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ABSTRACT Adesignmethod for a cascade control system is proposed in this paper. To deal with delay times
in most of process control systems, the Smith predictor is also suggested in the control structure to eliminate
a delay term in closed-loop systems. The classical proportional-integral (PI) and the fractional-order PI
controller are adopted for the inner loop and the outer loop respectively. The analytical tuning rules are
derived based on frequency domain and also using the direct synthesis method for improving the performance
for both disturbance rejection and set-point tracking problems. An illustrative example is considered to
confirm the effectiveness of the proposed algorithm. In addition, the robust stability of the fractional-order
system is also carried out to demonstrate that the proposed fractional-order PI controller can hold well the
robustness against perturbation uncertainties in the process models.

INDEX TERMS Analytical tuning rules, cascade control systems, disturbance rejection, fractional calculus,
fractional-order system, fractional-order proportional-integral controller, Smith predictor.

I. INTRODUCTION
A cascade control system is quite common in industrial
processes. It is mainly used for reducing disturbances as
well as enhancing the servo responses of the closed-loop
system [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The original
cascade control scheme consists of two control loops: outer
and inner. It means that we have to design both controllers
where the manipulated variable of the first one (the outer)
plays as an input signal for the second one (the inner). As a
result of that, the tuning procedures are much more sophis-
ticated than those of other single-loop systems [4], [5], [6],
[7], [8], [9], [10], [11]. In [6], the authors proposed tuning
rules for both inner and outer loops using two-degree-of-
freedom (2-DoF) proportional-integral/proportional-integral-
derivative (PI/PID) controllers. The trade-off between system
performance and robustness is considered to derive the design
parameters. An enhanced cascade structure is suggested in [8]
to deal with a class of integrating processes with time delay.
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In [10], the authors proposed a unified approach for tuning
the controllers of a cascade scheme for unstable, integrating,
and stable processes. The Kharitonov’s theorem was adopted
to justify the robustness of the controlled systems.

Recently, there has been an increasing attention paid to
fractional-order calculus [12] both from the academic and
control engineers for the modeling and control issues because
it provides more flexibility and advancement in the compu-
tation power [13], [14], [15]. The first mention involving
using a fractional structure in a feedback loop was made
early by Bode [16], [17] and was extended by Barbosa and
Ferreira [18]. However, this idea was not concretized and
remained as a simple proposition for decades. In [19], the
author proposed the fractional-order PID controller (FOPID),
which is so-called PIλDµ that involving fractional-order
integrator (λ) and fractional-order differentiator (µ), and con-
sidered as the generalization of a standard PID controller. Due
to its two extra parameters (λ and µ), this type of controller
can be achieved the better performance than that of classi-
cal PID controllers for fractional-order processes as well as
integer-order ones. It also has been justified in other works

76196
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9343-9164
https://orcid.org/0009-0009-4618-8524
https://orcid.org/0000-0003-2303-5989
https://orcid.org/0000-0001-9893-6381


S. H. Nguyen et al.: Analytical Tuning Rules for Cascade Control Systems

that fractional-order controllers provide more robustness and
having been become a new trend to solve many industrial
control problems [15], [20].

The research related to the tuning rules of the FOPID
controller have been reported in numerous kinds of literature
and is major in single-input, single-output (SISO) [20], [21],
[22], [23], [24], [25], [26], [27]. For other complex control
systems such as cascade structures, only a few studies use
fractional-order controllers, for instance, in [28] and [29],
but the authors are only concerned about the parallel cas-
cade systems. In addition, for the primary loop with a large
time delay, some available literature could not effectively
solve the servomechanism problem [30], [31]. Therefore, this
work suggests tuning rules for a cascade control scheme
using a fractional-order PI controller to improve the system’s
performances.

As mentioned in the introduction section, most classical
PID controllers for this kind of systems have to compromise
between servomechanism and regulator problems. Therefore,
in this paper, our aim is to propose an analytical tuning
method of fractional-order PI controller for improving both
set-point tracking and disturbance rejection of a cascade
scheme with stable processes plus time delays. It is rea-
sonable because of the flexibility in tuning rules as well as
the robustness of the fractional-order controller. To eliminate
a delay term in a characteristic equation of a closed-loop
system, the Smith predictor [32] will be included in the
control structure. Other authors also adopted this compen-
sator to deal with time delay in parallel cascade control
structures [33], [34], [35], [36], but they only considered
the integer-order PID controller. Our design approach for
the inner loop is mainly based on the concepts of direct
synthesis method [37]. For the outer loop, by using frequency
domain in combination with direct synthesis method, the
proposed fractional-order PI tuning rules can be directly
derived.

