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ABSTRACT Quadrotor systems are becoming increasingly popular in various applications due to their
maneuverability and versatility. Controlling these systems accurately is crucial to ensure stability and safety.
This research paper proposes the implementation of two advanced controllers with integer and fractional
order quadrotor systems. The purpose of the study is to enhance the control performance, robustness,
and accuracy of the quadrotor system, and to highlight the potential of the proposed approach in modern
control engineering. The researchers used simulation studies in MATLAB to verify the effectiveness of their
approach. The results demonstrate that the implementation of Sliding Mode Control (SMC) and Fractional
Order SlidingMode Control (FOSMC)with the fractional order quadrotor system outperforms the traditional
integer order quadrotor system in terms of control performance, robustness, and accuracy. Overall, the study
highlights the potential of fractional order modeling and fractional order control techniques in improving
the performance of quadrotor systems, which has significant implications for the advancement of modern
control engineering.

INDEX TERMS Quadrotor model, sliding mode control, fractional order sliding mode control.

I. INTRODUCTION
Unmanned Vehicle Systems (UVS) are important for differ-
ent areas nowadays because they can be controlled and oper-
ated remotely without human interference. UVS is a research
key because of the increase in demand of remote sensing
and control in wide range of applications such as scientific
surveys, traffic surveillance, transportation aids, and inspec-
tion in addition to operation in harsh environments [22].
UVS have various configurations, characteristics, shapes and
sizes which will be reflected on system dynamics [23]. The
development in miniaturization of UVS offers high potential
effort for small size and low cost of UVS compared tomanned
applications especially in certain applications. Rapid growing
of UVS comes with promising future because of its size, cost,
construction simplicity and maneuverability [13], [33].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

In order to design a controller for UVS, accurate mod-
els are needed to reflect system dynamics either by precise
modelling or real time identification. UVS have a framework
of rigid body dynamics and can be described by a set of
differential equations using Euler-Lagrange.

In recent years, the exact model in many real systems has
been shown to be more precise with fractional differential
equations like viscoelastic systems [2], [28], electromagnetic
theory [8], [15], economics [38], [39], and mechatronics [34].
In certain cases, dynamic fractional order equations are used
to present several real systems. Over the last two decades,
fractional system models were widely explored [1], [5], [14],
[19], [26], [32], [35]. Thus, the conduct of too many exist-
ing systems, like viscoelastic systems, has been shown to
be more reliable by fractional orders differential equations.
In addition, Fractional systems were used widely in various
scientific fields as successful approaches for modelling phys-
ical processes in the real world. In [3], non-integer systems
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for the explanation of long memory and inherited prop-
erties of complex phenomena have been investigated over
the past years in various fields, including energy fuel [20],
imaging science [42], biomedicine [19] and accident inves-
tigation [18]. A major example of fractional order systems
is vibration systems that have many implementations in the
industry and they are modelled by fractional order equations.
According to [9], vibration systems with fractional order
differential equations can be more accurately modelled and
controlled. Up to date, numerous studies were carried out to
explore the vibration system fractional order control [9].

The quadrotor is an unmanned aerial vehicle (UAV) that
moves vertically to take off and land. Numerous research and
studies have been conducted in recent years to model and
regulate Quadrotors, see for example [45], [46], [47] and the
references therein. Quadrotor UAVs are widely employed in
a variety of applications due to their numerous advantages
such as speed, smoothness, small size, and environmental
friendliness [23].
Reference [7] introduced the use of PID and LQ control

schemes on an indoor micro quadrotor, and it was discovered
that these two types of controllers performed comparably and
were capable of stabilizing the quadrotor’s attitude around its
hover position when subjected to minor disturbances [6].
Sliding mode control (SMC) consists of an algorithm that

is fundamentally resilient in parameter, nonlinear, external,
and insecure adjustments. It is introduced where the robust-
ness criterion in driving systems is highly necessary in the
face of strong uncertainty [22]. Backstepping is an iterative
control approach that works on both linear and non-linear
problems [21]. In a more recent paper, [25] and [43] proposed
the use of backstepping and sliding-mode nonlinear control
methods to control the quadrotor which gave a better perfor-
mance in the presence of disturbances. Reference [11] pro-
posed developing controllers that can stabilize the quadrotor
in an outdoor environment, they compared the performance
of an integral sliding-mode controller vs. a reinforcement
learning controller and they reached a conclusion that both
controllers were able to stabilize the quadrotor outdoors with
improved performance over classical control technique.

In the field of rotor aircraft, different methods of
typical control like PID and backstepping have been imple-
mented [11], [16]. The attitude control systems were
separated and defined as a first-order plus the lag time sys-
tem and then the VTOL UAV fractional PI and [PI] flight
controller design method [31]. The authors in [41] devel-
oped an autoregressive exogenous input (ARX) model to
regulate VTOL UAV’s pitch loop and converted them to
FOPTD (first order plus time delay). In [41] proposed a
sliding fractional order mode control method with an effec-
tive attitude controller which has a greater degree of free-
dom to achieve desired performance. Using Black–Nichols
approach to control the quadrotor‘s position and attitude by
implementing new approach of fraction order PIγDµ [29].
In order to minimize the chattering and maximize the robust-
ness of the dynamical response of UAV quad-rotor model,

a fractional-order backstepping sliding mode control tech-
nique is implemented [36].
As represented in [29], sliding-mode controllers were

used with fractional-order derivatives to theoretically miti-
gate chatter impacts. In [10], it was stated that a fractional
order disruption observer could approximate the disorder, and
a new fractional order sliding mode controller on the observer
basis was recommended to minimize the chattering effect and
monitoring errors. The authors in [40] proposed an adaptive
SMC, including a slide surface with a fractional order integral
part and a switching form with a less discord, means has
less chattering. As shown in [4], to stabilize an uncertain
non-linear fractional system, a sliding integral surface was
formulated. In [44], two suggested approaches implemented
integral fractional order sliding surface and various reaching
laws to decrease the reach time and increase system perfor-
mance. The SMC of fractional order nonlinear systems can be
built using twomethods, as shown in [17], [30], and [37]. The
first relates to a class of fractional nonlinear systems, while
the second applies to nonlinear systems of both fractional and
integer order. The second strategy, whichwas outlined in [17],
will be used in this research.

