
Received 28 May 2023, accepted 21 June 2023, date of publication 18 July 2023, date of current version 28 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296558

A Novel Energy-Efficient Scheme for RPL Attacker
Identification in IoT Networks Using
Discrete Event Modeling
DIPOJJWAL RAY 1, PRADEEPKUMAR BHALE 1, (Student Member, IEEE),
SANTOSH BISWAS 2, (Senior Member, IEEE), PINAKI MITRA 1, (Member, IEEE),
AND SUKUMAR NANDI 1, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
2Department of Computer Science and Engineering, Indian Institute of Technology Bhilai, Raipur, Chhattisgarh 492015, India

Corresponding author: Dipojjwal Ray (dipojjwal@iitg.ac.in)

This work was supported in part by the ICPS, Department of Science and Technology (DST), Government of India, for the project titled
‘‘Formal Methods for Modeling and Verification of Intrusion Detection System in Wireless Networks.’’

ABSTRACT The Internet of Things (IoT) paradigm facilitates communication for a multitude of connected
smart objects and provisions essential and mission-critical services across diverse sectors. To route packets,
IoT networks use Routing Protocol for Low-Power and Lossy Networks (RPL) by default. However, RPL
lacks security features by design, making IoT-RPL prone to low-overhead internal attacks such as the rank
and version attacks. The attack and normal traffic are found to be identical, making detection challenging
for signature-based and anomaly-based Intrusion Detection Systems (IDS). Moreover, a formal proof of
correctness of IDS schemes is lacking. In this paper, we propose a novel rank and version attack detection
and rank attacker location identification mechanism that utilizes active probing and Discrete Event System
(DES) based IDS. Our proposed IDS scheme is centralized with inputs from sensing at the leaf levels. IDS
uses as an intelligent probing technique that helps distinguish normal and attack behaviour. Further, DES is
used to model the normal and attack specifications. A DES diagnoser, constructed from the DES models,
generates an alert when a malicious node is identified. We also prove the correctness and completeness of
our scheme. The DES framework is implemented only at root node, therefore using our IDS does not require
any heavy deployment, protocol modifications, or training. Proposed method is implemented in simulation
and testbed, with a sufficiently large number of IoT devices. We compare our scheme to state-of-the-art
approaches. Our performance is found to be energy-efficient, having minimal false positives and achieving
more than 99% accuracy in detecting intrusions and identifying the malicious nodes.

INDEX TERMS RPL, the Internet of Things (IoT), network security, intrusion detection system (IDS),
discrete event systems (DES), rank attack, version number attack.

I. INTRODUCTION
The Internet of Things (IoT) system is witnessing a rapid
evolution, due to the ever increasing number of connected
smart and pervasive devices [1]. Consisting of a multi-
tude of connected heterogeneous objects, which we rather
call as things, the IP-connected IoT is spread over diverse
domains like smart cities, autonomous vehicles, industrial

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

cyber-physical systems, smart homes, e-health sector, etc [2],
[3]. IoT networks are typically Low power and Lossy Net-
works (LLN), comprising mostly of embedded sensors and
actuators. Not only do such networks require to uniquely
address billions of these connected devices, but also sup-
port embedded technologies for sensing and gathering data
from the environment. With the mighty responsibilities in
hand, IoT-connected resource constrained devices suffer from
major operational challenges like constrained processing
capabilities, inadequate memory and limited power. Hence,

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

77267

https://orcid.org/0000-0002-3066-0785
https://orcid.org/0000-0002-1699-966X
https://orcid.org/0000-0003-3020-4154
https://orcid.org/0000-0002-8254-8234
https://orcid.org/0000-0002-5869-1057
https://orcid.org/0000-0003-4868-5726

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

IoT remains vulnerable to a wide array of attacks because of
insecure LLNs, device limitations, varying technologies, etc.

To enable efficient and reliable communication, IETF has
standardized IPv6Routing protocol for LowPower and Lossy
Networks (RPL) [4]. The design of RPL is tailored for low-
power IoT devices. RPL maintains loop-free Destination
Oriented Directed Acyclic Graphs (DODAG). A DODAG
is created and maintained using control messages, primar-
ily, DODAG Information Object (DIO) for upward paths,
DODAG Advertisement Object (DAO) for downward paths
and DODAG Information Solicitation (DIS) for node joining.
RPL ensures cost-optimized topologies by ordering partici-
pating nodes on the basis of an integer cost function, rank.
Individual rank of a node determines its position in the
DODAG, relative to a 6BR sink node (root). Also, a single
version number prevalent in the DODAG is maintained in
DIO for consistency. Though RPL provisions various mech-
anisms and is secure enough from external attackers, yet
the resource constrained nature of IoT devices, the typical
characteristics of IoT networks such as lossy links, lacunas
in infrastructure, dynamic topology, etc., can render IoT-RPL
susceptible to internal attacks [5], [6], [7], [8].

Various internal attacks have been shown in the literature,
of late, that make illicit use of RPL. Puppet attacks [9],
advanced vampire attacks [10] make use of forged source
routes, while attacks like energy depletion attack [11] and
vampire attacks [12] drain resources by repeatedly send-
ing useless data packets. Sybil attacks [13] and spam DIS
attacks [14] have been shown to make use of DIS messages
with counterfeit identities, essentially causing denial of ser-
vice. DIO suppression attacks eavesdrop DIO messages for
replaying it repeatedly in fixed intervals [15]. Out of the
various DIO-specific attacks explored, proposed rank and
version attacks continue to be of paramount importance since
they are of low-overhead and are realizable using DIO only.
To launch such attacks, the rank and version number fields
of a DIO message are fabricated causing formation of loops,
sub-optimal routes, traffic redirection and network partition-
ing. Significant path delay is incurred since a large number
of control messages are exchanged in the DODAG, resulting
in energy depletion of the constrained nodes and disruption
of network services. Moreover, rank attacks may be com-
bined with other cross-layer attacks like selective forwarding
attacks to alleviate the damage caused.

Proposed methods for securing IoT networks against RPL
rank and version attacks have their own typical limitations
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. Cryptography-based mitigation schemes are resource
exhaustive and computationally heavy, especially in a net-
work of resource constrained devices. Machine learning-
based approaches require investment of extensive training
time, as per the system under consideration. Protocol-based
approaches require modifying the protocol policies. IDS
based approaches do not suffer from these above limitations,
but the implementation of these schemes for rank attack
detection is challenging since attack behaviour resembles and

normal behaviour. Hence, use of signature-based IDS and
anomaly-based IDS schemes in the context of IoT attacks
generate a large number of false positives. Furthermore, there
exists many variants of rank attacks which present complex
characteristics to evade detection capabilities of IDS. Formal
verification of IDS schemes are also lacking.

This paper presents an intelligent probing based scheme for
the detection of rank and version attacks that also identifies
location of malicious nodes. The probing mechanism helps
differentiate the normal and attack behaviour. Our scheme
incorporates Discrete Event System (DES) based IDS [27],
[28], [29] and a set of agents with event monitoring enabled,
that make use of probe packets [30], [31], judiciously. System
failures and network attacks involve analogous behavioural
deviations from the normal system functioning, which moti-
vates the use of DES based IDS. Deploying our IDS does not
require a change in protocol policies, encryption, extensive
training time or any need for proprietary hardware support.
Using our IDS also helps ensure a formally verifiable proof
of correctness of our approach. The major contributions in
this paper are enumerated as follows:
• We propose a novel rank attacker identification scheme
that also detects version attacks in IoT-RPL. Our scheme
makes use of an intelligent active probing technique
that helps create a deviation of attack traffic and normal
traffic [30]. Our proposed scheme is centralized and uses
a DES based IDS.

• We extend the power of traditional DES based IDS with
attack type modeling for attacker identification.

• We prove the correctness and completeness of our
approach by enumerating all the attack cases.

• The performance of our scheme is tested through simula-
tions and real testbed. The experimental results highlight
the applicability of our approach. Comparison of our
scheme to state-of-the-art countermeasures shows our
approach is energy-efficient with less packet overhead.
The proposed solution is scalable, has minimum false
positives and achieves more than 99% accuracy in iden-
tifying the malicious nodes.

The rest of this paper is organized as follows: We discuss
the related works and motivation in Section II. Section III is
background. The design of our proposed scheme using a DES
based IDS is presented in Section IV. Experimental results
are summarised in Section V, highlighting the performance
of our scheme, and we finally conclude with Section VI.

II. RELATED WORK
We here discuss the various schemes proposed in the
literature. The existing methods either employ mitiga-
tion techniques [16], [17], [32] using cryptographic solu-
tions [18], [19], [33], acknowledgement based schemes [34],
trust based methods [20], [21], [22], recent machine
learning approaches [23], [24], [25], [26], or IDS based
approaches [35], [36] using specifications and mathematical
(statistical) methods to make DODAG secure. One of the
primary works, VeRA [33], suggested the use of one-way

77268 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

hash functions generated by RPL root, where each of the
nodes authenticate neighbours’ rank by repeated usage of the
function. TRAIL [34] improved upon VeRA by abstaining
from a fully cryptographic technique. Newer attack vectors
are also identified. Their proposed approach detects and mit-
igates topological inconsistencies in the network by checking
for upward routes. Theymake use of encryption chain authen-
tication as opposed to MAC authentication, thus ensuring
backward secrecy. Their scheme lacks in scalability and
requires maintaining state information. Nikravan et al. [18]
utilise an identity based offline-online signature. Their solu-
tion is scalable compared to VeRA and TRAIL, requiring
the size of signature to be independent of the network size.
The above approaches to mitigate rank attacks however are
resource exhaustive or computationally heavy.

Trust based methods have also been largely used in this
direction [21], [22], [37]. They mostly resort to reputa-
tion score calculations and trust values for attack detec-
tion. SecTrust-RPL [20], a time-based trust-aware routing
protocol, used a trust based principle that computes relia-
bility, gained from message exchanges. They also validate
their approach, however, it required each node to be run in
promiscuous mode for sniffing packets. Later, a dynamic
hierarchical trust model is proposed in DCTM-RPL [38].
Secure communication is shown to have been achieved by
building up trust above a threshold value in their approach.
Among the various protocols proposed [17], [39], a secure
protocol, SRPL-RP [40], mitigates rank and version number
attacks. It uses a timestamp threshold to validate a legitimate
sender node. Though their approach improves upon over-
head and average energy consumption, energy is wasted in
the absence of any attacker. Furthermore it may be noted
that protocol based approaches modify the protocol poli-
cies. There has also been significant contributions, of late,
that use machine learning based methods. Specifically, deep
learning based [25], [41] and artificial neural network based
approaches [26] have been applied to detect rank and other
routing attacks. However, it is worth mentioning that such
approaches require investment of extensive training time and
further improvements in their accuracy can be achieved by
better dataset.

Usage of IDS has received considerable attention over
the years in the security research community. Network
based Intrusion Detection Systems (NIDS) have been largely
employed to secure the IoT network against attacks [35],
[36], [42], [43]. NIDS for IoT are mostly signature-based
(or, knowledge-based), anomaly-based, specification-based
or hybrid [44], [45], [46]. SVELTE [36], one of the notably
important proposal has shown the use of real-time intru-
sion detection in IoT. A specification-based IDS with hybrid
placement that detects blackhole, sinkhole and selective for-
warding attack, SVELTE used a mix of both signature based
and anomaly based methods. While an IDS module runs on
the root node, the firewall and response model runs on every
node, which is again resource intensive. Some of the other
limitations of the scheme are false detection and the lack

of DIO synchronisation. Recently, FORCE [45], a specifi-
cation based IDS that exploits the parent-child relationship
is proposed and performs better than SVELTE in terms of
detection rates and energy consumption. A version attack
detection scheme using temporal logic based IDS [47] is
shown, but a comparison of their scheme is lacking. A few
works [32], [48], [49] improve upon SVELTE in terms of
false positives. Version attack is mitigated and attacker is
identified using trust-based distributed IDS [50] and also
by distributed monitoring mechanisms [51]. A sink-based
IDS is proposed in [46], but the scheme suffers from high
computational overhead and average power consumption.

Few approaches in the literature have performed malicious
node identification and isolation [32], [50], [51], [52]. In IoT
networks, control packets are exchanged in the RPL for
maintenance and a rank update legitimacy cannot be directly
verified, since they are not differentiable across normal and
spoofed conditions. An increased rank may be advertised due
to various genuine reasons like a node gone off or not running,
node services interrupted, etc. Moreover, variations of rank
attacks lack direct anomalies or known signatures. In this
regard, signature-based and anomaly-based IDS approaches
in turn result in an increased number of false positives when
generating relevant signatures or statistics. We overcome the
discussed shortcomings by developing an energy-efficient
and formally verifiable probing based scheme. Probing helps
differentiate the attack characteristics from the normal net-
work characteristics. Analyzing the topological changes due
to rank attacks aid our development of probing techniques
for malicious node identification. We not only detect but also
identify the location of the malicious node with enhanced
precision, lower false positives and lower detection time. Our
scheme is centralized and uses a DES based IDS, correct-
ness of which can be formally verified. DES based IDS are
accurate and generate minimal false positives [27], [28], [29],
[53]. Moreover, using DES based IDS do not require a change
in protocol policies, extensive training time, encryption or a
need for proprietary hardware support.