II. PRELIMINARIES
Some basic fundamentals of fractional calculus are briefly
introduced in this section.

A. FRACTIONAL CALCULUS
Fractional calculus [12] is generalization of the ordinary
calculus. The main idea is to develop a functional operatorD,
associated to an order v not restricted to integer numbers that
generalizes the usual notions of derivative (for a positive v)
and integral (for a negative v).
There are various definitions for fractional derivative.

However, the most commonly use is the Riemann-Liouville
definition [15], which is shown in the following
equation:

aDvt f (t) =
1

0(n− v)
d
dtn

t∫
a

f (τ )
(t − τ )v−n+1 dt, n− 1 < v < n

(1)

where 0(•) represents the Euler’s gamma function. It is
important to note that the generalized definition ofD becomes

aDvt f (t). The Laplace transform ofD pursues the well-known

rule for zero initial condition a L
[
aDvt f (t)

]
= svF (s).

It is implied that under initial condition, the system with a
dynamic behavior described by differential equations involv-
ing fractional-order derivative transforms to a transfer func-
tion with fractional power of s.

B. INTEGER ORDER APPROXIMATION
In order to use the fractional-order controller, in both sim-
ulations and hardware, of the transfer functions involving
fractional order of s, the transfer function of this controller
should be perfectly approximated into the integer order
transfer function with a similar behavior, which includes
an infinite number of poles and zeros. Nevertheless, it can
be obtained reasonable approximations with a finite number
of poles and zeros. In this case, the Oustaloup continu-
ous integer order approximation [38], which is based on a
recursive distribution of poles and zeros, has been employed
here:

sv ∼= k
N∏
n=1

1 +

(
s

ωz,n

)
1 +

(
s

ωp,n

) (2)

Equation (2) is valid in a frequency range [ωl, ωh], where
the gain k is adjusted for the both sides of (2) has unity gain
at the gain crossover frequency of sv(i.e., it is denoted as ωc
and commonly given as 1 rad/s). The number of poles and
zeros N = 8 is chosen, since ωl and ωh have been respec-
tively selected as 0.001ωc and 1000ωc. It is important to
note that the most wanted performance of the approximation
strongly depends on: low values cause simpler approxima-
tions, but may cause ripples in both gain and phase behaviors.
Such ripples may be functionally neglected by increasing N .
However, in that case, the approximation will be become
computationally heavier.

C. FRACTIONAL LINEAR MODEL
According to a SISO linear time invariant (LTI) system, the
fractional-order differential equation (FODE), provided both
input and output signals u(t) and y(t) that is relaxed at t = 0,
can be expressed by the following differential equation:

n∑
i=0

aiD
αi
0 y (t) =

m∑
j=0

bjD
βj
0 u (t) (3)

As a result, Eq. (3) can be described in the Laplace domain
by the following transfer function:

G (s) =
Y (s)
U (s)

=
bmsβm + bm−1sβm−1 + . . . + b0sβ0

ansαn + an−1sαn−1 + . . . + a0sα0
(4)

where αi and βi are arbitrary real positive.
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III. THE ANALYTICAL TUNING RULES FOR CASCADE
CONTROL SYSTEMS
A. THE FOPI CONTROLLER IN FREQUENCY DOMAIN
Fractional calculus gives the fractional integro-differential
equation of a fractional-order proportional integral (FOPI)
controller as:

u (t) = KCe (t) + KID−λ
t e (t) , (λ > 0) (5)

where KC and KI respectively represent the proportional and
integral terms of the FOPI controller. λ is the fractional order
of the integral.

The continuous transfer function of the FOPI controller can
be obtained by Laplace transformation:

GC (s) = KC +
KI
sλ

(6)

The controller has three parameters (KC ,KI , and λ) to tune,
since the fractional order λ is not necessarily integer. An inte-
ger PI controller is a special case of this FOPI controller
where λ = 1. This expansion provides more flexibility in
achieving control objectives. However, it is often complicated
by requiring a non-linear objective function and user-defined
constraints to obtain controller parameters that satisfy some
specified performance criterion.