The primary objective of this work is to develop and see
the improvements obtained in transforming the dynamics
of a given nonlinear UAV system (transitional subsystem)
into a fractional order one by implementing four controllers,
SMC for integer and fractional UAVmodels, and FOSMC for
integer and fractional UAV models.

The motivation for the research article that presents a
novel approach to control both integer and fractional order
quadrotor systems is to address the challenges associatedwith
controlling these complex and non-linear systems. Quadrotor
systems are widely used in various applications, such as aerial
photography, search and rescue operations, and surveillance.
However, they exhibit complex and non-linear dynamics,
which pose significant challenges for control engineers.

The traditional integer-order control approaches may not
be effective in controlling quadrotor systems due to the com-
plex and non-linear dynamics. Fractional calculus provides a
more accurate and comprehensive representation of quadro-
tor systems and their behavior. Therefore, the research article
proposes a novel approach that utilizes two advanced con-
trollers: Siding Mode Control (SMC) and Fractional Order
Sliding Mode Control (FOSMC) to control both integer and
fractional order quadrotor systems effectively.

The results of the study demonstrate the remarkable effec-
tiveness of the proposed approach, as the implementation of
SMC and FOSMCwith the fractional order quadrotor system
results in enhanced precision and robustness. The proposed
approach has the potential to push the boundaries of modern
control engineering and contribute to the development of
more efficient and reliable control strategies for quadrotor
systems.

This paper is organized as follows: Section II, briefly
summarize the fractional calculus used in this paper. The
modeling of the 6-DOF quadrotor system is presented in
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Section III. Section IV subsequently goes through the prob-
lem statement. Section V presents the primary results: the
SMC and FOSMC designs, as well as the stability analyses.
Section VI depicts the simulation results and discussions,
with Section VII delivering a conclusion and future work.

II. PRELIMINARIES
In this section, some insights to the fractional calculus which
we will employ in our research are given. The adoption of
the Gamma function is the first step in fractional calculus.
The Gamma function, which is an extension of the princi-
ple of factorial numbers, is a significant special function in
fractional mathematics. According to [47], the following is
the function’s general definition and what is indicated by the
notation 0(y) :

0(y) =

∫
∞

0
e−t ty−1 dt (1)

The Caputo fractional derivative operator, employed in
fractional-order dynamic equations, is defined using the
Gamma function as follows [9]:

Dαt f (t) =
1

0 (n− α)

∫ t

0

f (n) (τ )
(t − τ )α−n+1 dτ,

0 < n ∈ Z (2)

where n− 1 < α < n.
It is worth noting that there are various definitions available

for fractional order derivatives. Because the initial conditions
for the fractional order differential equations with the Caputo
derivatives are the same as for their counterparts in integer-
order, the Caputo fractional derivative is more frequently
utilized than other derivatives to describe the fractional order
models. Thus, it is more typical to define the differential equa-
tions of fractional order using the Caputo fractional order.

III. MATHEMATICAL MODELLING OF UAV QUADROTOR
The quadrotor consists of four spinning propellers powered
by four-dc engines that control vehicle motion. The quadro-
tor’s position depends on the Euler angles, which are the
angles of Roll (ϕ), Pitch (θ) and Yaw (ψ).

Rotors (1, 3) and rotors (2, 4) rotate in various ways to
negate the moments produced by each other, as shown in
FIGURE 1. The rolling velocity can be accomplished in
the x-axis direction of the vehicle by increasing the angular
momentum of the second rotor and decreasing its angular
velocity by maintaining the entire rotation steady. Likewise,
the pitch velocity along the y - axis is accomplished by
increasing the third rotor angular velocity and reducing the
first rotor angular velocity. And the motion of the yaw along
the z-axis will increase the rotor velocity (1, 3) and reduce
the rotor’s velocity (2, 4). Also, the system consists of two
frames (Rb and Rm) as shown in FIGURE 1

We will make the following assumptions:
• The quadrotor structure is rigid and symmetrical.
• The propellers are rigid.

Thrust and drag are proportional to the square of the pro-
pellers speed

Under these assumptions, it is possible to describe the
fuselage dynamics as that of a rigid body in space to which
come to be added the aerodynamic forces caused by the
rotation of the rotors. Using the formalism of Newton-Euler,
the dynamic equations are written in the following form:


ξ̇ = v
mξ̈ = ff + ft + fg
Ṙ = R S (Ω)
JΩ̇ = −Ω∧JΩ + 0f − 0a − 0g

(3)

See [25], to obtain more details of the derived dynamic
equations (1). Table 1 explains the meaning of each
parameter.