III. BACKGROUND
In this section, we discuss the preliminaries of RPL protocol,
DODAG creation and RPL attacks, namely, increased rank
and version attacks, in particular.

A. RPL PROTOCOL
RPL is inspired from distance-vector routing protocol, source
routing protocol and DAG. It is the de-facto routing pro-
tocol that operates on top of IEEE 802.15.4 MAC layer
while supporting multipoint-to-point traffic using upward
routes, point-to-multipoint traffic using downward routes and
a combination of the above routes to facilitate multipoint-to-
multipoint traffic. Independent downward routes and upward
routes are established in DODAG. Depending on the mode
of operation, downward routes may be optionally supported.
RPL supports three node types, namely, (i) Low Power and

VOLUME 11, 2023 77269

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 1. RPL DODAG.

Lossy Border Routers (LBRs) which acts rather as gate-
way between LLNs and the Internet, (ii) Routers which can
forward as well as generate traffic and (iii) Hosts that can
generate but not forward traffic. Nodes are organized in the
form of DODAG tree with a provision for parallel execution
of multiple RPL instances, as shown in Figure 1. An RPL
instance is uniquely characterized using RPL Instance ID
and a DODAG using DODAG ID. The DODAG root is a
special kind of node that acts as an LBR or a destination sink.
The root determines andmaintains theDODAGconfiguration
parameters and starts disseminating DIOs [54].
In RPL, an ICMPv6 control message can be any one of

these following types: (i) DODAG Information Solicitation
(DIS) (ii) DODAG Information Object (DIO) (iii) DODAG
Advertisement Object (DAO) (iv) DODAG Advertisement
Object Acknowledgement (DAO-ACK).

Rank is an integer value assigned to each node in the
DODAG. All the nodes conforming to the inclusion policy
in the DODAG instance are ordered on the basis of these
values as per an instance defined metric. They are a measure
of the position of the node relative to the sink node. A higher
rank value pertaining to a node means it is more distant from
the sink compared to another node with a lower rank value.
Objective Functions (OF) are used for topology optimization
depending on a set of goals that need to be met, such as link
quality, hop count, energy consumption, etc. OF is used by
the RPL to select the best routing path. Instances use OFs
to determine the rank. The OF determines metrics that are
included in the DIOmessages. OF is realized using Objective
Code Point included in the DIO configuration options.

1) DODAG CREATION AND MAINTENANCE
Creation and maintenance of an RPL DODAG is done using
the DODAG control messages. When a DODAG is built, the
root link local multicasts DIO messages for building upward
paths. The rank value, objective code point and node ID
are included in the DIO messages [55]. DIO messages are
periodically disseminated downwards, where the period is

decided by the Trickle algorithm [56]. From the received
DIO messages from neighbours, each node has the decision
on selection of its parent set among its neighbours. Among
its parent set, it selects a preferred parent from the best
advertised rank value. Thus, when a node forwards a message
to the DODAG root, the preferred parent is chosen by default.
The received DIO message is then updated at the node and
forwarded to its neighbours. On completion of DIO message
exchanges till the leaf node, the upward route is created upto
the DODAG root, consisting of preferred parents from each
node. A node uses DIS broadcast messages to join a DODAG.
DAO messages are used by the nodes for building downward
paths.

B. RANK AND VERSION NUMBER ATTACK
Alteration/Spoofing attacks in RPL have been widely inves-
tigated. Rank and version attacks in RPL are identified
as misappropriation or alteration attacks where the ranking
scheme is exploited, indirectly, making false advertisements
using DODAG control packets [7], [16].

1) VERSION NUMBER ATTACK
RPL incorporates versioning in DODAG to prevent loop for-
mation and to ensure updated topologies. A malicious node
makes use of the version number field to attract descendant
nodes. False version number updation in the DIO advertise-
ments practically actuate a DODAG tree rebuilding oper-
ation affecting the network performance, indirectly. As a
result, energy exhaustion, loop formation, increased over-
heads ensue. Moreover, it provides avenues for launching
more serious combined forms of attack.

2) INCREASED RANK ATTACK
One or more node(s) may misbehave in the network by
increasing the rank values. We here restrict ourselves to the
case where the network has a single misbehaving node. The
malfunctioning node suddenly multicasts a DODAG Infor-
mation Object (DIO) message to its neighbor nodes with
an incremented rank value. The neighbor nodes, then, does
the same, recursively, till the network upward routes are
updated. Hence, there is a huge burst in control packet traffic
in the network. The nodes being resource constrained illicitly
face exhaustion of their battery. As a result of this type of
attack, the network may even include loops that may not be
mitigated using local repair mechanisms in RPL. Otherwise,
the node simply joins at a lower rank in the network (i.e.,
more distant from the DODAG root) and such behavior may
be primarily intended to starve a targeted node by disrupting
communication.

C. INCREASED RANK ATTACK TIMELINE
The increased rank attack timeline is shown in Figure 2.
The time-slots T1 through T4 are briefly explained. [T1:]
R is the root of the RPL DODAG while other nodes are
numbered {A,N1, . . . ,N6}. Node, A is rendered vulnera-
ble. [T2:] The vulnerable node probes rank values of the

77270 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 2. Rank Attack Timeline.

neighbouring nodes. [T3:] On having chosen a rank value,
A now multicasts DIO messages with its updated rank value.
[T4:] DIO messages are exchanged till leaf nodes update the
upward route. The DODAG topology is modified at A.

D. INTRUSION DETECTION SYSTEMS
Intrusion Detection Systems (IDS) are identified as one of
the basic tools that are employed to protect networks and
data. An alert is raised to the system administrator if any
suspicious activity is detected by the IDS. An IDS can be
software or hardware that are built to monitor and analyze
the network packets that are sniffed or the events that occur in
the host machine. Designing an IDS requires considering the
processing ability and memory capacity of the nodes where
they may be deployed. The primary components of an IDS
are sensors that collect data, and an IDS engine that analyzes
the collected data and reports to a network administrator for
suitable actions. IDS are classified in the literature depending
on the source of the data being monitored, depending upon
the strategy it takes, and also depending on the monitoring
techniques. Source of monitoring the data classifies IDSs
into NIDS, HIDS and Hybrid. Based upon the strategy of
detection, IDSs are classified as signature-based, anomaly-
based, specification-based, and hybrid. Depending on the
monitoring technique, IDS are classified into active and pas-
sivemonitoring which are further subdivided into centralized,
decentralized and hybrid monitoring techniques.

IV. PROPOSED RANK ATTACKER IDENTIFICATION
SCHEME
Here, we present the different aspects of our proposed scheme
for RPL attack detection and identification. We introduce
DES based IDSs followed by an overview of the detection
methodology using our proposed IDS. We then discuss the
employed techniques and algorithms to identify the attacker.
The construction of normal, attack models and DES diag-
noser that are indispensable for attacker identification are
described next. Proof of correctness and completeness is
presented subsequently. We assume that an attacker is unable
to differentiate probe packets from normal packets and hence
responses to them.

A. DES BASED IDS
Classical DES theory has been largely adopted in systems
for Fault Detection and Diagnosis (FDD) [57], [58], [59].

Motivated from fault diagnosis, DES based IDSs have been
successfully used in network attack detection [27], [29]. The
characteristic similarities of network attacks and faults in
DES literature is what motivates its usage. The basic idea is
to develop a model for the normal functioning of the network
and another for attack (fault) behavior. Additionally, multiple
fault types in DES literature are diagnosed by developing
exclusive fault DES models corresponding to each fault type.
Each fault type leads to unique deviations from the normal
behavior. Analogously, we augment traditional DES based
IDSwith attack types in our work here. It may be noted that an
attack type corresponds to behavior of the network under the
influence of a particular attacker. Attack type DES models
corresponding to the location of the attacker are modeled.
In DES based IDS aDES diagnoser is used as our IDS engine.
It is a state estimator automaton which is constructed from
the knowledge of normal and attack type DES models. The
diagnoser observes system event traces and gives a decision
on the system condition being normal or under attack by
generating alerts. To summarize, by using DES based IDS,
and given all possible attack instances, it can be ascertained
if an attack can always be exclusively identified, correctly and
completely.

B. OVERVIEW OF PROPOSED ATTACKER IDENTIFICATION
PROCEDURE
The primary research challenges in detection of rank attacks
are as follows: (i)Nodes with rank values lower than the mal-
functioning node, including the 6BR root, remain unaware
of the inconsistency created in any subtree (ii) Normal sce-
nario cannot be differentiated from the attack scenario by
monitoring network traffic or topological changes. Sensing of
network events at the leaf level using agents helps overcome
the first challenge, while an intelligent probing technique
helps overcome the second challenge discussed above. Active
probe packets generate distinguishable packet sequences
between normal and attack scenario. The system we consider
consists of an IoT network of resource constrained devices
using RPL. We use a centralised IDS, functioning at the
network layer, working in a distributed manner with the help
of agent nodes. An example of a DODAG with our IDS and
agents deployed is demonstrated using Figure 3. The 6BR
root (nR) is software controlled and IDS handles communi-
cation for this node. The set of agents, T = {n1, n2, . . . , nt },
with event monitoring enabled are deployed at the leaves.
Henceforth, the IDS node is designated as nR. The notations
used are listed in Table 1.

Components in the IDS: The block diagram of our pro-
posed IDS with the basic components is shown in Figure 4
and are discussed here as follows:

• Packet Sniffer: It captures control and data pack-
ets in the network while working in promiscuous
mode. Relevant packets are sniffed and others are
dropped. It then forwards the sniffed packets to the
‘‘RQST_RSP_HANDLER()’’ component.

VOLUME 11, 2023 77271

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 3. IoT network DODAG representation with IDS and agents
deployed.

FIGURE 4. Architecture of proposed IDS.

TABLE 1. Notations.

• RQST_RSP_HANDLER(): Its prime responsibility
is to extract vital information from the control or
data packets like source client’s IP address, MAC
address, Transaction identifier, etc. It also makes note
of rank and version value attributes and generates
the events DIOINMP, DIOvINMP, URDES, PRQDP,
PRSDP, PR_TO, PRSDP∗. The generated events are
passed to the DES diagnoser. The working procedure of
this handler is described in Section IV-E.

• DESDiagnoser:This component diganoses the attacker
node and is implemented as a software module. Given

the knowledge of the DES model specifications pertain-
ing to normal and attack type conditions, the diagnoser
can be constructed. RQST_RSP_HANDLER() passes
information regarding network events to the diagnoser.
Based on the event parameters that are shared, the
diagnoser generates an alert on attack detection or identi-
fication of malicious nodes. The usage and construction
of the diagnoser is described in Section IV-F3.

Attack detection and identification is sequentially carried
out in phases. Version attack detection phases are setup,
intimation and diagnosis, whereas, rank attack detection
consists of setup, intimation, active probing and diagnosis.
The working principle of our proposed scheme is demon-
strated next. The flow of our scheme is shown using Figure 5.
Prior to attack, network traffic is monitored and data is logged
to setup the IDS as shown in the initial module. This forms
the setup phase. IDS performs all the normal functionalities
besides gathering and analysing the sniffed data in this phase.
Considering there are t agents deployed, t tables (TPATH)
are maintained and updated during this phase. Each table
consists of round-trip time (RTT) values and information of
the intermediate nodes between nR and an agent. The table
elements are ordered on rank values. After the IDS is setup,
suppose an irregular DIO is received by an agent, nj, where
nj ∈ T and 1 ≤ j ≤ t . It then intimates this information
as obfuscated application data to nR after a random delay.
This is the intimation phase. In case a version inconsistency
is intimated, the diagnoser (IDS engine) validates the report
and declares the status to be normal or a version attack, which
is the diagnosis phase. On the other hand, on receipt of an
irregular rank update intimation from an agent nj, a jth table
is chosen. Subsequently, the RQST_RSP_HANDLER() on
behalf of nR sends ICMPv6 request packets to the nodes in
this table, one by one, to probe for topological inconsisten-
cies in the DODAG. This forms the active probing phase.
An acknowledgement (ACK) response is generated for a
probe request packet when received at a destination node.
Now, a probe ACK response may not be received at all at nR,
genuinely, if any node has gone off, or if a link is broken,
or a loop is present, and falsely if an attacker is present.
So a missing ACK probe response cannot be directly marked
as a suspicious activity. We hence characterise the received
responses based on RTT values. RTT for a destination that
is probed is computed and compared with RTT computed
before intimation. Depending upon the learnt characteristics
of RTT values from the sequence of probe packets sent,
further probing is continued or a decision is taken by the
diagnoser. The latter validates the probe responses against the
DESmodel specifications provided at the start corresponding
to normal as well as attacker specific behavior. Our normal
and attack modeling capture the characteristic differences.
The RTT values computed using the probing technique for
a parent and child pair pose unique characteristics that help
differentiate a normal and attack scenario. Moreover, the RTT
characteristics for the sequence of nodes probed in the chosen
table, i.e., jth here, are differentiable in case of a specific

77272 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 5. Workflow of proposed scheme.