By substituting s = jω into (6), the FOPI controller is
represented in the frequency domain as:

GC (jω) = KC +
KI

(jω)λ
(7)

The fractional power of jω can be written as

(jω)λ = ωλjλ = ωλ
[
ej[

π
2 +2nπ]

]λ

= ωλ
[
ej[

π
2 λ+2nλπ]

]
(8)

where n = 0, ± 1
λ
, ± 2

λ
, . . . ,±m

λ
. Therefore, the following

convenient form is obtained:

(jω)λ = ωλ (cos γI + j sin γI ) , γI =
πλ

2
(9)

Substituting (9) into (7) and rearranging gives a complex
equation for the FOPI controller in the frequency domain:

GC (jω) =

(
KC +

KI cos γI

ωλ

)
− j

(KI sin γI)

ωλ
(10)

B. THE ANALYTICAL DESIGN FOR CASCADE CONTROL
SYSTEMS
The proposed cascade control system is shown in Figure 1,
where Gp1 (s) and Gp2 (s) are the transfer functions of the
outer and inner processes respectively. Gc1 (s) and Gc2 (s) are
the primary and secondary controllers; G̃p(s) is the free-delay
term of the equivalent transfer function of the inner control
loop (from the input r2 to the output y1).

FIGURE 1. The proposed cascade control structure.

The closed-loop transfer function from the input r1 to the
primary output y1 is as follows:

y1
r1

=
Gc1 (s)Gp(s)e

−θps

1 + Gc1 (s)G̃p(s) − Gc1 (s)G̃p(s)e
−θps + Gc1 (s)Gp(s)e

−θps

(11)

Assuming that the perfect model is given, Gp(s) = G̃p(s),
the above equation is reduced as Eq. (12):

y1
r1

=
Gc1 (s)Gp(s)e

−θps

1 + Gc1 (s)G̃p(s)
(12)

It is obvious that due to the Smith predictor structure, the
delay term is eliminated out of the characteristic equation of
the closed-loop system.

The inner loop controller design
The direct synthesis (DS) method will be adopted to design

the inner loop controller. The closed-loop transfer function
of the inner loop (from the input r2 to the output y2) can be
calculated:

y2
r2

=
Gc2 (s)Gp2 (s)

1 + Gc2 (s)Gp2 (s)
(13)

The controller Gc2 is derived from Eq. (13) as follows:

Gc2 (s) =
1

Gp2 (s)

y2
/
r2

1 − y2
/
r2

(14)

Assuming that the process model is prior known, G̃p2 ,
and the desired closed-loop response

(
y2

/
r2

)
d is consid-

ered as the closed-loop transfer function in terms of set-
point changes. Therefore, the ideal controller is obtained by
rewritten:

Gc2 (s) =
1

G̃p2 (s)

(y2
/
r2)d

1 − (y2
/
r2)d

(15)

Normally,
(
y2

/
r2

)
d is chosen as follows:(
y2
r2

)
d

=
e−θ2s

τc2s+ 1
(16)

where τc2 is the desired time constant of the closed-loop
response and θ2 is a time delay of the process. Replacing
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Eq. (16) into Eq. (15) and using Taylor approximation for the
delay term, the feedback controller is obtained:

Gc2 (s) =
1

G̃p2 (s)

e−θ2s

(τc2 + θ2)s
(17)

Consider the FOPDT for the inner process model:

G̃p2 (s) =
K2

τ2s+ 1
e−θ2s (18)

Substituting Eq. (18) into (17), the PI controller for the
inner loop is obtained:

Gc2 (s) =
τ2

K2(τc2 + θ2)

[
1 +

1
τ2s

]
(19)

The outer loop controller design
The equivalent transfer function of the primary process

model is calculated as follows:

Gp (s) e−θps =

(
y2
r2

)
d
Gp1 (s) =

e−θ2s

τc2s+ 1
K1e−θ1s

τ1s+ 1
(20)

where θp = θ1 + θ2 and Gp (s) =
K1

(τc2 s+1)(τ1s+1)
The fractional-order PI controller is addressed for this

control loop. According to the guideline provided by
Chen et al. [15], the fractional order λ is chosen based on the
relative dead time parameter of the first order plus delay time
system (FOPDT).