As a result, the following equations (4) and (5) are the
whole dynamic model that governs the quadrotor, [12]:


ϕ̈ = a1ψ̇ θ̇ + b1�r θ̇ + c1ϕ̇2 + d1U2

θ̈ = a2ψ̇ϕ̇ + b2�r ϕ̇ + c2θ̇2 + d2U3

ψ̈ = a3ϕ̇θ̇ + b3ψ̇2
+ c3U4

(4)


ẍ = a4ẋ + b4( cϕsθcψ + sϕsψ )U1

ÿ = a5ẏ+ b5( cϕsθ sψ − sϕcψ )U1

z̈ = a6ż− g+ b6( cϕcθ )U1

(5)

where,

a1 =
Iyy − Izz
Ixx

; b1 = −
Jr
Ixx

; c1 = −
Kfx
Ixx

;

d1 =
l
Ixx

;

a2 =
Izz − Ixx
Iyy

; b2 =
Jr
Iyy

; c2 = −
Kfy
Iyy

;

d2 =
l
Iyy

;

a3 =
Ixx − Iyy
Izz

; b3 = −
Kfz
Izz

; c3 =
d
Izz

a4 = −
Ktx
m

; b4 =
1
m

a5 = −
Kty
m

; b5 =
1
m

a6 = −
Ktz
m

; b6 =
1
m

Ωr = ω1 − ω2 + ω3 − ω4

(6)

The inputs for the quadrotor system are combinations of the
rotors’ speed (ω), which in this case is U1 to control the
altitude (z), and (U2, U3 and U3) to control the angles (ϕ,
θ and ψ), respectively. Ux and Uy are the virtual inputs that
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FIGURE 1. Quadrotor dynamic.

FIGURE 2. Quadrotor system controllers block diagram.

control quadrotor positions. All inputs are written as follows:


U1

U2

U3

U4

 =


b
0

−b
d

b
−b
0

−d

b
0
b
d

b
b
0

−d



ω1

2

ω2
2

ω3
2

ω4
2


Ux = cϕsθcψ + sϕsψ
Uy = cϕsθ sψ − sϕcψ

(7)

where c()≡ cos () and s()≡ sin ()
FIGURE 2 shows the quadrotor block diagram with all

system controllers. The controller blocks in the block dia-
gram may include any type of control method, whether
linear or nonlinear. All controller inputs are errors con-
nected to some of the quadrotor states and provide an out-
put that is either one or more control inputs U1 through
U4 or ϕd and θd with Ux and Uy if it is the position
controller.

IV. PROBLEM STATEMENT
A. INTEGER ORDER QUADROTOR SYSTEM
The quadrotor model in (4) and (5) can be recast in
integer-order state space form as follows:

X = F(X ) + G(X ,U ) (8)

where X = [x1, . . . , x12]T is the system state vector such as:

X =
[
ϕ , ϕ̇ , θ , θ̇ , ψ , ψ̇ , x , ẋ , y , ẏ , z , ż

]
(9)

The following state representation is obtained from (8)
and (9):

ẋ1 = x2
ẋ2 = a1x4x6 + b1Ωrx4 + c1x22 + d1U2

ẋ3 = x4
ẋ4 = a2x2x6 + b2Ωrx2 + c2x42 + d2U3

ẋ5 = x6
ẋ6 = a3x2x4 + b3x62 + c3U4

ẋ7 = x8
ẋ8 = a4x8 + b4UxU1

ẋ9 = x10
ẋ10 = a5x10 + b5UyU1

ẋ11 = x12
ẋ12 = a6x12 − g+ b6( cϕcθ )U1

(10)

B. FRACTIONAL ORDER QUADROTOR SYSTEM
As an illustration of obtaining a fractional order system for
integer one, assume the following dynamic system:

MŸ(t) + CẎ(t) + KY(t) = f (11)

where Y = [y1, y2, . . .., yn]T ∈ Rn is the displacement
vector andM ∈ Rn×n is the mass matrix and C ∈ Rn is the

Damping matrix and the stiffness matrix is K ∈ Rn and
finally, f ∈ Rr represents the input vector.

As shown in [9], this system can be transformed into a
linear pseudo state space fractional order system as follows
with fractional order, α = 0.5:

Firstly, taking the state variables as:
y1(t) = y(t)
y2 (t) = D0.5y (t)
y3(t) = ẏ(t)
y4(t) = D1.5y(t)

(12)

Hence, (11) can be rewritten as follows using (12):
D0.5y1 (t)
D0.5y2 (t)
D0.5y3 (t)
D0.5y4 (t)

 =


0
0
0

−M−1K

I
0
0
0

0
I
0

−M−1C

0
0
I
0



y1 (t)
y2 (t)
y3 (t)
y4 (t)

 +


0
0
0
I

 f

(13)

Then, the linear fractional order system form is:

D0.5y(t) = AY (t) + Bf

where,

A =


0
0
0

−M−1K

I
0
0
0

0
I
0

−M−1C

0
0
I
0

 and B =


0
0
0
I
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FIGURE 3. Rotational and transitional subsystems.

In this work, the transitional motion model of an
UAV, equation (5), will be transformed into a fractional
order one, while keeping the rotational equations (4)
as integer. The following change of variables will be
assumed: 

x1 = x
x2 = D0.5x
x3 = ẋ
x4 = D1.5x

(14)


x5 = y
x6 = D0.5y
x7 = ẏ
x8 = D1.5y

(15)


x9 = z
x10 = D0.5z
x11 = ż
x12 = D1.5z

(16)

Hence, based on the above equations (14), (15), and (16)
the translational equations of the quadrotor will be as
follows: 

D0.5x1 = x2
D0.5x2 = x3
D0.5x3 = x4
D0.5x4 = a4x3 + b4UxU1

(17)


D0.5x5 = x6
D0.5x6 = x7
D0.5x7 = x8
D0.5x8 = a5x7 + b5UyU1

(18)


D0.5x9 = x10
D0.5x10 = x11
D0.5x11 = x12
D0.5x12 = a6x11 − g+ b6( cϕcθ )U1

(19)

Finally, the whole partial fractional order system of the
quadrotor will be as follows:

ẋ1 = x2
ẋ2 = a1x4x6 + b1Ωrx4 + c1x22 + d1U2

ẋ3 = x4
ẋ4 = a2x2x6 + b2Ωrx2 + c2x42 + d2U3

ẋ5 = x6
ẋ6 = a3x2x4 + b3x62 + c3U4

D0.5xf 7 = xf 8
D0.5xf 8 = xf 9
D0.5xf 9 = xf 10
D0.5xf 10 = a4xf 9 + b4Uxf U1f

D0.5xf 11 = xf 12
D0.5xf 12 = xf 13
D0.5xf 13 = xf 14
D0.5xf 14 = a5xf 13 + b5Uyf U1f

D0.5xf 15 = xf 16
D0.5xf 16 = xf 17
D0.5xf 17 = xf 18
D0.5xf 18 = a6xf 17 − g+ b6

(
cϕcθ

)
U1f

(20)

V. CONTROL DESIGN
The quadrotor system is a 6 DOF because it has six outputs
(ϕ, θ, ψ, x, y, z) but it has only four inputs that can be
manipulated (U1 , U2 , U3 , U4); hence it is considered
as a type of underactuated systems because the number of
controlled variables (outputs) is more than the number of
manipulated variables (inputs). Also, it can be observed that
the rotational dynamics do not depend on the translational
states; hence we can control the quadrotor attitude and head-
ing (angular states φ , θ , ψ) separately by implementing
three controllers (U2 , U3 , U4) and form a rotational sub-
system as an inner loop. While, the outer loop will govern
the quadrotor system’s position by delivering the altitude
and position (translational states) with the controlled angles.
Because the system is underactuated, the quadrotor position
(x, y) cannot be driven directly. It can be controlled by manip-
ulating the roll and pitch angles (ϕ , θ ). As a result, the
position is controlled by specifying desired roll and pitch
angles (ϕd , θd ) and applying them to their respective con-
trollers as shown in FIGURE 3
Define Ux and Uy as,{

Ux = cϕsθcψ + sϕsψ
Uy = cϕsθ sψ − sϕcψ

(21)

Solving (21) to obtain the desired angles ϕd and θd as follows:ϕd = sin−1[sψdUx − cψdUy]

θd = sin−1[
1
cϕd

(cψdUx + sψdUy)]
(22)
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TABLE 1. Quadrotor parameters description.

A. SLIDING MODE CONTROL DESIGN (SMD)
In this section, we will develop an SMC employing the tech-
nique stated in Efe [17] and it was chosen due to its significant
advantages, which include guaranteeing Lyapunov stability
(LF), robustness, and addressing all system nonlinearities.

1) SMC FOR INTEGER ORDER QUADROTOR SYSTEM
Define the sliding surfaces as in (23)and the Lyapunov func-
tions as in (24).

Si =

{
ki−1

(
xi−1 − x(i−1)d

)
+ ki (xi − xid ) ,

i ∈ {2, 4, 6, 8, 10, 12}
(23)

where k is a positive constant vector (kT ∈ Rn), and xd is the
desired vector state to be tracked.

Vi =

{
1
2
S2i , i ∈ {2, 4, 6, 8, 10, 12} (24)

From (23), we can define the sliding surfaces in terms of the
states of the quadrotor as follow:

Sϕ = S2 = k1 (x1 − x1d )+ k2 (x2 − x2d )
Sθ = S4 = k3 (x3 − x3d )+ k4 (x4 − x4d )
Sψ = S6 = k5 (x5 − x5d )+ k6 (x6 − x6d )
Sx = S8 = k7 (x7 − x7d )+ k8 (x8 − x8d )
Sy = S10 = k9 (x9 − x9d )+ k10 (x10 − x10d )
Sz = S12 = k11 (x11 − x11d )+ k12(x12 − x12d )

(25)

To guarantee that the proposed sliding surfaces are stable,
the requisite sliding condition (SṠ < 0) must be satisfied.
Using the proposed sliding surface, the control laws will be
as follows:

U1 =
1

k12b6cϕcθ
[−qzsign (Sz)− kzSz

−k12 (a6x12 − g− ẋ12d )− k11 (x12 − ẋ11d )]

U2 =
1

k2d1
[−qϕsgn

(
Sϕ

)
− kϕSϕ

−k2
(
a1x4x6 + b1Ωrx4 + c1x22 − ˙x2d

)
−k1 (x2 − ẋ1d )]

U3 =
1

k4d2
[−qθ sign (Sθ )− kθSθ

−k4
(
a2x2x6 + b2Ωrx2 + c2x42 − ẋ4d

)
−k3 (x4 − ẋ3d )]

U4 =
1

k6c3
[−qψ sign

(
Sψ

)
− kψSψ

−k6
(
a3x2x4 + b3x62 − ẋ6d

)
−k5 (x6 − ẋ5d )]

Ux =
1

k8b4U1
[−qxsign (Sx)− kxSx

−k8 (a4x8 − ẋ8d )− k7 (x8 − ẋ7d )]

Uy =
1

k10b5U1
[−qysign

(
Sy

)
− kySy

−k10 (a5x10 − ẋ10d )− k9 (x10 − ẋ9d )]

(26)

where (qz, qϕ, qθ , qψ , qx , qy) and (kz, kϕ, kθ ,
kψ , kx , ky) > 0
Proof of (26):
The altitude sliding mode controller (ASMC) is developed

to track a reference trajectory zd . From (10), the altitude
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dynamic is: {
ẋ11 = x12
ẋ12 = a6x12 − g+ b6( cϕcθ )U1

(27)

And the altitude sliding surface from (25)is:

Sz = S12 = k11 (x11 − x11d )+ k12(x12 − x12d ) (28)

Now, taking the 1st derivative of (Sz) would result:

Ṡz = −qzsgn (Sz)− kzSz (29)

where− (qzsgn (Sz)+ kzSz) represents the discontinuous part
that satisfies the reachability condition.

k11 ( ˙x11 − ˙x11d )+ k12 ( ˙x12 − ˙x12d ) = −qzsgn (Sz)− kzSz
(30)

Substituting the altitude dynamic equations ( ˙x11 and ˙x12)
implies,

k11 (x12 − ˙x11d )+ k12(a6x12 − g+ b6cϕcθU1 − ˙x12d )

= −qzsgn (Sz)− kzSz (31)

Therefore, from (31) the sliding control law of altitude, U1
will be calculated as follows:

U1 =
1

k12b6cϕcθ
[−qzsign (Sz)− kzSz

−k12 (a6x12 − g− ˙x12d )− k11 (x12 − ˙x11d )] (32)

To ensure stability, a Lyapunov function is applied as a pos-
itive definite function, and its rate must be negative definite
or semi-negative definite.