TABLE 2. Table for TPATH2.

attack node. The phases in our detection procedure are now
sequentially demonstrated.

C. IDS SETUP
This phase consists of administrator intervention for param-
eter setup. Traffic is monitored, relevant data is collected
and parameters are measured for Network Traffic Analysis
(NTA) purposes. Regular monitoring and sniffing yield to
our detection procedure by maintaining tables and computing
essential parameters, respectively. An array of table pointers,
TPATH, is used for storing the intermediate node informa-
tion. TPATH2 in the example DODAG of Figure 6 is shown in
Table 2. An element of the array, TPATH j, stores the IP,MAC,
RANK and RTT values of the intermediate nodes along the
path connecting the IDS, nR to an agent nj. ⟨TPATH j

⟩SIZE
represents the size of TPATH j, i.e., the number of nodes
along the path nRnj, excluding the root node. Values such as
maximum RTT and maximum round-trip delay for 1-hop are
computed and continuously updated. Variables 1max and 1a
hold themaximum delay and admissible delay values, respec-
tively. Sniffers deployed at nR capture the traffic of under-
lying network as demonstrated in the Figure 3. The sniffing
component retrieves general information from the packets
communicated. The retrieved information from the control
and data packets consist of DODAG ID, packet type (i.e.,
DIO, DAO, DIS, DAO-ACK, application), sender IP, destina-
tion IP address, and forwarding path information. Rank and
version number values are also looked into and stored when
necessary. The agent intimation phase is demonstrated in the
following subsection.

FIGURE 6. A DODAG instance (left) and path TPATH2 (right). IDS nodes
are denoted as gray circles, non-attack nodes are denoted in blue circles,
suspected attack nodes are denoted in red green circles.

D. INTIMATION
Our scheme consists of pieces of software, which are small
programs, as agents for reporting any suspicious activity to
the IDS, nR. Based on their reports, version and rank attacks
are detected by the IDS using DES implemented at the root.
The agents are event driven and perform minimally at leaf
level in the monitored RPL-IoT network. They have no extra
duties other than sensing suspicious activity and reporting.
On receipt of an irregular DIO, the piggybacked information
is obfuscated and reported to nR. To prevent an attacker
from profiling, the agents send the intimation packet with a
random delay. Function of this component is explained using
Algorithm 1. On receipt of a DIO packet DIORQP with an
increased version number, an agent node nj reports an intima-
tion packet to nR. If the DIO is a trickle timer update, with an
used version number and incremented rank value, the DIO is
marked suspicious. ADIO is alsomarked suspicious if update
is trickle timer inconsistent with an increased rank value.
Information regarding such DIO receipts are also reported
to nR. Active probing and diagnosis phases are demonstrated
through the RQST_RSP_Handler andDES diagnoser, respec-
tively, in the following subsections.

E. RQST_RSP_HANDLER()
The working our algorithm is described as follows. The input
it takes are:

VOLUME 11, 2023 77273

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

Algorithm 1 Agent Intimation Procedure
Local Variables: rank, currVerNum
Input: Received DIO packet DIORQP
Output: Intimate received DIO packets DIOINMP,

DIOvINMP
1 if (ipd(DIS) = ips(DIORQP)) and

(macd(DIS) = macs(DIORQP)) then
2 if verNo(DIORQP) > currVerNum then
3 Send DIO receipt intimation DIOvINMP to

nR;
4 end
5 if DIORQP is Trickle Inconsistent then
6 if rank(DIORQP) > rank then
7 Send DIO receipt intimation DIOINMP to

nR;
8 end
9 end

10 else if DIORQP is Trickle Consistent then
11 if verNo(DIORQP) = currVerNum and

rank(DIORQP) > rank then
12 Send DIO receipt intimation DIOINMP to

nR;
13 end
14 end
15 end

• DIO intimation packets that are reported from agents on
receipt of irregular DIO packets.

• Probe request packets from the buffer that are yet
to be sent (this becomes possible as RQST_RSP_
HANDLER() is part of the modified RPL).

• Probe response packets.
• TEST_FLAG indicates when to detect and identify the
attack by sending probe packets to intended nodes.

If the values 1max and 1a, have been computed, the diag-
noser sets TEST_FLAG = 1 (Line 1). The two values are pre-
computed during non-attack condition in the RPL instance
in use as discussed in Section IV-C. The handler outputs
events, namely, PRQDP, PRSDP, DIOINMP, DIOvINMP,
PR_TO, PRSDP∗, URDES, which are all passed to the DES
diagnoser. The model variables used are c1, flag, 1max , 1a,
j, lastSend , rtd and rch. They are shared among the handler
and the DES diagnoser. When the TEST_FLAG is set by the
diagnoser, it means that the attack detection and identifica-
tion phase can be started. The algorithm is now explained
step-wise. The DES diagnoser gets executed and remains
so till the DODAG remains operational. Diagnoser sets the
TEST_FLAG = 1 which is its initial transition.

If a version update intimation is reported, it checks if
TEST_FLAG = 1 (Line 3). The event DIOvINMP is sent to
the diagnoser (Line 4). Diagnoser sets TEST_FLAG = 0 until
a decision on the version inconsistency ismade. If an irregular
rank update is intimated, the eventDIOINMP is passed to the
diagnoser (Line 8). Model variable j stores the index of the

Algorithm 2 RQST_RSP_HANDLER()
Data: c1, ver , rcvd , flag = FALSE , 1max , 1a, lastSend , rtd , j, rch
Input: DIO intimation packets, Probe response packets, TEST_FLAG
Output: Events: PRQDP, DIOINMP, DIOvINMP, PRSDP, PR_TO,

PRSDP∗, URDES
1 while 1max and 1a are not NULL do
2 if Version update is reported then
3 while (TEST_FLAG == 1) do
4 Generate event DIOvINMP;
5 end
6 end
7 if Rank update is reported then
8 Generate event DIOINMP;
9 j← {i|ni.IP == DIOINMPIPS };

10 Generate event PRQDP;
11 Send ICMPv6 probe packet to TPATH j[0] via stored downward

route R;
12 Start clock timer c1();
13 lastSend = 0;
14 end
15 if Received packet is a probe response then
16 rtd ← TPATH j[lastSend].RTT ;
17 Increment lastSend ;
18 if (c1() ≤ rtd +1a) then
19 Generate event PRSDP;
20 rch← lastSend − 1;
21 Stop clock timer c1();
22 Generate event PRQDP;
23 Send ICMPv6 probe packet to TPATH j[lastSend] via stored

downward route R;
24 Start clock timer c1();
25 end
26 else if (c1() > rtd +1a) then
27 if (flag == FALSE) then
28 Generate event PRSDP∗;
29 Stop clock timer c1();
30 end
31 else if (flag == TRUE) then
32 Generate event PRSDP∗;
33 Stop clock timer c1();
34 Generate event PRQDP;
35 Send ICMPv6 probe packet to TPATH j[rch] via DAO

advertised downward route R′;
36 Start clock timer c1();
37 flag = FALSE;
38 end
39 end
40 end
41 if (c1() > 1max) AND (No response packet is received) then
42 Generate event PR_TO;
43 Stop clock timer c1();
44 Increment lastSend ;
45 if (flag == TRUE) then
46 Generate event PRQDP;
47 Send ICMPv6 probe packet to TPATH j[lastSend] via DAO

advertised downward route R′;
48 Start clock timer c1();
49 end

50 else if (flag == FALSE) AND (lastSend < TPATH j
SIZE) then

51 Generate event PRQDP;
52 Send ICMPv6 probe packet to TPATH j[lastSend] via stored

downward route R;
53 Start clock timer c1();
54 end

55 else if (flag == FALSE) AND (lastSend == TPATH j
SIZE) then

56 Generate event PRQDP;
57 Send ICMPv6 probe packet to TPATH j[lastSend] via DAO

advertised downward route R′;
58 Start clock timer c1();
59 flag = TRUE;
60 end
61 end
62 end

77274 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

TPATH array used. The variable is shared with the diagnoser
(Line 9). PRQDP event is passed to the diagnoser and a
probe packet is sent to the node at 1-hop distance from the
root in the table TPATH j (Line 11). TPATH j stores a saved
route R for agent node nj. lastSend stores the index of the
node in TPATH j to which the last probe request packet is
sent. A clock timer is started to maintain a record of the
transmission time of the packet that can be uniquely identified
using a transaction identifier value, transid .
The module described through lines 15 to 37 is taken on

receipt of a probe response packet. Variable rtd is set to the
round-trip delay of the node to which the probe packet was
last sent. The variable lastSend is incremented (Line 16).
The total response time it takes for a particular node is com-
puted using the clock variable, c1 and is compared against
a pre-computed RTT (old). We use 1a to characterise the
admissible delay while awaiting a probe response. In case
a response packet is not received at nR after a 1a time
period beyond the expected RTT, we consider it as delayed
response. If c1 does not exceed rtd+1a, the generated event
PRSDP is passed to the diagnoser (Line 18). The variable
rch is set to point to the last node whose packet is received
before delay timeout occurs (Line 19). The clock timer is then
stopped and another request packet is sent to a subsequent
node (Line 21). Consequently, the event PRQDP is passed to
the diagnoser. Clock timer is restarted to count the RTT via
the stored route (Line 23). If c1 exceeds rtd + 1a, then a
flag variable is checked (Line 25). It is set equal to FALSE
during the algorithm initialization. In case flag = FALSE and
TEST_FLAG= 1, a delayed response received eventPRSDP∗

is passed to the diagnoser which sets it to 0 (Line 27). The
clock timer is stopped. On the other hand, if flag is TRUE and
a probe response packet is received from some node, suppose
x, beyond rtd +1a, then the event PRSDP∗ is generated and
passed to the diagnoser and clock timer stopped (Line 32).
A request packet is sent via current downward route R′ to
node x, clock timer is restarted and flag is set to FALSE
(Lines 33-36).

The module described through lines 40 to 59 checks if
c1 counts beyond a maximum probe timeout period and no
response packet is received at nR. We use 1max to charac-
terise the maximum delay after next probe request is made.
Consequently, a probe timeout event generated here isPR_TO
which is passed to the DES diagnoser while the clock timer
is stopped and lastSend is incremented by 1 (Line 42). Three
conditions over the variables flag and lastSend are checked if
they are met. If flag is determined to hold TRUE, then event
PRQDP is passed to the diagnoser and an ICMPv6 probe
packet is sent to TPATH j[lastSend] via a current downward
route R′ and clock timer c1 is started (Lines 45-47). On the
other hand, if flag is found to be false while lastSend is
less than the size of TPATH j, then event PRQDP is passed
to the diagnoser and an ICMPv6 probe packet is sent to
TPATH j[lastSend] via the stored downward routeR and clock
timer c1 is started (Lines 50-52). If flag is found to be false
while lastSend equals the size of TPATH j, then event PRQDP

TABLE 3. List of symbols.

is passed to the diagnoser and an ICMPv6 probe packet is
sent to TPATH j[lastSend] via a current downward route R′,
clock timer c1 is started and variable flag is set to TRUE
(Lines 55-58).

F. DES MODEL AND DIAGNOSER
The DES modeling (see Appendix VI) of the IoT-RPL net-
work is demonstrated here. The principle of detection and
identification by the diagnoser is discussed. We later show
that an attacker, if present, is correctly located in the DODAG.

Assumptions in the normal condition: After receiv-
ing an intimation from an agent nj, a node is sent probe
request packet along TPATH j. Subsequent probes are then
sent depending upon the measured RTT. During the normal
condition, two cases can arise here. (i)While awaiting a probe
RSP packet, destination unreachable message is received. (ii)
After the rank update intimation is received, if a RSP packet is
received after the delay timeout period, for a probe packet sent
via current DAO advertised downward route. Both of these
cases can occur due to a local repair operation and has been
modeled as a normal DES.

Assumptions in the attack condition: In the presence of
an attacker advertising illegitimate rank or version values,
inconsistencies occur in the upward and downward routes.
As a result, two cases can arise here as well. (i) Version
inconsistency is intimated by agent node. (ii) A probe request
packet sent to a child node of the attacker node along TPATH j

(considering the reporting agent node to be nj) responses with
delay. Given an attack behavior due to nodeA, the above cases
are modeled as attacker A type DES model. Since attacker
can be located at multiple positions in the DODAG, there are
multiple attacker type models. The diagnoser is constructed
from the DES models. In both of these cases, since the
diagnosability condition is satisfied each time because there
are no uncertain states, an attacker location is identified. The

VOLUME 11, 2023 77275

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 7. DES model H .

attack as well as the attacker type behavior are different from
the normal or other attacker type behavior, respectively.