1 =
θp1

τp + θp1
(21)

where θp1 and τp are calculated by using Skogestad’s half
rule [37] (assuming that τ1 > τc2 )

θp1 = θp +
τc

2
andτp = τ1 +

τc2

2
(22)

And according to [20], the value of λ can be determined as
follows:

λ =


1.1, if1 ≥ 0.6
0.9, if 0.1 ≤ 1 < 0.6
0.7, if1 < 0.1

(23)

Similar to the inner loop, the DS method is still addressed
here. However, due to the Smith predictor scheme, only the
free-delay process model is used in deriving the analytical
tuning rules for the outer loop. The ideal feedback controller
is obtained as follows:

Gc1 (s) =
1

G̃p(s)

(y1
/
r1)d

1 − (y1
/
r1)d

(24)

In this control loop, the desired closed loop response is
chosen in fractional-order form(

y1
r1

)
d

=
e−θps

τc1sγ + 1
(25)

Gc1 (s) =
1
K1

(τc2s+ 1)(τ2s+ 1)

1 + τc1sγ − e−θps
(26)

Replacing s = jω into the above equation and using two
formulas:

(jω)γ = ωγ (cosϕ + j sinϕ) , ϕ =
πγ

2
(27)

e−jωθp = cosφ − j sinφ, φ = ωθp (28)

Finally, rewritten Gc1 in the complex function:

Gc1 (jω) =
a0 + a1

b
− j

a2 + a3
b

(29)

where a0 = (1 − τc2τ2ω
2)(1 − cosφ + τc1ω

γ cosϕ)

a1 = ω(τc2 + τ2)(τc1ωγ sinϕ + sinφ)

a2 = (1 − τc2τ2ω
2)(τc1ωγ sinϕ + sinφ)

a3 = ω(τc2 + τ2)(cosφ − τc1ω
γ cosϕ − 1)

b = (1 − cosφ + τc1ω
γ cosϕ)2 + (τc1ωγ sinϕ + sinφ)2

By comparing Eq. (29) with standard FOPI controller in
frequency domain Eq. (10), the analytical tuning rules can be
found as:

KC +
KI cos (γI)

ωλ
=
a0 + a1

b
(30)

KI sin (γI)

ωλ
=
a2 + a3

b
(31)

The analytical tuning rules can be obtained by solving (30)
and (31)

KI =
ωλ

sin γI

a2 + a3
b

(32)

KC =
a0 + a1

b
−
KI cos γI

ωλ
(33)

Note that τc1 and τc2 are chosen to balance the system
responses and the robustness. In this case, the maximum peak
of sensitivity function (Ms) is adopted to evaluate the robust-
ness of the controlled system. The value of Ms is assigned to
1.3 for a fractional-order control system as mentioned in the
previous work [39].

IV. SIMULATION STUDY
In this section, an example will be simulated and some per-
formance indices including integral absolute error (IAE) and
total variation (TV) are adopted to justify the effectiveness
of the proposed method. These indices are calculated by
following equations:

IAE =

T∫
0

|e(t)| dt (34)

TV =

T∑
k=1

|u(k + 1) − u(k)| (35)

where e(t) is the error of the setpoint and the process output.
Therefore, IAE is used to evaluate the system performances
in terms of set-point tracking as well as disturbance rejection.
TV is obtained to measure the smoothness of the control
effort. Normally, these values are as small as possible.
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TABLE 1. The performance indices.

FIGURE 2. The closed-loop responses in terms of setpoint change and
disturbance rejection.

The following process models are considered in this
work [38]

Gp1 (s) =
e−1.5s

5s+ 1
(36)

Gp2 (s) =
e−0.3s

s+ 1
(37)

The controller parameters are obtained according to these
equations (19) for Gc2 and (32), (33) for Gc1 as follows:

Gc1 (s) = 2.0175 +
0.5137
s0.9

(38)

Gc2 (s) = 1.6667
(
1 +

1
s

)
(39)

The closed-loop responses in terms of set-point tracking
and disturbance rejection are shown in Figure 2. The distur-
bance signal is applied at t = 50s with the magnitude of 1.
The proposed method is also compared with those of two-
degree-of-freedom (2-DoF), which adopted the integer-order
PI and PID controllers for the inner and the outer loop respec-
tively, suggested by Alfaro et al. [6] and fractional IMC filter
(FIMC) by Ranganayakulu et al. [40]. For a fair comparison,
the maximum peak of sensitivity function (Ms) is adopted to
keep the robustness the controlled systems being the same
level.

