studies using
hybrid methods were also omitted.

• Only BCI studies on mental fatigue detection using
supervised machine learning techniques are included in
the review.

• The number of subjects involved in the recording of EEG
for the studies was small.

• Difficulty in comparing the performance of each classi-
fier due to the different number of subjects and tuning
parameters involved in the studies.

APPENDIX
See Table 3.
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