We consider the system model of a network consisting of
resource constrained IoT nodes arranged in a RPL DODAG.
The notations used and their definitions are listed in Table 3.
The DES model which has been used to represent the Probe
Request Response sequence during normal and rank or ver-
sion attack conditions is drawn using Figure 7. The various
components of the DES model H = ⟨X ,X0, 0,V ,C, 6⟩

for the Request Response sequence after an irregular DIO
intimation is received are discussed.

The state set X with initial set of states X0 (X0 ⊆ X)
symbolise the control states of the RQST_RSP_HANDLER()
component of the IDS. The normal DES model states and
attacker typemodel states together constitute the state setX =
{x1, x2, . . . , x8, x1′, x2′, . . . , x9′, x1′′, x2′′, . . . , x9′′}. In our
model, the set of model variables, V = {ips, ipd, transid,
j, flag, lastSend, rtd, ver, rch, {ips1, ips2, . . . , ipst}}. The
model variables correspond to program and data variables
that are internal to the IDS. Certain program variables are

designated as the clock variables,C which are absolute values
of clock timer that can is SET and RESET using commands.
In real-time applications, timing constraints are expressed
by satisfying the conditions on the clock variables. We use
a single clock variable in the set of clock variables, i.e.,
C = {c1}. Event set 6 contains the packet communication
events. In our model, the set of events, 6 = {DIOINMP,
DIOvINMP, URDES, PRQDP, PRSDP, PR_TO, PRSDP∗,
attack ′, attack ′′}. A transition is enabled if the conditions
are satisfied and is said to be taken on the occurrence of the
associated event. The transitions set 0 consists of transitions
{τ0, τ1, . . . , τ13, τ1′, τ2′, . . . , τ14′, τ1′′, τ2′′, . . . , τ14′′}.
Considering that there is one attack node among n nodes,

i.e., {A1,A2, . . . ,An}, in the IoT network, the state set, X ,
can be partitioned into disjoint sets XN , XA1 , XA2 , . . . , XAn ,
where, XN represents the set of states belonging to the nor-
mal behavior of the network, while states of the form XAi ,
1 ≤ i ≤ n, i ∈ N , represent the behavior of the network
if Ai is the attack node. For simplicity, we model using
2 nodes, A1 and A2, among which one is an attack node, hence

77276 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

X = XN ∪ XA1 ∪ XA2 . In Figure 7, the non-primed states are
the states when the system behaves normally while the single
and double primed states represent the system under attack by
the nodes A1 and A2, respectively. The events of the system is
disjoint union of measurable events and unmeasurable events
6m and 6um.

1) DES BEHAVIOR UNDER NORMAL CIRCUMSTANCES
The behavior of H under normal circumstances is shown in
Figure 7. The system, when functioning normally, is repre-
sented using the states {x1, x2, . . . , x8} and the transitions
{τ0, τ1, . . . , τ13}. The initial state of X0 is x1. We next
discuss the transitions in normal condition as follows:

• τ0, the initial transition leads to the initial state x1 as
shown in Figure 7. It is assumed while modeling that the
constant timeout values, 1max and 1a, have been com-
puted and then τ0 takes place. There is no explicit event
that triggers τ0. Occurrence of τ0 implies that the DES
model is invoked when the timeout values are both not
NULL. Table 4 shows initial(τ0) = −−, i.e., there are
no initial states and final(τ0) = x1. σ = TRUE means
that transition τ0 is always enabled and x1 is automati-
cally reached at the start of the model. check(V) = −−
implies that no condition over the model variables are
checked and the condition is always satisfiable for the
transition. Value 1 is assigned to variable TEST_FLAG
as implied by Assign(V) = {TEST_FLAG← 1}, which
in turn means that the detection of rank attacker can be
started.

• τ1 : (x1 → x2) - DIOINMP : Since we model the
rank attack scenario, the focus remains on DIO updates
across the DODAG. So when the model is started and
the current state is at x1, inconsistent DIO reports are
looked into and is modeled using the transition τ1.
Here, initial(τ1) = x1 and final(τ1) = x2. σ =

DIOINMP implies that transition τ1 is enabled when
RQST_RSP_HANDLER() generates event DIOINMP
(i.e., after an inconsistent rank update is reported from
an agent). check(V) = {ipsj = DIOINMPIPS , ipd =
DIOINMPIPD} and Assign(V) = −−. The parameters
that validate a DIO packet intimation from an agent are
source and destination IP. It is checked if the parameters
equal the value stored in the model variables, ipsj and
ipd , both of which are initialized to hold the IP address
of agent node nj and nR, respectively, at the model start.

• τ2 : (x2 → x3) - PRQDP : At state x2, the
transition τ2 implies that a probe request ICMPv6
packet is sent. σ = PRQDP implies that τ2 is
enabled when the RQST_RSP_HANDLER() gener-
ates the event PRQDP (i.e., after a RQST packet
is sent). check(V) = −− meaning that no con-
dition need to be satisfied and Assign(V) =

{ips ← PRQDPIPS , ipd ← PRQDPIPD, transid ←
PRQDPTRANSID,TEST_FLAG ← 0, lastSend ←

lastSend + 1}. The parameters that uniquely identify a

probe RQST packet are source IP, destination IP and a
transaction identifier. Consequently, all the parameters
that correspond to the RQST packet that is sent are
stored in the model variables, ips, ipd and transid .
TEST_FLAG is set to 0 such that no new probe packets
are to be sent until a decision on normal or rank attacker
can be ascertained. The model variable lastSend is
incremented, keeping a note of the number of probe
packets that are sent. The destination IP of the probe
request packet, i.e., PRQDPIPD, is the first IP address
that is looked up in the table TPATH j. The clock variable
c1 is RESET to make note of the transmission time of
the sent RQST packet.

• τ3 : (x3 ← x2) - PRSDP : At state x3, the
transition τ3 implies that a probe RSP packet has
arrived from a node for some sent RQST packet.
Here, initial(τ3) = x3 and final(τ3) = x2. σ =

PRSDP corresponds to enabling transition τ3 after the
RQST_RSP_HANDLER() generates the event PRSDP
implying that a probe RSP packet has arrived and
the condition on the model variables in check(V) are
satisfied. check(V) = {ips = PRSDPIPD, ipd =
PRSDPIPS , transid = PRSDPTRANSID}. The conditions
over the model variables, ips, ipd and transid , ensure
that the RSP packet is a response to the probe request
packet sent in τ2. Assign(V) = {TEST_FLAG ←
1, rch← PRSDPIPS}. TEST_FLAG is set to 1 meaning
that rank attacker detection can be started. The model
variable rch holds the IP address of the latest node that
responses to the probe packet before the delay timeout
period is over, which again is ensured if the condition
over c1, 8(c1) = {c1 < ipd .RTT +1a}, is satisfied.

• τ4 : (x3 → x4) - PR_TO : At state x3, the transition
τ4 corresponds to probe timeout period being reached
while waiting for a probe RSP packet for a probe RQST
packet sent. σ = PR_TO implies that the transition τ4 is
enabled when the RQST_RSP_HANDLER() generates
the event PR_TO. check(V) = {lastSend < M j

},
Assign(V) = {TEST_FLAG ← 1} and 8(c1) = {c1 ≥
1max}. The condition over the model variable lastSend
ensures that the number of probes sent is lesser than
the size of TPATH j. TEST_FLAG is set to 1 meaning
that rank attacker detection can be started. The condition
over c1 ensures that it exceeds the probe timeout period.

• τ11 (x8 → x1) - URDES : At state x8, the transi-
tion τ11 implies that a destination unreachable message
is received in response to a probe packet sent from
nR to the last reachable node along the current DAO
advertised downward route. It rules out the presence of
any loop created. σ = URDES implies that the tran-
sition is enabled when the RQST_RSP_HANDLER()
generates the event URDES. check(V) = {ips =
URDESIPD, transid = URDESTRANSID}. The condi-
tion check on the model variables ips and transid
are used to ensure that the destination unreachabil-
ity packet is a reply to the probe request packet sent

VOLUME 11, 2023 77277

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

TABLE 4. Transitions ℑ in H corresponding to network packet frames.

in τ10. Assign(V) makes TEST_FLAG = 1 which
means that the attack detection phase can restart, i.e.,
RQST_RSP_HANDLER() can again receive inconsis-
tent DIO version or rank updates from agents.

2) DES BEHAVIOR UNDER ATTACK CIRCUMSTANCES
The DES model under rank or version attack condition
launched by attacker A1 is shown using the states in
XA1 = {x1′, x2′, . . . , x9′} and transitions, {τ1′, τ2′, . . . , τ14′}.
Similarly for attacker type A2, states and transitions are rep-
resented using double prime notation, XA2 = {x1′′, x2′′, . . . ,
x9′′} and transitions, {τ1′′, τ2′′, . . . , τ14′′} as shown in
Figure 7. The DES model behavior under different attackers
are mostly identical except a few transitions that differentiate
them which are discussed.

• At state x1, the system reaches an attacker type state x1′

or x1′′ following an unmeasurable attack transition τ0′

or τ0′′, respectively.
• τ11′ (x8′ → x9′) - PRSDP∗: At state x8′, the tran-
sition τ11′ corresponds to probe RSP packet that
is received beyond the maximum 1-hop delay, i.e.,

ipd.RTT + 1a for a sent probe request packet.
σ = PRSDP∗ implies that the transition is enabled
when the RQST_RSP_HANDLER() generates the event
PRSDP∗. check(V) = {ips = PRSDP∗IPD, ipd =
PRSDP∗IPS , transid = PRSDP∗TRANSID,flag =

FALSE, rch = nip′}. The conditions over the model
variables, ips, ipd and transid , ensure that the RSP
packet is a response to the probe request packet sent
in τ10′. The condition over variable flag ensures that
it is set to FALSE. The model variable rch holds the
IP address of the last node that replied to the probe
packet before the delay timeout period was over. τ11′

ensures that rch holds the IP address of attacker node
A1. A probe response beyond the delay period for probe
packet meant for a node with IP address stored in rch via
the currently advertised DAO route R′ is a rank attack.
Assign(V) = {TEST_FLAG ← 1}. TEST_FLAG is set
to 1 meaning that rank attacker detection can be started.
8(c1) = {c1 ≥ ipd .RTT + 1a} means that c1 exceeds
the delay timeout period.

• τ13′ (x1′ → x9′) - DIOvINMP : At state x1′, the
transition τ13′ corresponds to the receipt of DIO

77278 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 8. Diagnoser O for DES model H .

version inconsistent intimation from an agent leaf node.
σ = DIOvINMP implies that the transition is enabled
when the RQST_RSP_HANDLER() generates the event
DIOvINMP. check(V) = {ver < DIOvINMPVERNUM ,
ipsj = DIOvINMPIPS , ipd = DIOvINMPIPD} and
Assign(V) = −−. The parameters that validate a DIO
packet intimation from an agent are source and des-
tination IP. It is checked if the parameters equal the
value stored in the model variables, ipsj and ipd , both of
which are initialized to hold the IP address of agent node
nj and nR, respectively, at the model start. The model
variable ver stores the latest version number advertised.
The condition over ver ensures that it is lesser than the
DIO version number reported by the source agent node.
It may be noted that a DIO broadcast in the DODAG
with a version number higher than already advertised by
the DODAG root is a version number attack.

3) DIAGNOSER
TheDES diagnoser is basically an observer automaton. Given
a measurable trace executed on the model, the diagnoser
gives an estimate of membership of the current system state
in the model among normal or any attacker type state from
H . An alert is generated when it can be ascertained that the
current state belongs to an attacker type. It is also notified in
case it belongs to a set of attacker types.