In Figure 2, it can be seen that the proposed method has a
good balance between set-point tracking response and dis-
turbance rejection performance. The process output is fast
enough to avoid overshoot and also maintain the variation
under the disturbance change as low as possible. The values of
performance indices of all methods are also listed in Table 1.

Figure 3 illustrates the control efforts of all methods in
which the proposed method has smoother control signal com-
pared to other ones. At time t = 50 s, when the disturbance
changes, the proposed method takes least effort to maintain
the output response in good set-point tracking.

To justify the robustness of the controlled system to uncer-
tainties in process dynamics, the gains and time constants

FIGURE 3. The control signals in nominal case.

FIGURE 4. The system response in the perturbed case.

of the process models (Gp1,Gp2) are perturbed by ±20%.
Figure 4 demonstrates the step responses in the presence
of uncertainties and proves that the proposed controller still
keeps robust stability and performs a good balance of setpoint
tracking and disturbance rejection.

V. CONCLUSION
An analytical design method of FOPI controller for the
cascade control systems based on fractional calculus and
direct synthesis method is introduced to provide improved
performance for both disturbance rejection and set-point
tracking. The Smith predictor is also embedded in the control
scheme to eliminate the delay time in the primary control
loop. The simulation study demonstrates that the proposed
approach can give the superior performance with fast and
well-balanced closed-loop time responses in terms of servo
tracking and regulator problem. The robustness stability is
also testified by using uncertainties of process models. How-
ever, in this work, only stable processes in the form of FOPDT
is considered, for other cases of industrial processes, the
proposed method will be extended in next study.

ACKNOWLEDGMENT
This work belongs to the project grant No: T2023-01TÐ
funded by Ho Chi Minh City University of Technology and
Education, Vietnam.

REFERENCES
[1] R. G. Franks and C.W.Worley, ‘‘Quantitative analysis of cascade control,’’

Ind. Eng. Chem., vol. 48, no. 6, pp. 1074–1079, Jun. 1956.
[2] Y. Lee, S. Park, andM. Lee, ‘‘PID controller tuning to obtain desired closed

loop responses for cascade control systems,’’ Ind. Eng. Chem. Res., vol. 37,
no. 5, pp. 1859–1865, May 1998.

[3] W. Tan, J. Liu, T. Chen, and H. J. Marquez, ‘‘Robust analysis and PID
tuning of cascade control systems,’’ Chem. Eng. Commun., vol. 192, no. 9,
pp. 1204–1220, 2005.

76200 VOLUME 11, 2023



S. H. Nguyen et al.: Analytical Tuning Rules for Cascade Control Systems

[4] T. Liu, D. Gu, andW. Zhang, ‘‘Decoupling two-degree-of-freedom control
strategy for cascade control systems,’’ J. Process Control, vol. 15, no. 2,
pp. 159–167, Mar. 2005.

[5] İ. Kaya, N. Tan, and D. P. Atherton, ‘‘Improved cascade control structure
for enhanced performance,’’ J. Process Control, vol. 17, no. 1, pp. 3–16,
Jan. 2007.

[6] V. M. Alfaro, R. Vilanova, and O. Arrieta, ‘‘Robust tuning of two-degree-
of-freedom (2-DoF) PI/PID based cascade control systems,’’ J. Process
Control, vol. 19, no. 10, pp. 1658–1670, Dec. 2009.

[7] A. T. Azar and F. E. Serrano, ‘‘Robust IMC–PID tuning for cascade control
systems with gain and phase margin specifications,’’ Neural Comput.
Appl., vol. 25, no. 5, pp. 983–995, Oct. 2014.

[8] D. G. Padhan and S. Majhi, ‘‘Enhanced cascade control for a class of inte-
grating processes with time delay,’’ ISA Trans., vol. 52, no. 1, pp. 45–55,
Jan. 2013.

[9] M. A. Siddiqui, M. N. Anwar, and S. H. Laskar, ‘‘Enhanced control of
unstable cascade systems using direct synthesis approach,’’ Chem. Eng.
Sci., vol. 232, Mar. 2021, Art. no. 116322.

[10] M.A. Siddiqui,M.N.Anwar, S. H. Laskar, andM.R.Mahboob, ‘‘A unified
approach to design controller in cascade control structure for unstable,
integrating and stable processes,’’ ISA Trans., vol. 114, pp. 331–346,
Aug. 2021.