From (24), the altitude Lyapunov function is defined as:

Vz = V12 =
1
2
S2z (33)

Taking the 1st derivative as:
V̇z = V̇12 = Sz Ṡz
V̇z = V̇12 = Sz [k11 (x12 − ẋ11d )
+ k12

(
a6x12 − g+ b6cϕcθU1 − ẋ12d

)
]

(34)

Now, substitute (U1) and simplify the result,

V̇z = V̇12 = Sz Ṡz
V̇z = V̇12 = Sz [k11 (x12 − ẋ11d )
+ (−qzsign (Sz)− kzSz − k11 (x12 − ẋ11d ))]
V̇z = V̇12 = Sz [−qzsign (Sz)− kzSz]
V̇z = V̇12 = −qz |Sz| − kzS2z ≤ 0

(35)

which is negative ∀ t, since qz , kz > 0
The same procedures are followed to compute U2 , U3 ,

U4 , Ux andUy and test their stability by Lyapunov functions.

2) SMC FOR FRACTIONAL ORDER QUADROTOR SYSTEM
The sliding mode control (SMC) approach has been widely
used for controlling nonlinear systems. In recent years, there

TABLE 2. Quadrotor parameters values, [12].

has been a growing interest in applying SMC to fractional
order systems due to their potential advantages over integer
order systems. The SMC of fractional order nonlinear sys-
tems can be built using two methods. The first method is
based on a class of fractional nonlinear systems, which can
be described by the Caputo fractional derivative. This method
involves designing a sliding mode surface that can ensure
the stability of the system. For example, consider a fractional
order system described by the following equation:

Dαx(t) = f (x(t)) (36)

where Dα is the Caputo fractional derivative, α is the frac-
tional order, x(t) is the state variable, and f (x(t)) is the non-
linear function. By using the SMC approach, a sliding mode
surface can be designed to ensure the stability of the system.

The second method applies to both fractional and integer
order nonlinear systems. This method involves designing a
sliding mode surface that can ensure the stability of the
system. For example, consider a nonlinear system described
by the following equation:

x(t) = f (x(t))+ g (x(t)) u(t) (37)

where x(t) is the state variable, f (x(t)) is the nonlinear func-
tion, g(x(t)) is the control gain, u(t) is the control input, and
the dot represents the time derivative. By using the SMC
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FIGURE 4. x-Position under SMC (a) Time response (b) Control signal.

FIGURE 5. x-Position under FOSMC (a) Time response (b) Control signal.

approach, a sliding mode surface can be designed to ensure
the stability of the system in the presence of disturbances. The
control input u(t) can be designed such that the system stays
on the sliding mode surface.

Overall, the SMC approach can be an effective way to
control fractional-order nonlinear systems. By using the two
methods described above, a sliding mode surface can be
designed to ensure the stability of the system, and the control
input can be designed to keep the system on the sliding mode
surface. Numerical examples of SMC applied to fractional
order nonlinear systems have shown promising results in
terms of stability and performance. For instance, the control

FIGURE 6. y-Position under SMC (a) Time response (b) Control signal.

of a fractional order chaotic system using SMC has been
successfully demonstrated in [17]. Additionally, the control
of a fractional order van der Pol oscillator using SMC has
been investigated in [37], showing that the proposed method
can effectively stabilize the system.

The proposed sliding mode controllers was applied to the
fractional states (transitional equations), (20). Define the slid-
ing surfaces and the Lyapunov functions as follow:

Sf i =



qi−3

(
xf i−3 − xf (i−3)d

)
+qi−2

(
xf i−2 − xf (i−2)d

)
+qi−1

(
xf i−1 − xf (i−1)d

)
+qi

(
xf i − xf id

)
i ∈ { 10, 14, 18}

(38)

where q is a positive constant vector (qT ∈ Rn), and xf d = xd
is the desired vector states to be tracked.

Vf i =

{
1
2
S2f i , i ∈ { 10, 14, 18} (39)

From (38), we can define the sliding surfaces as follow:

Sf x = S10 = q7
(
xf 7 − xf 7d

)
+q8

(
xf 8 − xf 8d

)
+ q9

(
xf 9 − xf 9d

)
+q10

(
xf 10 − xf 10d

)
Sf y = S14 = q11

(
xf 11 − xf 11d

)
+q12

(
xf 12 − xf 12d

)
+ q13

(
xf 13 − xf 13d

)
+q14

(
xf 14 − xf 14d

)
Sf z = S18 = q15

(
xf 15 − xf 15d

)
+q16

(
xf 16 − xf 16d

)
+ q17

(
xf 17 − xf 17d

)
+q18

(
xf 18 − xf 18d

)

(40)
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To ensure the proposed sliding surfaces are stable, the neces-
sary sliding condition (Sf Ṡf < 0) must be verified. So, the
control laws will be chosen as follows:

Ux f =
1

q10b4U1f
[−γxsgn

(
Sf x

)
− σxSf x

−q7
(
xf 8 − D0.5xf 7d

)
−q8

(
xf 9 − D0.5xf 8d

)
−q9

(
xf 10 − D0.5xf 9d

)
−q10

(
a4xf 9 − D0.5xf 10d

)
]

Uyf =
1

q14b5U1f
[−γysgn

(
Sf y

)
− σySf y

−q11
(
xf 12 − D0.5xf 11d

)
−q12

(
xf 13 − D0.5xf 12d

)
−q13

(
xf 14 − D0.5xf 13d

)
−q14

(
a5xf 13 − D0.5xf 14d

)
U1f =

1
q18b6cϕcθ

[−γzsgn
(
Sf z

)
− σzSf z

−q15
(
xf 16 − D0.5xf 15d

)
−q16

(
xf 17 − D0.5xf 16d

)
−q17

(
xf 18 − D0.5xf 17d

)
−q18

(
a6xf 17 − g− D0.5xf 18d

)
]

(41)

where
(
γx , γy, γz

)
and

(
σx , σy, σz

)
> 0, and constants.

Because the rotating subsystem was not subjected to the
fractional scheme transformation, the sliding mode con-
trollers for the fractional system are the same as for the integer
system (U2, U3 and U4), as given in (26).
Proof of (41):
From (20), the fractional order altitude dynamic (zf ) is:

D0.5xf 15 = xf 16
D0.5xf 16 = xf 17
D0.5xf 17 = xf 18
D0.5xf 18 = a6xf 17 − g+ b6( cϕcθ )U1f

(42)

The altitude sliding surface for fractional system (42)is given
in (40)as:

Sf z = S18 = q15
(
xf 15 − xf 15d

)
+ q16

(
xf 16 − xf 16d

)
+ q17

(
xf 17 − xf 17d

)
+ q18

(
xf 18 − xf 18d

)
(43)

Taking half derivative (for α = 0.5) of both sides,

D0.5Sf z = D0.5S18 = q15
(
D0.5xf 15 − D0.5xf 15d

)
+ q16

(
D0.5xf 16 − D0.5xf 16d

)
+ q17

(
D0.5xf 17 − D0.5xf 17d

)

+ q18
(
D0.5xf 18 − D0.5xf 18d

)
(44)

Now, let 

D0.5Sf z = −γzsgn
(
Sf z

)
− σzSf z

q15
(
D0.5xf 15 − D0.5xf 15d

)
+q16

(
D0.5xf 16 − D0.5xf 16d

)
+q17

(
D0.5xf 17 − D0.5xf 17d

)
+q18

(
D0.5xf 18 − D0.5xf 18d

)
= −γzsgn

(
Sf z

)
− σzSf z

γz and σz > 0

(45)

Substituting (D0.5xf 15, D
0.5xf 16, D

0.5xf 17, D
0.5xf 18) from

the fractional dynamic altitude of the quadrotor given in
(42)implies,

q15
(
xf 16 − D0.5xf 15d

)
+ q16

(
xf 17 − D0.5xf 16d

)
+ q17

(
xf 18 − D0.5xf 17d

)
+ q18

(
a6xf 17 − g+ b6cϕcθU1f − D0.5xf 18d

)
= −γzsgn

(
Sf z

)
− σzSf z (46)

Now, solving for U1f :

U1f =
1

q18b6cϕcθ

[
−γzsgn

(
Sf z

)
− σzSf z

−q15
(
xf 16 − D0.5xf 15d

)
−q16

(
xf 17 − D0.5xf 16d

)
− q17

(
xf 18 − D0.5xf 17d

)
−q18

(
a6xf 17 − g− D0.5xf 18d

)]
(47)

From (39), the Lyapunov function and its 1st derivative for
the fractional system can be defined as:Vf z = Vf 18 =

1
2
S2f z

V̇f z = V̇f 18 = Sf zṠf z
(48)

We define D0.5Sf z as in (45):
D0.5Sf z = −γzsgn

(
Sf z

)
− σzSf z

Sf z = −γzD
−0.5sgn

(
Sf z

)
− σzD

−0.5Sf z
Ṡf z = −γzD

0.5sgn
(
Sf z

)
− σzD

0.5Sf z
; γz and σz >

(49)

Now,
V̇f z = V̇f 18
= Sf z

[
−γzD

0.5sgn
(
Sf z

)
− σzD

0.5Sf z

]
V̇f z = V̇f 18 = −γzD

0.5 ∣∣Sf z∣∣ − σzD0.5S2f z ≤ 0

(50)

D0.5
∣∣Sf z∣∣ and D0.5S2f z always positive as proved and dis-

cussed in [7] and [30], and this ensures that Sf zṠf z < 0
The same steps are followed to compute Ux f and Uyf and

test the stability by Lyapunov functions.
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FIGURE 7. y-Position under FOSMC (a) Time response (b) Control signal.

FIGURE 8. z-Position under SMC (a) Time response (b) Control signal.

B. FRACTIONAL ORDER SLIDING MODE CONTROL
DESIGN (FOSMD)
Recently, the fractional order was added to the SMC to
enhance the control system, and it is known as the FOSMC.
In this section, we propose fractional order sliding mode
controllers to control the integer quadrotor dynamic model’s
altitude, attitude, heading, and x, y positions.

FIGURE 9. z-Position under FOSMC (a) Time response (b) Control signal.