We use a representation in directed graphs for our DES
diagnoser O =< Z ,A,Z0 >, where Z is the set of diag-
noser states, referred henceforth as O-states, Z0 is the set
of initial O-states of the diagnoser and A, the set of diag-
noser transitions, also referred as O-transitions, A ⊆ Z ×
Z . The sets we consider are finite sets. During diagnoser
automaton construction, transitions and states are appended
to the diagnoser based on measurable system traces from
the initial set of states. Depending on source state of a
transition, destination state of a transition and the equiv-
alence relation that each of them share with other source
states and destination states, respectively, an O-transition
can be in one these following forms: (1) ⟨(xa, x+a),

(xb, x
+

b)⟩ if ⟨xa,xb,σa,φa(V),8a(C),Assigna(V),Reseta(C)⟩ ≡
⟨x+a ,x

+

b ,σa+ , φa+(V), 8a+ (C),Assigna+(V),Reseta+ (C)⟩ (2)
⟨(xa, x+a), (xb)⟩, ⟨(xa, x

+
a), (x

+

b)⟩ if ⟨xa,xb,σa,φa(V),8a(C),
Assigna(V),Reseta(C)⟩ ̸≡ ⟨x+a ,x

+

b ,σa+ ,φa+ (V),8a+ (C),
Assigna+ (V),Reseta+ (C)⟩ and xa ≡ x+a (3) ⟨(xa), (xb)⟩⟨(x+a),
(x+b)⟩, otherwise.
The set of states contained in an initial O-state are the

initial states of DES H and the states that are reachable from
each of those initial states using sequences of unmeasurable
transitions. The initial O-state thus comprises of states that
belong to normal state set or any attacker type state from
H . Consequently, any O-state may comprise of equivalent
states from normal as well as attacker type states. On the
other hand, theO-transitions are sets of equivalent transitions
between sets of equivalent source and equivalent destination
states in H .
Exposition 1 Normal-certain O-state : A O-state that con-

sists of states in H , all of which only belong to XN .
Exposition 2 Attackeri-certain O-state : A O-state that

consists of states in H , all of which only belong to XAi .
Exposition 3 Attack-certain O-state : A O-state that con-

sists of states in H , all of which only belong to XA1 ∪ XA2 .
Figure 8 shows the constructed diagnoser for our DES

model H , considered in Figure 7. The working mechanism
of our diagnoser is summarised here by showing one or more
executions of sequences of measured events (transitions) as
follows:

1) The initial state of the model H , x1, and states x1′ and
x1′′ reachable via unmeasurable attack transitions, τ0′

and τ0′′, form the initial state of the diagnoser, z1.
2) Let ℑz11 = {τ1, τ1

′, τ1′′}, i.e., the outgoing transi-
tions from model states {x1, x1′, x1′′} ∈ z1. All the
transitions in ℑz11 are equivalent and hence cannot be
further subdivided and hence justifies O-transition a1.
The O-state corresponding to the transition a1 is z2 =
{x2, x2′, x2′′}.

3) Let ℑz12 = {τ13
′, τ13′′}, i.e., the outgoing transitions

frommodel states {x1′, x1′′} ∈ z1. All the transitions in
ℑz12 are equivalent and hence cannot be partitioned fur-
ther and hence justifies O-transition a16. The O-state
corresponding to the transition a16 is z9 = {x9′, x9′′}.
Since, z9 consists exclusively of attacker type states
only, it is an attack-certain O-state.

4) Let ℑz2 = {τ2, τ2′, τ2′′}, i.e., the outgoing transitions
from model states {x2, x2′, x2′′} ∈ z2. All of outgoing
transitions in ℑz2 are measurement equivalent belong-
ing to one measurement equivalence class of transi-
tions, hence cannot be further partitioned. Therefore,
it justifies O-transition a2. The O-state corresponding
to the transition a2 is z3 = {x3, x3′, x3′′}. In a sim-
ilar manner, the diagnoser states {z4, z5, z6, z7} can
be constructed using the corresponding O-transitions
{a4, a6, a7, a9}. The principle can be safely extended.

5) From the definition, we can compute the attackeri-
certainO-states and the Normal-certainO-states. In our

VOLUME 11, 2023 77279

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

example, when i = 1 the attacker1-certain O-state may
be computed as z10 = {x9′} since it exclusively con-
sists of states only belonging to attacker 1. Similarly,
attacker2-certain O-state may be computed as z11 =
{x9′′} and the normal-certain O-state can be computed
as z12 = {x1}.

G. AN EXAMPLE OF RANK ATTACKER NODE
IDENTIFICATION USING DES DIAGNOSER
Suppose the following events occur in the DODAG
chronologically due to packets received or sent from
the DODAG root: DIOINMP, PRQDP, PRSDP, PRQDP,
PRSDP, PRQDP, PRSDP∗.

The diagnoser starts from the O-state z1 and on occur-
rence of the DIOINMP event, the diagnoser moves to O-state
z2 via O-transition a1. The transition a1 might have been
taken by the diagnoser due to the occurrence of any of the
H -transitions, τ1, τ1′ or τ1′′. Since the transitions τ1, τ1′

and τ1′′ are measurement equivalent, it cannot be certainly
said at this point if an attack has occurred. A probe request
data packet is sent due to which the event PRQDP occurs
and the diagnoser moves to O-state z3 via O-transition a2.
Now, the response to the probe is received and the event
PRSDP passed to diagnoser and O-state z2 is reached via
a3. The O-states are then revisited due to the events PRQDP,
PRSDP and PRQDP and the diagnoser reaches the O-state
z3. Eventually, when the PRSDP∗ event occurs, suppose the
diagnoser moves from O-state z3 to O-state z10 = {x9′}
via O-transition a14 due to the model transition τ12′. Since
the O-state z10 reached by the diagnoser is an Attacker1-
certainO-state, it is ascertained that the system is under attack
condition due to attacker node 1. Moreover, since there are
no Ai indeterminate cycles [57], [59], along all paths of the
DES diagnoser, an unique malicious node i, when present,
can be identified correctly. On each such occasion when the
diagnoser reaches an Attackeri-certain state due to an event
trace, an alert is generated.

H. CORRECTNESS AND COMPLETENESS
DES modeling aids in formalizing a system to check cor-
rectness and completeness [58]. We demonstrate correctness
and completeness of our proposed IDS here, by taking into
consideration all possible cases of rank attack. For each case
considered, we show that attacker node is correctly identi-
fied. We use the DODAG instance shown in Figure 6 for
our proof, where nR is the 6BR root and the set of agents
T = {n1, n2, n3, n4}. B and C are the two suspected rank
attack nodes and can be related to nodes A1 and A2 used in
our DES model. Since there are no Ai-indeterminate cycles
in the diagnoser O, therefore the diagnosability condition is
satisfied. This means that location of an attacker Ai in the
DODAG, having launched a rank or version attack, is always
diagnosable. We show using analysis that B or C is correctly
identified as attack node when the corresponding attacker-
certain state is reached in the diagnoser.

FIGURE 9. Normal and attack configurations.

We now prove the completeness by justifying why all
attack cases can be detected from the traces in H . An irreg-
ular increased rank advertisement can be classified as a
normal network condition if a local repair operation is under-
taken, otherwise can be classified as an attack. As shown
in Figure 9(a), we assume that nodes C and D undertake
local repair operations due to the parent node being down,
or link with the parent goes off or as part of loop avoidance.
On the other hand, as shown in Figure 9(b), an attack might
have been launched by node B or C . Though, the effects
of attack mimics the normal scenario, however, there lies
unique inconsistencies in the resulting topologies which can
be made out from the probe response characteristics of nodes.
We discuss the normal cases here first.

Case I: Node C undertakes local repair due to parent node
B being down.

As shown in Figure 9(c) and 9(d), node C chooses alter-
nate parent node B′ for upward routing. Depending on the
newly advertised rank, a successor node may conform to the
update by not changing its preferred parent or may choose a
better route instead. It may be noted that since B is down,
any upward or downward path between the pairs (nR,B)
and (B,C) cease to exist. Our proposed procedure utilises
the above facts. Firstly, n2 reports the DIO update to nR.
On receipt of such intimation, the diagnoser moves from state

77280 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

z1 to z2. Now, a probe RQST packet PRQDP is sent to node
B via stored downward route TPATH2 while the diagnoser
reaches state z3. Since no response packets are received, event
PR_TO is generated and the diagnoser consequently reaches
state z4. Next, a probe request packet PRQDP is sent to C
via TPATH2 with the diagnoser reaching state z3. Again,
no RSP packet is received before 1max since the request
packet itself is not delivered via B. This behavior is repeated
for the subsequent probe request packets sent to D and E
with the diagnoser reaching state z4. Now n2 is sent the probe
request packet and 1max is again exceeded while waiting for
a response. The diagnoser reaches state z5 this time, since all
the nodes in TPATH2 are probed. Now, a probe packet is sent
to the first unreachable node via a currently advertised down-
ward path. Since B is down, no routing information is updated
for node B. Since C had chosen a path via B′, a downward
path from the root exists. On a request packet PRQDP being
sent to C via B′, the diagnoser reaches z6. As route through
B′ is longer, so delay is incurred while receiving the response.
As a result, the delay timeout is exceeded. Consequently the
diagnoser moves to state z12, since no node was reachable
without delay prior to C which is a normal-certain O-state.
So, a normal condition of local repair in the DODAG is
correctly identified.

Case II: Node C undertakes local repair due to link (B,C)
going down.

As in the situation discussed in Case I, the sequences of
events are similar, except the fact that response from node
B arrives before RTT (B) + 1a. So, when the diagnoser
moves to state z2, the model variable rch is set. Therefore,
at state z6, when a delay timeout occurs, the diagnoser reaches
state z7 instead of z1. A probe request packet is then sent
to node B via node C along the current DAO advertised
route. The diagnoser accordingly moves to state z8. A des-
tination unreachable message is then received by nR, and
the diagnoser moves to normal-certain O-state z12 and it
is ascertained that situation is normal, since a local repair
operation was initiated as shown in Figure 9(e) and 9(f).
An attack launched by an attacker can be of the two fol-

lowing types: (i) The attacker illegitimately chooses a parent
node that has higher rank, but does not lie in TPATH2 (ii) the
attacker illegitimately chooses a parent node that has higher
rank, and is a successor node in TPATH2. Type (i) is discussed
as case III and type (ii) is discussed as Case IV.

Case III: Node C undertakes local repair due to loop
detection while forwarding to B.

While forwarding packet upwards, suppose C detects a
loop and initiates a local repair while forwarding through
alternate parent node B′. Now, node B might be a direct
attacker that chooses a successor node as its parent, fueling
a loop creation. In that case, B must be a node in the subtree
at C . As in the situation discussed in the normal scenario, B
and C are probed. B responds before delay timeout occurs
while C is unreachable. All the nodes successor to C are
also unreachable. Consequently, the diagnoser node reaches
state z5 after a probe timeout occurs while a probe packet is

sent to the last node n2. Now, a delay timeout occurs when
a probe packet is sent to C via the current downward route.
The diagnoser reaches z8 following the event PRQDP. The
only difference arises when node B is sent a RQST packet via
B, and a delayed response is received. The event PRSDP∗ is
generated and the diagnoser reaches state z10 depending on
the value of the variable rch, which is the IP address of B, the
last node that replies without delay. It is therefore ascertained
that B is an attack node here since it lies in the subtree of node
C . As shown in Figure 9(g) and 9(h), the red line indicates that
the attacker has chosen E as its parent. If a URDES packet is
received, the diagnoser againmoves to normal-certain O-state
z12, which is the case shown using the green line indicating
the choice of B.

Case IV: Node C is an attack node that does not advertise
DAO

In this case, C chooses a different parent in spite of an
existing better parent for upward route. This situation is
shown using the Figures 9(i) and 9(j). While probing nodes
in TPATH2, nodes B and C , both reply to the probe packets
and the diagnoser reaches state z3 when a PRQDP packet is
sent to D. Now, if a delay timeout occurs while awaiting the
response, the diagnoser reaches state z11 depending on the
value of the variable rch which holds the IP address of C .
Consequently, it can be ascertained that the attacker node is
C and the diagnoser correctly detects the attack since z11 is
an A2-certain node.
So, all the possible cases of attack by specific attacker

nodes are analyzed. The diagnoser correctly reports the net-
work condition by identifying the corresponding attacker type
states, for each case.

I. OVERHEAD ANALYSIS
The extra communication overhead is added in our detection
scheme due to probe requests and generated responses. The
overhead is minimum when only 2 probe requests are suffi-
cient to identify the malicious node. Such a scenario occurs
if a probe request packet is sent to a node which responses in
time and another probe packet sent subsequently to the child
of this node is acknowledged beyond the admissible delay.
We now discuss the scenario when maximum overhead is
incurred in our solution. Suppose probe request packets are
sent sequentially to nodes in TPATH j. Now, the node with
the lowest rank responses to the probe request in time. For,
the subsequent probe requests sent, responses are not gener-
ated. Based on the DAO messages received after the IDS is
setup, nodes with missing acknowledgements are sent probe
requests through alternate routes. Only the node farthest from
the root responses with after an admissible delay. Hence,
assuming that the height of the tree is equal to the number of
nodes in the RPL, n, then a total of (1+2(n−2)+1) ≈ O(n)
probe requests will be required here (1 for node with lowest
rank, 2(n − 2) for subsequent (n − 2) nodes that are probed
twice and 1 for confirmation). Considering a balanced tree
of n nodes, depth = logk n, for a branching factor k . In such

VOLUME 11, 2023 77281

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 10. Topology considered for testbed and simulation experiments.

cases, the number of probes that will be required in the worst
case is 2 log n ≈ O(log n).