[11] M. Č. Bošković, I. G. Prelić, and T. B. Šekara, ‘‘An analytical design
method of PI and PID controllers for industrial series cascade processes
with time delay under robustness constraints,’’ Int. J. Electr. Eng. Comput.,
vol. 6, no. 2, pp. 65–74, Oct. 2022.

[12] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and
Fractional Differential Equations. San Francisco, CA, USA: Wiley, 1993.

[13] I. Podlubny, Fractional Differential Equations: An Introduction to Frac-
tional Derivatives, Fractional Differential Equations, to Methods of Their
Solution and Some of Their Applications. San Diego, CA, USA: Academic,
1999.

[14] B. M. Vinagre, C. A. Monje, A. J. Calderón, and J. I. Suárez, ‘‘Fractional
PID controllers for industry application. A brief introduction,’’ J. Vib.
Control, vol. 13, nos. 9–10, pp. 1419–1429, Sep. 2007.

[15] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue, and V. Feliu,
Fractional-Order Systems and Controls: Fundamentals and Applications.
London, U.K.: Springer-Verlag, 2010.

[16] H. W. Bode, ‘‘Relations between attenuation and phase in feedback ampli-
fier design,’’ Bell Syst. Tech. J., vol. 19, no. 3, pp. 421–454, Jul. 1940.

[17] H. W. Bode, Network Analysis and Feedback Amplifier Design. Princeton,
NJ, USA: Van Nostrand, 1945.

[18] R. S. Barbosa, J. A. T. Machado, and I. M. Ferreira, ‘‘Tuning of PID
controllers based on Bode’s ideal transfer function,’’ Nonlinear Dyn.,
vol. 38, pp. 305–321, Dec. 2004.

[19] I. Podlubny, ‘‘Fractional-order systems and PIλDµ-controllers,’’ IEEE
Trans. Autom. Control, vol. 44, no. 1, pp. 208–214, Jan. 1999.

[20] Y. Chen, T. Bhaskaran, and D. Xue, ‘‘Practical tuning rule development
for fractional order proportional and integral controllers,’’ J. Comput.
Nonlinear Dyn., vol. 3, no. 2, Jan. 2008, Art. no. 021403.

[21] Y. Luo, Y. Q. Chen, C. Y. Wang, and Y. G. Pi, ‘‘Tuning fractional order
proportional integral controllers for fractional order systems,’’ J. Process
Control, vol. 20, no. 7, pp. 823–831, Aug. 2010.

[22] F. Padula and A. Visioli, ‘‘Tuning rules for optimal PID and fractional-
order PID controllers,’’ J. Process Control, vol. 21, no. 1, pp. 69–81,
Jan. 2011.

[23] T. N. L. Vu and M. Lee, ‘‘Analytical design of fractional-order
proportional-integral controllers for time-delay processes,’’ ISA Trans.,
vol. 52, no. 5, pp. 583–591, Sep. 2013.

[24] D. Li, L. Liu, Q. Jin, and K. Hirasawa, ‘‘Maximum sensitivity based
fractional IMC–PID controller design for non-integer order system with
time delay,’’ J. Process Control, vol. 31, pp. 17–29, Jul. 2015.

[25] M. Li, P. Zhou, Z. Zhao, and J. Zhang, ‘‘Two-degree-of-freedom fractional
order-PID controllers design for fractional order processes with dead-
time,’’ ISA Trans., vol. 61, pp. 147–154, Mar. 2016.

[26] M. Beschi, F. Padula, and A. Visioli, ‘‘Fractional robust PID control of a
solar furnace,’’ Control Eng. Pract., vol. 56, pp. 190–199, Nov. 2016.

[27] E. Yumuk, M. Güzelkaya, and İ. Eksin, ‘‘Analytical fractional PID con-
troller design based on Bode’s ideal transfer function plus time delay,’’ ISA
Trans., vol. 91, pp. 196–206, Aug. 2019.

[28] S. Pashaei and P. Bagheri, ‘‘Parallel cascade control of dead time processes
via fractional order controllers based on Smith predictor,’’ ISA Trans.,
vol. 98, pp. 186–197, Mar. 2020.

[29] T. N. L. Vu, V. L. Chuong, N. T. N. Truong, and J. H. Jung, ‘‘Ana-
lytical design of fractional-order PI controller for parallel cascade con-
trol systems,’’ Appl. Sci., vol. 12, no. 4, p. 2222, Feb. 2022, doi:
10.3390/app12042222.