1) FOSMC FOR INTEGER ORDER QUADROTOR SYSTEM
Define the fractional order sliding surfaces and the fractional
order Lyapunov functions for the integer quadrotor system as
follow: 

SFOSMC i = kf i−1

(
xi−1 − x(i−1)d

)
+kfiD

γ (xi − xid )

VFOSMC i =
1
2
S2FOSMC i

i ∈ {2, 4, 6, 8, 10, 12}

(51)

Expanding (51), where kf i are constants, the fractional sliding
surfaces are:

SFOSMCϕ = SFOSMC2

= kf 1 (x1 − x1d )+ kf 2D
γ (x2 − x2d ) ,

SFOSMC θ = SFOSMC4

= kf 3 (x3 − x3d )+ kf 4D
γ (x4 − x4d ) ,

SFOSMCψ = SFOSMC6

= kf 5 (x5 − x5d )+ kf 6D
γ (x6 − x6d ) ,

SFOSMCx = SFOSMC8

= kf 7 (x7 − x7d )+ kf 8D
γ (x8 − x8d ) ,

SFOSMCy = SFOSMC10

= kf 9 (x9 − x9d )+ kf 10D
γ (x10 − x10d ) ,

SFOSMCz = SFOSMC12

= kf 11 (x11 − x11d )+ kf 12D
γ (x12 − x12d )

(52)

Employing the same steps as in subsection VIto obtain
the control laws of SMCs, we can derive the control laws
of FOSMC and test the stability. The following results
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will be obtained:

UFOSMC 1 =
1

k12b6cϕcθ
[−qzf D

−γ sgn
(
SFOSMCz

)
−kzf D

−γ SFOSMCz − k12 (a6x12 − g− ẋ12d )
−k11D−γ (x12 − ẋ11d )],

UFOSMC2 =
1

d1k2
[−qϕf D

−γ sgn
(
SFOSMCϕ

)
−kϕf D

−γ SFOSMCϕ
−k2

(
a1x4x6 + b1Ωrx4 + c1x22

)
+ k2x2d

−k1D−γ (x2 − ẋ1d )],

UFOSMC 3 =
1
d2k4

[−qθf D
−γ sgn (SFOSMC θ )

−kθf D
−γ SFOSMC θ

−k4
(
a2x2x6 + b2Ωrx2 + c2x42 − ẋ4d

)
−k3D−γ (x4 − ẋ3d )],

UFOSMC4 =
1

c3k6
[−qψf D

−γ sgn
(
SFOSMCψ

)
−kψf D

−γ SFOSMCψ
−k6

(
a3x2x4 + b3x62 − ẋ6d

)
−k5D−γ (x6 − ẋ5d )],

UFOSMCx =
1

k8b4U1
[−qxf D

−γ sign (SFOSMCx)

−kxf D
−γ SFOSMCx

−k8 (a4x8 − ẋ8d )− k7D−γ (x8 − ẋ7d )],

UFOSMCy =
1

k10b5U1
[−qyf D

−γ sign
(
SFOSMCy

)
−kyf D

−γ SFOSMCy
−k10 (a5x10 − ẋ10d )− D−γ k9 (x10 − ẋ9d )]

(53)

VFOSMC12 =
1
2
S2FOSMC12

V̇FOSMCz = V̇FOSMC12 = SFOSMC12 ṠFOSMC12

= − qzf |SFOSMCz | − kzf S
2
FOSMCz

SFOSMCz [k11 (x12 − ẋ11d )
+k12

(
a6x12 − g+ b6cϕcθU1 − ẋ12d

)
]

= −qzf |SFOSMCz | − kzf S
2
FOSMCz ≤ 0

(54)

which is negative ∀ t , since qzf , kzf > 0

2) FOSMC FOR FRACTIONAL ORDER QUADROTOR SYSTEM
Define the fractional order sliding surfaces and the fractional
order Lyapunov functions for the fractional order quadrotor
system as follow:

SFOSMC f i =



qi−3

(
xf i−3 − xf (i−3)d

)
+qi−2

(
xf i−2 − xf (i−2)d

)
+qi−1

(
xf i−1 − xf (i−1)d

)
+qiDγ

(
xf i − xf id

)
VFOSMCf i =

{
1
2
S2FOSMC i ,

\ i ∈ { 10, 14, 18} (55)

From (55)), we can define the fractional sliding surfaces for
fractional system as fractional order dynamic equations as
follows:

SFOSMCf 10 =

q7
(
xf 7 − xf 7d

)
+ q8

(
xf 8 − xf 8d

)
+q9

(
xf 9 − xf 9d

)
q10Dγ

(
xf 10 − xf 10d

)
SFOSMCf 14 =

q11
(
xf 11 − xf 11d

)
+ q12

(
xf 12 − xf 12d

)
+q13

(
xf 13 − xf 13d

)
+ q14Dγ

(
xf 14 − xf 14d

)
SFOSMCf 18 =

q15
(
xf 15 − xf 15d

)
+ q16

(
xf 16 − xf 16d

)
+q18Dγ

(
xf 18 − xf 18d

)
+ q17

(
xf 17 − xf 17d

)

(56)

And the fractional order sliding mode control laws can be
obtained using the same procedure as in subsection VII. The
results are as follow:

UFOSMCf 1 =
1

b6q18cϕcθ
[

−ρzD−γ sgn
(
SFOSMCf 18

)
− κzD−γ SFOSMCf 18

−q15D−γ
(
xf 16 − D0.5xf 15d

)
−q16D−γ

(
xf 17 − D0.5xf 16d

)
−q17D−γ

(
xf 18 − D0.5xf 17d

)
−q18

(
a6xf 17 − g− D0.5xf 18d

)
]

UFOSMCf x =
1

q10b4U1
[

−ρxsgnD−γ
(
SFOSMCf 10

)
− κxD−γ SFOSMCf 10

−q7D−γ
(
xf 8 − D0.5xf 7d

)
−q8D−γ

(
xf 9 − D0.5xf 8d

)
−q9D−γ

(
xf 10 − D0.5xf 9d

)
−q10

(
a4xf 9 − D0.5xf 10d

)


UFOSMCf y =
1

q14b5U1
[

−ρxD−γ sgn
(
SFOSMCf 14

)
− κxD−γ SFOSMCf 14

−q11D−γ
(
xf 12 − D0.5xf 11d

)
−q12D−γ

(
xf 13 − D0.5xf 12d

)
−q13D−γ

(
xf 14 − D0.5xf 13d

)
−q14D−γ

(
a5xf 13 − D0.5xf 14d

)
]

(57)

Following the same procedure in part 7and after simplifi-
cations, the LFs that ensure the stability of the proposed
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TABLE 3. Case studies input signals.