V. EXPERIMENTS, RESULTS, AND DISCUSSION
Three experiments are executed in Contiki Cooja [60] and
one in a real testbed at FIT IoT-LAB [61]. Cooja is a net-
work simulator explicitly developed to cater for IoT networks
while the simulator builds on C base libraries of sensors
and RFID chips, the FIT IoT-LAB is an open testbed and
comprises of 117 mobile robots and 2728 low-power sensor
nodes that are made available for conducting experiments
in the heterogeneous environment (e.g., standardized proto-
col, OS, topologies, and hardware). Having unique hardware
and node capabilities, interconnected locations are installed
across France in FIT IoT-LAB and made available for exper-
iments via a web portal. We used three different types of
topology, as shown in Figure 10. In topology 1, the IoT
nodes are distributed very densely, while a sparse distribution
is used in topology 2. In topology 3, nodes are distributed
in a mixed fashion. Furthermore, the hop count is more in
topology 2 as compared to topology 1. We consider a OF0
implementation with hop count (HC) metric. The simulation
or experimental parameters of Contiki Cooja and FIT IoT-
LAB are presented in Table 5. To examine the performance of
our proposed solution, three scenarios are designed as part of
the experimental setup, namely, the non-rank attack scenario,
increased rank attack scenario, and the increased rank attack
scenario with the proposed solution, comprehensive analysis
of which are demonstrated below.

A. EXPERIMENT 1: NON-RANK ATTACK SCENARIO
All the external and internal nodes demand the IoT ser-
vices (i.e., temperature and humidity) using the Sky-Websense
server. The experiment has been executed on 8, 16, 32,
and 64 nodes. The flow of IoT network packets and their
behavioural changes are noted. Figure 11a shows an RPL
DODAG with 16 nodes. The node having Node ID 65 is
the 6BR root running our IDS. Nodes with IDs 16, 13, 30,
52 and 62 are the 5 agents deployed as leaves and behave like

TABLE 5. Contiki Cooja and FIT IoT-LAB experimental parameters.

FIGURE 11. DODAG of the IoT ecosystem.

regular nodes.Wireshark and power trace tool are used during
simulations for network traffic analysis. In the testbed setup,
we have used A8-type nodes utilizing various topologies
with Grenoble areas. A8 is a TI SITARA AM3505 (Arm
Cortex A8) combined with STM32 microcontroller and a
radio interface. It is one of the powerful IoT-LAB node which
allows running RIOT, Contiki, and FreeRTOS. The adopted
parameters during the testbed experiments are specified in
Table 5. Figure 11a shows the DODAG topology in a non-
attack scenario. Throughput, energy usage of the network,
and the average power consumption on a per-node basis with
their respective run times are shown in Figures 12 (a) and (b),
analysed using 64 nodes in Contiki Cooja and FIT IoT-LAB,
respectively. Our analysis shows average throughput within
86.45% to 94.89%, average network energy usage ranging
from 27854mJ to 33648 mJ, and average power consumption
lying within 1.2 mW to 1.46 mW in this scenario. The val-
ues are moderately good because during the non-rank attack
scenarios, RPL control messages, Objective Function (OF),
and Rank computation module are executed correctly with
the required number of RPL control messages.

B. EXPERIMENT 2: INCREASED RANK AND VERSION
NUMBER ATTACK SCENARIO
An increased rank attack is performed with 8, 16, 32,
and 64 IoT nodes. The attack nodes, incorporated during
our experiments, generate malicious RPL control messages

77282 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

TABLE 6. Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosystem (During attack and after solution implementation in Contiki
Cooja).

TABLE 7. Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosystem (During attack and after the solution implementation in FIT
IoT-Lab).

FIGURE 12. Average Energy, Throughput, Node Power over run time
(nodes=64) (without malicious node).

and create falsified non-optimal routes. The IoT network
behavioural changes are examined with different malicious
nodes while varying node density. Figure 11b shows IDS
node at root with ID 65 and the node ID 64 is the malicious
node. Among the remaining nodes, nodes with ID 30, 16, 43,
50, 52 and 62 are the agents deployed that perform sensing at
the leaf levels. Traffic generated from the attack is analysed
using collect view modules for analysis purposes in
simulation. Consequently, we useSysstat [62] andiperf
tool [63] for real testbed analysis. We additionally perceive
the average power consumption per node, and the energy
usage of the complete RPL DODAG. Figure 13 (a) exhibits
a considerable increase in the complete network’s average
energy usage and power consumption per node, i.e., 28.8%
to 35.7% and 31.7% to 43.3%, respectively, in Contiki Cooja
simulations. Figure 13 (b) shows similar outcomes in FIT
IoT-LAB, i.e., 38.7% to 43.9% average energy usage and
36.5% to 52.4% power consumption per node. In both, the
throughput graph can be seen to be going down significantly.
The average throughput value is reduced and ranges from
37.3% to 43.5% in the attack scenario, both in simulation and
real testbed. All experiments show huge network energy and
node power consumption with reduced throughput because of
a massive number of RPL control messages, malicious OF for
routing, and unknown loop formations due to attack. During
attack, the performance metrics that significantly affect RPL
performance are listed in Tables 6 and 7 for Contiki Cooja
and FIT IoT-Lab, respectively. The findings also demonstrate

FIGURE 13. Average Energy, Throughput, Node Power over run time
(nodes=64) (with malicious node).

FIGURE 14. Average Energy, Throughput, Node Power over run time
(nodes=64) (after solution implementation).

that a rise in the number of IoT nodes results in a significant
increase in the amount of malicious RPL control messages,
which consumes additional network energy due to node
power and consumption. In addition, network performance
and packet delivery ratio is shown to suffer and produce
inferior outcomes.

C. EXPERIMENT 3: ATTACK SCENARIO WITH PROPOSED
SOLUTION
Experiment 2 is executed with the proposed solution, both
in simulation and real testbed. The performance of our
proposed solution is illustrated in Figure 14. Both during
simulation and in real testbed, we have considered 8, 16, 32,
and 64 IoT nodes, while the experiments are run for 1000 sec.
We consider the values 1max and 1a to be 13 seconds and

VOLUME 11, 2023 77283

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

FIGURE 15. Power and Energy for 50 min network execution with proposed solution.

FIGURE 16. PDR and Throughput for 50 min network execution with proposed solution.

3.8 seconds, respectively (discussed in Section IV-C). The
trickle timer is of 10 seconds duration. Each experiment is
conducted by varying the number of nodes, i.e., from 8 to
64 nodes and hop counts. The performance analysis of all the
experiments is based on various metrics like True Positive
Rate (TPR) (also known as sensitivity), True Negative Rate
(TNR) (also known as specificity), Accuracy (ACC), Energy
usage (EU), Throughput, Packet delivery ratio (PDR), and
scalability. The performance analysis metrics are defined as
follows:
• True Positive Rate (TPR) is the ratio of accurately iden-
tified attacker nodes to all of the attacker nodes and is
estimated by:

TPR =
p

p+ q
(1)

• True Negative Rate (TNR) is the ratio of wrongly iden-
tified genuine nodes to all of the genuine nodes and is
estimated by

TNR =
r

r + s
(2)

where, p=Attacker nodes identified accurately q=
Attacker nodes not identified correctly r=Genuine nodes
identified accurately s=Genuine nodes not identified
correctly.

• Accuracy (ACC): It calculates the overall rates of
attacker nodes identification and false alarms. This result

signifies the success rate of the proposed approach; it is
estimated by

ACC =
p+ r

p+ q+ r + s
(3)

• Energy Usage (EU): The amount of energy utilized for
the proposed solution throughout its execution.

During the execution of our proposed approach,
we consider three topologies, as shown in Figure 10.
Figures 15(a) and 15(b) illustrate the node power consump-
tion per node and network energy consumption after our
solution is implemented for 50minutes across various topolo-
gies and varying IoT nodes. The findings suggest that our
proposed solution has a higher average total energy usage
and node power consumption per node in topology 1 in
comparison with other topologies and standard RPL with
rank and version number attacks in place. When compared
to the other possible topologies for this work, topology 2 has
a lower average overall energy use and node power per node.
The amount of energy consumed is proportional to the density
of the individual nodes and DODAG configuration.

Figures 16(a) and 16(b) compare the proposed work’s
packet delivery ratio and throughput across three topologies
with varying IoT nodes. As per the results, our proposed
security approach has the lowest throughput (0.652 Kbps)
and packet delivery ratio (98.4%) in topology 1 as com-
pared to others. The performance of the suggested technique

77284 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

demonstrates promise in topologies 2 and 3, respectively.
Topologies 2 and 3 have throughput of 0.664 Kbps, and
0.653 Kbps and packet delivery ratios of 98.55%, and
98.38%, respectively. Topology 1 has lower results than
RPL with rank and version attacks due to packet loss and
retransmission.

Figures 14(a) and 14(b) show the performance analysis of
our proposed solution during simulation and in real testbed,
respectively. A reduction in network energy usage and node
power by 24.9% to 33.6% and 22.6% to 41%, respectively,
can be noted. Throughput graph can be seen to signifi-
cantly progressing upwards. The average throughput value
was improved by 32.9% to 36.7% on the implementation of
our solution in the IoT ecosystem. Tables 6 and 7 present
the performance analysis during the recursive execution of
our proposed solution across the various possible topologies
involving the attack node. Based on the outcome, it can
be noticed that different topologies take an unique amount
of network energy and node power; it also varies with the
number of nodes. It can be further observed that our solu-
tion requires minimum amount of network energy and node
power. This is not only because we use only one centralized
IDS node in our approach, but also because rank and version
attacks are detected and identified accurately in lesser time.

D. COMPARISON WITH THE EXISTING WORKS
This subsection presents the comparative analysis of
the proposed rank and version number attack detection
approach with state-of-the-art solutions. Experiments are
fairly repeated multiple times to create tight confidence
intervals. In general, we compare our real-time testbed
results obtained across the different topologies to the sim-
ulation results. We observe that both executions provide
reliable results (approximately 10% - 30% over/under esti-
mated experimental results). A comparison of our scheme
is shown through Table 8 and graphs provided in Figures
17, 18, 19, 20 and 21. To measure the performance met-
rics, we use collect view modules, Sysstat, and
iperf tool. Ten different performance metrics: Energy
Usage (EU), Node Power, Throughput (THP), PDR, Control
Message Overhead (CONMO), TPR, TNR, ACC (RAD for
rank attack detection accuracy, VNAD for version number
attack detection accuracy, RAI for rank attack node iden-
tification accuracy) and Scalability (SCAL) are considered.
State-of-the-art methods [20], [64], [65] consume enormous
energy, node power, and control message overhead. Hence
they are not as suitable for a constrained IoT ecosystem.
Figure 18 shows that our proposed approach takes 13759mJ,
12962mJ, and 14872mJ total energy with the 3 respective
topologies. The state-of-the-art methods [18], [20], [40], [46],
[65], [66], [67] consume more node power, energy, and have
higher control message overhead, as shown in Figures 17, 18,
and Table 8, respectively.

Basically, for comparison, we judiciously consider met-
rics that are maximum common with the state-of-the-art

FIGURE 17. Node Power comparison with related works.

FIGURE 18. Energy comparison with related works.

schemes. Further we consider those approaches that have
maximum reported QoS metrics. We consider the derived
parameters from the reported parameters, wherever required.
Though DETONAR [52] achieves full accuracy in attack
node identification, but achieves 80% in case of version
attacks. Version attack detection accuracy using our proposed
scheme fares better than DETONAR. Also, our approach is
scalable while DETONAR is applicable to small networks
only. The packet overhead (CONMO) in DETONAR is also
significantly higher than our proposed scheme. InDReS [32]
considers the QoS metrics but does not report the false
positives, false negatives or accuracy of their algorithmic pro-
cedure. The results show that our proposed approach achieves
comparatively better results overall with performance param-
eters, as shown in Figures 19, 20, and 21. The accuracy of
our proposed approach is calculated based on TPR and TNR
values shown in Figure 21, while a comparison of results is
shown in Table 8.

E. DISCUSSION
In our scheme, attack is detected and the attacker, that
launches the attack, is identified at the same time. Accurate
identification of node implies that attack is also detected
accurately. Conversely, attack is detected implies some node
is identified as an attack node. A detection accuracy of
99.1% for our proposed solution, as shown in Table 8, means
identification accuracy is also 99%. Our proposed design is
inspired from intrusion detection using probing techniques
that have been successfully applied to wired and wireless
network security solutions [29], [70], [71]. The applicability

VOLUME 11, 2023 77285

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

TABLE 8. Comparison of the proposed scheme with the closely related works.

FIGURE 19. PDR comparison with related works.

FIGURE 20. Throughput comparison with related works.

FIGURE 21. TPR and TNR comparison with related works.

of our approach in the IoT context has been shown through
6LoWPAN fragmentation [72] and CoAP request/response
spoofing attack detection [53].