[30] Y. Lee, M. Skliar, and M. Lee, ‘‘Analytical method of PID controller
design for parallel cascade control,’’ J. Process Control, vol. 16, no. 8,
pp. 809–818, Sep. 2006.

[31] S. Santosh and M. Chidambaram, ‘‘A simple method of tuning parallel
cascade controllers for unstable FOPTD systems,’’ ISA Trans., vol. 65,
pp. 475–486, Nov. 2016.

[32] T. N. L. Vu and M. Lee, ‘‘Smith predictor based fractional-order PI
control for time-delay processes,’’ Korean J. Chem. Eng., vol. 31, no. 8,
pp. 1321–1329, Aug. 2014.

[33] A. S. Rao, S. Seethaladevi, S. Uma, and M. Chidambaram, ‘‘Enhancing
the performance of parallel cascade control using Smith predictor,’’ ISA
Trans., vol. 48, no. 2, pp. 220–227, Apr. 2009.

[34] S. Uma, M. Chidambaram, A. S. Rao, and C. K. Yoo, ‘‘Enhanced control
of integrating cascade processes with time delays using modified Smith
predictor,’’ Chem. Eng. Sci., vol. 65, no. 3, pp. 1065–1075, Feb. 2010.

[35] G. L. Raja and A. Ali, ‘‘Smith predictor based parallel cascade control
strategy for unstable and integrating processes with large time delay,’’
J. Process Control, vol. 52, pp. 57–65, Apr. 2017.

[36] M. P. Kumar and K. V. L. Narayana, ‘‘Multi control scheme with modified
Smith predictor for unstable first order plus time delay system,’’ Ain Shams
Eng. J., vol. 9, no. 4, pp. 2859–2869, Dec. 2018.

[37] D. E. Seborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics and
Control. New York, NY, USA: Wiley, 1989.

[38] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, ‘‘Frequency-band
complex noninteger differentiator: Characterization and synthesis,’’ IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 1, pp. 25–39,
Jan. 2000.

[39] V. L. Chuong, T. N. L. Vu, N. T. N. Truong, and J. H. Jung, ‘‘The Pareto
optimal robust design of generalized-order PI controllers based on the
decentralized structure formultivariable processes,’’Korean J. Chem. Eng.,
vol. 39, no. 4, pp. 865–875, Apr. 2022.

[40] R. Ranganayakulu, A. S. Rao, and G. U. B. Babu, ‘‘Analytical design
of fractional IMC filter—PID control strategy for performance enhance-
ment of cascade control systems,’’ Int. J. Syst. Sci., vol. 51, no. 10,
pp. 1699–1713, Jul. 2020.

SON H. NGUYEN received the B.Sc. degree
in physics and the B.Sc. degree in mathematics
from the University of Natural Sciences-HCM
City, Vietnam, in 1979 and 1986, respectively,
the M.A.Sc. degree in mechanics and construction
from Liège University, Belgium AIX University,
Marseille, France, in 1997, and the Ph.D. degree in
applied sciences in computational mechanics from
the University of Liège, Belgium, in 2005.

He was an Associate Professor of mechanics,
in 2009. He is currently with the Faculty of Civil Engineering, HCMC
University of Technology and Education (HCMUTE), Ho Chi Minh City,
Vietnam.

VU N. L. TRUONG received the B.S. degree
from the Ho Chi Minh City University of Tech-
nology, Ho Chi Minh City National University,
in 2000, and the master’s and Ph.D. degrees
from Yeungnam University, Republic of Korea,
in 2005 and 2009, respectively. He is currently
an Associate Professor of Mechanical Engineering
at the University of Technology and Education,
Ho Chi Minh City, Vietnam. He has also taught
at Yeungnam University for two years in terms

of an International Professor. His research interests include multivariable
control, fractional control, PID control, process control, automatic control,
and control hardware.

LONG N. P. NGUYEN received the B.Sc. and
M.Sc. degrees in machine manufacturing technol-
ogy and the Ph.D. degree in engineering mechan-
ics from the HCMC University of Technology
and Education (HCMUTE), Ho Chi Minh City,
Vietnam, in 2004, 2007, and 2021, respectively.
He is currently with the Faculty of Mechanical
Engineering, the HCMUTE, Ho Chi Minh City,
Vietnam.

VOLUME 11, 2023 76201

http://dx.doi.org/10.3390/app12042222