FIGURE 10. ψ-Angle under SMC (a) Time response (b) Control signal.

fractional sliding surfaces are as follow:
V̇FOSMC14 = − ρxD0.5

|SFOSMC14 | − κxS2FOSMC10

V̇FOSMC14 = − ρyD0.5
|SFOSMC14 | − κyS2FOSMC14

V̇FOSMC18 = − ρzD0.5
|S2FOSMC18

| − κzS2FOSMC 18
(58)

D0.5 |SFOSMC i| and S2FOSMC i always positive and as
shown in Efe [17]; Khan et al. [30], and this ensures that
SFOSMC i ˙SFOSMC i < 0 for all i ∈ { 10, 14, 18} , and positive
constants

(
ρx , ρy, ρz

)
and

(
κx , κy , κz

)
.

VI. SIMULATION RESULTS
MATLAB/Simulink has been used to test and simulate both
integer and fractional order quadrotor systems by applying

FIGURE 11. ψ-Angle under FOSMC (a) Time response (b) Control signal.

the proposed SMC and FOSMC. The PC utilized in the
simulation is an HPmodel, featuring a Core(TM) i7-4702MQ
CPU operating at a clock speed of 2.20GHz, accompanied
by 8 GB of RAM. Additionally, we utilized MATLAB ver-
sion 2022a throughout our investigation. For the fractional
calculus, FOMCON Toolbox was utilized. TABLE 1 shows
the values of the quadrotor parameters employed in the sim-
ulations. Two case studies that have been investigated to
highlight the issues that the quadcopter control systems in
both integer and fractional systems may face in achieving the
required tracking. The first case study was the step input, and
the second one was the helical path. The states with reference
trajectories of these case studies are presented TABLE 2.
Case Study (1) The positions (x , y and z) and the yaw (ψ)

have been set as unit step references (xd , yd , zd andψd ). The
curves in FIGURE 4, FIGURE 5, FIGURE 6, FIGURE 7,
FIGURE 8 and FIGURE 9(a) show the responses of both
integer and fractional position states under both controllers
(SMC and FOSMC), while (b) represent the control input
signals produced by the proposed controllers to acquire the
desired positions. The output responses of yaw orientation in
both integer and fractional systems are shown in FIGURE 10
and FIGURE 11. As can be observed, the output responses in
the fractional quadrotor system under both controllers (SMC
and FOSMC) are speedier than that in the integer system.
Furthermore, once SMC is used in integer systems, chattering
occurs, that is alleviated via using FOSMC, although this
phenomenon does not exist in fractional systems. TABLE
4 and TABLE 5 show the summary of the systems (inte-
ger/fractional ones) performance in terms of percentage over-
shoot OS, and rising time RT under SMC and FOSMC
respectively, and it can be seen that the rising time in the
fractional system is much faster than in the integer system;
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TABLE 4. Time domain specifications of both systems under SMC.

TABLE 5. Time domain specifications of both systems under FOSMC.

FIGURE 12. x-Position with different fractional orders, β.

FIGURE 13. xf -Position with different fractional orders, β.

nevertheless, the overshoot in the fractional system does not
improve, but it is still acceptable in practice.

FIGURE 14. Case 2 - Helical trajectory under SMC.

FIGURE 15. Case 2 - Helical trajectory under FOSMC.

Case Study (2) the second case study was the helical
path. The states with reference trajectories are presented in
TABLE 3.

FIGURE 12 and FIGURE 13 show the x and xf position
with different fractional orders. The fractional order has sig-
nificantly reduced the chattering of the controller. However,
this increase in the fractional order affects the transient per-
formance of the outputs of the quadrotor. Furthermore, the
results reveal that decreasing the value of fractional order in
FOSMC performs well in the fractional system but poorly in
the integer system, however increasing that value of fractional
order yields the opposite results. The fractional order param-
eters (β) were chosen to produce high output performance as
well as better control input behaviour. They were not chosen
to reduce the chattering at the expense of system perfor-
mance, and vice versa. Hence, there is a trade-off between
both behaviours.

FIGURE 14 and FIGURE 15 show the tracking of inte-
ger and fractional quadrotor systems under both SMC and
FOSMC respectively. The stated controllers followed the
desired trajectory with less time in fractional system than in
integer system and they almost have the same tracking error
(etrack∼=0).

VII. CONCLUSION AND FUTURE WORK
The study concludes that fractional order sliding mode con-
trol (FOSMC) is a viable method for controlling quadrotor
systems and following a desired trajectory. FOSMC pro-
vides improved accuracy and robustness compared to tradi-
tional sliding mode control (SMC). The fractional derivative
approach in FOSMC enables the system to have better
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tracking capabilities, which leads to reduced overshoot and
rising time compared to SMC. Additionally, FOSMC also
has a faster response rate compared to SMC, making it a
better option for applications where fast control response is
required. Overall, the study finds that FOSMC is a promising
control method for controlling quadrotors and following a
desired trajectory. In the near future work, we will investigate
the performance of the proposed model by employing an
aggressive disturbance rejection control paradigm to actively
reject wind disturbances and reduce the influence of measure-
ment noise.
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