ICMPv6 probe request packets are sent with random pay-
load. But, the receipt of an acknowledgement and the time of
receipt of the acknowledgement only matter. Since the pay-
load information is not of our interest, alteration of packets
does not affect the detection procedure. A probe response
transition is taken only if it is received from the same node
to whom the probe was sent. Hence, spoofing will not help
the attack motive. Probe packets may be communicated
concurrently via different downward paths. To avoid self-
identification, the attack node reports truly. Communication
lags due to the underlying RPL-IoT network conditions will
uniformly affect every node along a path in the DODAG.
Response delay is an attack characteristic in our detection
procedure. If a malicious node delays a packet, then it is
identified more easily. If an attack node holds the packet for
indefinitely long and does not forward it, then such a case
is also an attack behavior. So delay or not responding does
not deter the detection process. Furthermore, a DIO multicast
simultaneously affects in route updation and inference of
suspicious activity by multiple leaf agents. Hence, due to
multiple leaf agents present, if any agent misses reporting,
it does not hinder our identification mechanism. The case of
malfunctioning leaf agents, if compromised, is not explicitly
dealt with in this paper.

Studies in the literature have analyzed variants of rank
attacks. In Le et al. [73], the authors propose few variants.
Their impact on the DODAG topology from the perspective
of end-to-end delay and packet delivery ratio is highlighted.
Their work shows that there exists unique threats to RPL that
evade regular detection techniques. This is so because such
attacks do not consider changing the advertised rank value;
rather, they create un-optimized paths, silently. These types
of attacks pose a different nature to the traditional threats
making it complex enough to be defended, for example, the
blackhole attacks that add delay to transmissions. They have
specifically considered four types of rank attack variations,
namely, 1) Permanently and updates about the rank change
to its neighbors, 2) Non-permanently (flipping between its
choices between normal and abnormal) and updates about the

77286 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

rank change to its neighbors, 3) Permanently and does not
update about the rank change to its neighbors and 4) Non-
permanently and does not update about the rank change to its
neighbors.

We show to detect version attacks apart from rank attack
identification. As per knowledge, this is the first-of-a-kind
attempt to mitigate RPL routing attacks using finite state
automata based DES based IDS. State-of-the-art attacks that
produce the same consequences as the increased rank attacks,
can be also detected and malicious nodes can be uniquely
located using our procedure, as it is. Attacks such as the worst
parent attack, neighbour attack, etc., that result in similar
consequences as covered in our rank attack procedure will
also be detected in our scheme. Though we explicitly do not
model these attacks, yet a class of worst parent attack with
update, i.e., the worst parent choice is passed on to child
nodes, falsely, is one of the attack cases that we consider.
Hence, such an attack will be detected. Also, a class of
neighbour attacks where the advertised parent node is out of
range of the DIO recipient, and the attack results in a post-
attack topology as dealt in our scheme will also be detected.
Further, cross-layer attacks that use increased rank attacks are
also detected using our scheme. RPL analysis on the packet
exchange dynamics due to other attacks is thereby neces-
sary. Decreased rank attacks, sinkhole attacks and blackhole
attacks are also DIO specific attacks launched in a similar
manner, i.e., a lower rank value is falsely advertised in DIO
to attract nodes. The effects of these attacks are analogous
to increased rank attack. DES based IDS can be extended to
detect other attacks by adding relevant states and transitions
for control or data packet communication behavior in the
monitored RPL-IoT. As it is, decreased rank attack or sink-
hole that are manifested towards increased rank attack can
also be detected using our scheme with minimum customisa-
tion, even when combined with selective forwarding attack.
This would require careful but minimum modifications to be
made to our algorithm and extending our model for detection.
Other forms of attacks, which directly map to an increased
rank attack scenario, will also be detected using our scheme
with minor changes. Moreover, one advantage of using DES
based IDS is that false positives are minimal. A non-zero false
positive in our experiments can be related to reasons such
as, packet loss if considered as a missing acknowledgement
response and network lags beyond the estimated values of
1max and 1a.The current solution can be further improved
with generation of optimized sequences of probes for more
early detection and also thereby reducing complexity. The
placement of the agents can be improved such that the over-
head is further reduced.

VI. CONCLUSION
A novel RPL rank attacker identification scheme that also
detects version attack is presented. Our proposed scheme
is centralized and uses an intelligent probing technique and
DES based IDS. We augment traditional DES based IDS
such that attacker type is also diagnosed. Using our scheme

location of attack node is identified accurately. Active probe
packets are used judiciously to capture a deviation of attack
behavior from the normal behavior which is normally lack-
ing. A DES diagnoser serves as our IDS engine that generates
an alert when an attack node is identified. The correctness and
completeness of our approach is also proved.
The performance analysis of our proposed scheme in simu-
lation and real testbed considers both attack and non-attack
behavior patterns, with a sufficiently large number of IoT
devices. The average energy usage and accuracy of our pro-
posed approach are 14872mJ and 99.1%, respectively. The
observed results show our approach is energy-efficient with
lowest packet overhead than existing works. It is scalable,
achieves minimum false positives, and higher accuracy with
lower detection time.

APPENDIX
A. BASICS OF DISCRETE EVENT SYSTEMS
This subsection presents the prerequisites of our proposed
DES framework. Using the knowledge and demonstration of
this section, we later show that the framework can be used
to diagnose attacks in wireless sensor networks containing
resource constrained nodes [53], [72].

1) DES MODEL
The DES model H is defined as a 6-tuple H =

⟨X ,X0, 6,V ,C,ℑ⟩ [57], [59], [74], [75], [76]. Here, X is the
set of states and is finite, X0 ⊆ X is the set of initial states, 6
is the finite set of events, V is the finite set of model variables,
C is the finite set of clock variables and ℑ is the finite set of
transitions. Elements of the set of model variables assume
values from their respective domain sets. Suppose if V =
{v1, v2, . . . , vn} is the set of model variables (for some finite
value of n) where each element vi takes some values from its
domain setDomi. The domain of each of the clock variables is
the set of non-negative reals, R. A transition τ ∈ ℑ is defined
as a 7-tuple ⟨x, x+, σ, φ(V), 8(C),Reset(C),Assign(V)⟩,
where x, x+ are the source state and destination state of
transition τ respectively. Due to the occurrence of the event
σ ∈ 6, the transition τ is enabled. φ(V) is defined as a
boolean conjunction of equalities over some subset of the
model variables, V , and which needs to hold true overall
for a transition to be taken. 8(C) is an invariant condition
over some subset of the clock variables C . Reset(C) is a
subset of clock variables to be reset and Assign(V) is a
subset of model variables along with an assignment of values
from their corresponding domains. Some of the fields in the
tuple representing a transition maybe be denoted by ‘‘-’’. For
example, if ‘‘-’’ is used for φ(V) or Assign(V), then it would
mean that no condition needs to be met (i.e., the condition is
implicitly TRUE) or NO assignment is required respectively.

2) DEFINITIONS
Due to certain measurement limitations, some events cannot
be measured. Such events are called unmeasurable events.

VOLUME 11, 2023 77287

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

The event set can be expressed as a disjoint union of measur-
able and unmeasurable events. In notation, 6 = 6m ∪6um.
Definition 1 (Measurable and Unmeasurable Transitions):

A transition, τ , that is enabled under the influence of an
event σ is said to be measurable if the corresponding event,
σ , is measurable. Similarly, a transition associated with an
unmeasurable event is said to be an unmeasurable transition.
ℑm and ℑum denote the set of measurable and unmeasurable
transitions.
Definition 2 (Measurement equivalent transitions (states)):

A pair of transitions τ1 = ⟨x1, x
+

1 , σ1, φ1(V), 81(C),
Reset1(C), Assign1(V)⟩ and τ2 = ⟨x2, x

+

2 , σ2, φ2(V), 82(C),
Reset2(C), Assign2(V)⟩ are said to be measurement equiv-
alent iff σ1 = σ2, φ1(V) = φ2(V), 81(C) = 82(C),
Reset1(C) = Reset2(C) and Assign1(V) = Assign2(V). If a
pair of transitions are equivalent, then their source states and
destination states are equivalent states pair-wise. In simple
terms, if the system current state is an initial state of a
transition that has at least one more equivalent state, then
the final states reached, from each of these states due to an
equivalent transition, are also equivalent.
Definition 3 (Projection and Inverse Projection Operator):

A projection operator P : ℑ∗ → ℑ∗m is defined as: P(ϵ) = ϵ

(null string); P(τ) = τ if τ ∈ ℑm; P(τ) = ϵ if τ ∈ ℑum;
P(sτ) = P(s)P(τ), where s ∈ Lf (H), τ ∈ ℑ. The function
P erases the unmeasurable transitions from the argument
finite trace. P(s) is termed as the measurable finite trace
corresponding to the finite trace s.
Definition 4 (Normal H-state (H-transition) and Faulty

H-state (H-transition)): States that are traversed by the sys-
tem when operating without any fault are known as Normal
H -states. XN denotes the set of all normal states. A H -
transition ⟨x, x+⟩ is called a normal H -transition if x, x+ ∈
XN . States that are traversed by the system when operating
under faulty circumstances are known as faulty H -states. XFi
denotes the set of all faulty states. A H -transition ⟨x, x+⟩ is
called a faulty H -transition if x, x+ ∈ XFi .

3) DIAGNOSABILITY
A key property relating to fault diagnosis in DES, diag-
nosability [58], [59], is discussed here. DES Diagnosability
is a property related to event diagnosis where the earlier
occurrence of certain events (faults) of interest are diagnosed.
A diagnoser, constructed fromDESmodels, tracks the system
behavior and gives a decision on the diagnosis of monitored
events. Now, a fault is diagnosable in finite time, if the
diagnosability condition is met (Fi-Diagnosability property is
satisfied). A lemma on the diagnosability property states that
lack of fault indeterminate cycles guarantees diagnosability.
It means that the diagnoser is able to give a decision in finite
time on the occurrence of the event diagnosed, i.e, normal
if the event has not occurred, and faulty if fault event has
already occurred. Satisfaction of the diagnosability property,
considering the limitations in measurement, ensures efficient
fault detection as well as diagnosis of the fault type [77].

Definition 5 (Fi-Diagnosability): Let 9(XFi) = {s|s ∈
Lf (H) and final(s) ∈ XFi and s ends in a measurable
transition}. A DESmodelH is said to be diagnosable for fault
Fi iff the following holds:

(∃nj ∈ N)[∀s ∈ 9(XFi)](∀t ∈ Lf (G)/s)[|t| ≥ nj)⇒ D]
(4)

where, D is ∀x ∈ {P−1[P(st)]}, final(x) ∈ XFi .
Construction of the diagnoser:
The diagnoser, O, is represented as a directed graph, O =
⟨Z ,A⟩. Here, Z is the set consisting of the nodes of the
diagnoser O, called O-nodes and A is the set consisting of
the transitions (edges) of the diagnoser, called O-transitions,
where A ⊆ Z × Z . Each O-node z is an estimate of the actual
system state and consists of one or more states of DESH , z ∈
2X , the power state of X , signifying membership uncertainty.
On a similar note, each of the O-transition a consists of one
or more measurement equivalent transition of DES H and
represents an uncertainty in the actual measurable transition
that takes place. They are of the form ⟨zi, zf ⟩. We denote the
unmeasurable successor set of a state set X as U(X) and is
defined as U(X) =

⋃
x∈X {x

+
|τ = ⟨x, x+⟩ ∈ ℑu}. The

unmeasurable reach of a state set X , U∗(X), is the reflexive-
transitive closure of U(X). In Algorithm 3, the step-wise
procedure for diagnoser construction is shown.

Algorithm 3 Diagnoser Construction O for DES
Model H
Input: DES model H
Output: DES Diagnoser
/* PARTITION X0→ Measurement

equivalent classes, X01, X02, . . .,
X0m */

1 for all i, 1 ≤ i ≤ m do
2 z0i← U∗(X0i)
3 end
4 Z0← z01 ∪ · · · ∪ z0m
5 Z ← Z0
6 A← φ

7 for all z ∈ Z do
/* Find the set of measurable

H-transitions (ℑmz) outgoing
from z */

8 ℑmz← {τ |τ ∈ ℑm ∧ initial(τ) ∈ z}
/* Find the set of all

measurement equivalent classes
Az, of ℑmz */

9 for all a ∈ Az do
10 z+a = {final(τ)|τ ∈ a}
11 z+ = U∗(z+a)
12 Z ← Z ∪ {z+}
13 A = A ∪ {a}
14 end
15 end

77288 VOLUME 11, 2023

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

Fi-certain O-node and Fi-uncertain O-node are two types
of diagnoser nodes that relate to occurrence of a fault type
Fi. Fi-certain O-nodes consists purely of Fi−H-states while
an Fi-uncertain O-node consists of states that may belong to
Fi−H-states as well as states of DES H other than the fault
type Fi.

REFERENCES
[1] L. Atzori, I. A. Iera, and M. Giacomo, ‘‘The Internet of Things: A survey,’’

Comput. Netw., vol. 54, pp. 2787–2805, May 2010.
[2] M. Humayun, N. Jhanjhi, and M. Z. Alamri, ‘‘Smart secure and energy

efficient scheme for E-health applications using IoT: A review,’’ Int. J.
Comput. Sci. Netw. Secur., vol. 20, no. 4, pp. 55–74, 2020.

[3] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[4] T. Winter, P. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, and R. K. Alexander, RPL: IPv6 Routing Protocol
for LowPower and Lossy Networks, document RFC 6550, 2012, pp. 1–157.

[5] P. Pongle and G. Chavan, ‘‘A survey: Attacks on RPL and 6LoWPAN in
IoT,’’ in Proc. Int. Conf. Pervasive Comput. (ICPC), Jan. 2015, pp. 1–6.

[6] L. Wallgren, S. Raza, and T. Voigt, ‘‘Routing attacks and countermeasures
in the RPL-based Internet of Things,’’ Int. J. Distrib. Sensor Netw., vol. 9,
no. 8, pp. 1–11, 2013.

[7] A.Mayzaud, R. Badonnel, I. Chrisment, and I. G. Est-Nancy, ‘‘A taxonomy
of attacks in RPL-based Internet of Things,’’ Int. J. Netw. Secur., vol. 18,
no. 3, pp. 459–473, 2016.

[8] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder,
‘‘A study of RPL DODAG version attacks,’’ in Proc. IFIP Int. Conf.
Auto. Infrastructure, Manage. Secur. Cham, Switzerland: Springer, 2014,
pp. 92–104.

[9] C. Pu and L. Carpenter, ‘‘Digital signature based countermeasure against
puppet attack in the Internet of Things,’’ in Proc. IEEE 18th Int. Symp.
Netw. Comput. Appl. (NCA), Sep. 2019, pp. 1–4.

[10] C. Pu, J. Brown, and L. Carpenter, ‘‘A Theil index-based countermeasure
against advanced vampire attack in Internet of Things,’’ in Proc. IEEE 21st
Int. Conf. High Perform. Switching Routing (HPSR), May 2020, pp. 1–6.

[11] C. Pu and B. Groves, ‘‘Energy depletion attack in low power and lossy
networks: Analysis and defenses,’’ in Proc. 2nd Int. Conf. Data Intell.
Secur. (ICDIS), Jun. 2019, pp. 14–21.

[12] E. Y. Vasserman and N. Hopper, ‘‘Vampire attacks: Draining life from
wireless ad hoc sensor networks,’’ IEEE Trans. Mobile Comput., vol. 12,
no. 2, pp. 318–332, Feb. 2013.

[13] C. Pu and K.-K.-R. Choo, ‘‘Lightweight Sybil attack detection in IoT
based on Bloom filter and physical unclonable function,’’ Comput. Secur.,
vol. 113, Feb. 2022, Art. no. 102541.

[14] C. Pu, ‘‘Spam DIS attack against routing protocol in the Internet of
Things,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Feb. 2019,
pp. 73–77.

[15] C. Pu and X. Zhou, ‘‘Suppression attack against multicast protocol in
low power and lossy networks: Analysis and defenses,’’ Sensors, vol. 18,
no. 10, p. 3236, Sep. 2018.

[16] A. Raoof, A. Matrawy, and C.-H. Lung, ‘‘Routing attacks and mitigation
methods for RPL-based Internet of Things,’’ IEEE Commun. Surveys Tuts.,
vol. 21, no. 2, pp. 1582–1606, 2nd Quart., 2019.

[17] G. Glissa, A. Rachedi, and A. Meddeb, ‘‘A secure routing protocol based
on RPL for Internet of Things,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2016, pp. 1–7.

[18] M. Nikravan, A. Movaghar, and M. Hosseinzadeh, ‘‘A lightweight defense
approach to mitigate version number and rank attacks in low-power and
lossy networks,’’ Wireless Pers. Commun., vol. 99, no. 2, pp. 1035–1059,
Mar. 2018.

[19] M. Zaminkar, F. Sarkohaki, and R. Fotohi, ‘‘A method based on encryp-
tion and node rating for securing the RPL protocol communications in
the IoT ecosystem,’’ Int. J. Commun. Syst., vol. 34, no. 3, pp. 1–24,
Feb. 2021.

[20] D. Airehrour, J. A. Gutierrez, and S. K. Ray, ‘‘SecTrust-RPL: A secure
trust-aware RPL routing protocol for Internet of Things,’’ Future Gener.
Comput. Syst., vol. 93, pp. 860–876, Apr. 2019.

[21] K. Iuchi, T. Matsunaga, K. Toyoda, and I. Sasase, ‘‘Secure parent node
selection scheme in route construction to exclude attacking nodes from
RPL network,’’ in Proc. 21st Asia–Pacific Conf. Commun. (APCC),
Oct. 2015, pp. 299–303.

[22] N. Djedjig, D. Tandjaoui, F. Medjek, and I. Romdhani, ‘‘Trust-aware and
cooperative routing protocol for IoT security,’’ J. Inf. Secur. Appl., vol. 52,
pp. 1–25, Jun. 2020.

[23] M. Osman, J. He, F. M. M. Mokbal, N. Zhu, and S. Qureshi, ‘‘ML-LGBM:
A machine learning model based on light gradient boosting machine for
the detection of version number attacks in RPL-based networks,’’ IEEE
Access, vol. 9, pp. 83654–83665, 2021.

[24] S. Cakir, S. Toklu, and N. Yalcin, ‘‘RPL attack detection and prevention in
the Internet of Things networks using a GRU based deep learning,’’ IEEE
Access, vol. 8, pp. 183678–183689, 2020.

[25] F. Y. Yavuz, D. Ünal, and E. Gül, ‘‘Deep learning for detection of routing
attacks in the Internet of Things,’’ Int. J. Comput. Intell. Syst., vol. 12, no. 1,
pp. 39–58, Nov. 2018.

[26] M. Osman, J. He, F. M. M. Mokbal, and N. Zhu, ‘‘Artificial neu-
ral network model for decreased rank attack detection in RPL based
on IoT networks,’’ Int. J. Netw. Secur., vol. 23, no. 3, pp. 496–503,
2021.

[27] N. Hubballi, S. Biswas, S. Roopa, R. Ratti, and S. Nandi, ‘‘LAN attack
detection using discrete event systems,’’ ISA Trans., vol. 50, no. 1,
pp. 119–130, Jan. 2011.

[28] F. A. Barbhuiya, M. Agarwal, S. Purwar, S. Biswas, and S. Nandi,
‘‘Application of stochastic discrete event system framework for detec-
tion of induced low rate TCP attack,’’ ISA Trans., vol. 58, pp. 474–492,
Sep. 2015.

[29] M. Agarwal, S. Biswas, and S. Nandi, ‘‘Discrete event system framework
for fault diagnosis with measurement inconsistency: Case study of rogue
DHCP attack,’’ IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 789–806,
May 2019.

[30] V. Ramachandran and S. Nandi, ‘‘Detecting ARP spoofing: An active
technique,’’ in Proc. Int. Conf. Inf. Syst. Secur. Kolkata, India: Springer,
Dec. 2005, pp. 239–250.

[31] F. A Barbhuiya, S. Biswas, and S. Nandi, ‘‘An active host-based intru-
sion detection system for ARP-related attacks and its verification,’’ 2013,
arXiv:1306.1332.

[32] M. Surendar and A. Umamakeswari, ‘‘InDReS: An intrusion detection and
response system for Internet of Things with 6LoWPAN,’’ in Proc. Int.
Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2016,
pp. 1903–1908.

[33] A. Dvir, T. Holczer, and L. Buttyan, ‘‘VeRA–version number and rank
authentication in RPL,’’ inProc. IEEE 8th Int. Conf.Mobile Ad-Hoc Sensor
Syst., Oct. 2011, pp. 709–714.

[34] H. Perrey, M. Landsmann, O. Ugus, M. Wählisch, and T. C. Schmidt,
‘‘TRAIL: Topology authentication in RPL,’’ in Proc. Int. Conf. Embedded
Wireless Syst. Netw., 2016, pp. 59–64.

[35] A. Le, J. Loo, K. K. Chai, and M. Aiash, ‘‘A specification-based IDS for
detecting attacks on RPL-based network topology,’’ Information, vol. 7,
no. 2, pp. 1–19, 2016.

[36] S. Raza, L. Wallgren, and T. Voigt, ‘‘SVELTE: Real-time intrusion detec-
tion in the Internet of Things,’’AdHocNetw., vol. 11, no. 8, pp. 2661–2674,
Nov. 2013.

[37] T. ul Hassan, M. Asim, T. Baker, J. Hassan, and N. Tariq, ‘‘CTrust-RPL
: A control layer-based trust mechanism for supporting secure routing
in routing protocol for low power and lossy networks-based Internet of
Things applications,’’ Trans. Emerg. Telecommun. Technol., vol. 32, no. 3,
Mar. 2021, Art. no. e4224.

[38] S. Y. Hashemi and F. S. Aliee, ‘‘Dynamic and comprehensive trust model
for IoT and its integration into RPL,’’ J. Supercomput., vol. 75, no. 7,
pp. 3555–3584, Jul. 2019.

[39] A. Seyfollahi, M. Moodi, and A. Ghaffari, ‘‘MFO-RPL: A secure
RPL-based routing protocol utilizing moth-flame optimizer for the
IoT applications,’’ Comput. Standards Interface, vol. 82, pp. 1–19,
Aug. 2022.

[40] Z. A. Almusaylim, A. Alhumam, and N. Z. Jhanjhi, ‘‘Proposing a secure
RPL based Internet of Things routing protocol: A review,’’ Ad Hoc Netw.,
vol. 101, Apr. 2020, Art. no. 102096.

[41] A. A. Diro and N. Chilamkurti, ‘‘Distributed attack detection scheme using
deep learning approach for Internet of Things,’’ Future Gener. Comput.
Syst., vol. 82, pp. 761–768, May 2018.

VOLUME 11, 2023 77289

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

[42] B. B. Zarpelāo, R. S Miani, C. T. Kawakani, and S. C. de Alvarenga,
‘‘A survey of intrusion detection in Internet of Things,’’ J. Netw. Comput.
Appl., vol. 84, pp. 25–37, Apr. 2017.

[43] N. Mishra and S. Pandya, ‘‘Internet of Things applications, security
challenges, attacks, intrusion detection, and future visions: A systematic
review,’’ IEEE Access, vol. 9, pp. 59353–59377, 2021.

[44] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, ‘‘Toward a lightweight
intrusion detection system for the Internet of Things,’’ IEEE Access, vol. 7,
pp. 42450–42471, 2019.

[45] A. Althubaity, T. Gong, K.-K. Raymond, M. Nixon, R. Ammar, and
S. Han, ‘‘Specification-based distributed detection of rank-related attacks
in RPL-based resource-constrained real-time wireless networks,’’ in
Proc. IEEE Conf. Ind. Cyberphys. Syst. (ICPS), vol. 1, Jun. 2020,
pp. 168–175.

[46] U. Shafique, A. Khan, A. Rehman, F. Bashir, and M. Alam, ‘‘Detection of
rank attack in routing protocol for low power and lossy networks,’’ Ann.
Telecommun., vol. 73, nos. 7–8, pp. 429–438, Aug. 2018.

[47] A. D. Seth, S. Biswas, and A. K. Dhar, ‘‘LDES: Detector design for version
number attack detection using linear temporal logic based on discrete
event system,’’ Int. J. Inf. Secur., early access, pp. 1–25, Mar. 2023, doi:
10.1007/s10207-023-00665-3.

[48] H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri, ‘‘A lightweight anomaly
detection technique for low-resource IoT devices: A game-theoretic
methodology,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6.

[49] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, ‘‘Detection of
sinkhole attacks for supporting secure routing on 6LoWPAN for Internet
of Things,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM),
May 2015, pp. 606–611.

[50] Z. A. Khan and P. Herrmann, ‘‘A trust based distributed intrusion detection
mechanism for Internet of Things,’’ in Proc. IEEE 31st Int. Conf. Adv. Inf.
Netw. Appl. (AINA), Mar. 2017, pp. 1169–1176.

[51] A. Mayzaud, R. Badonnel, and I. Chrisment, ‘‘A distributed monitor-
ing strategy for detecting version number attacks in RPL-based net-
works,’’ IEEE Trans. Netw. Service Manage., vol. 14, no. 2, pp. 472–486,
Jun. 2017.

[52] A. Agiollo, M. Conti, P. Kaliyar, T.-N. Lin, and L. Pajola, ‘‘DETONAR:
Detection of routing attacks in RPL-based IoT,’’ IEEE Trans. Netw. Service
Manage., vol. 18, no. 2, pp. 1178–1190, Jun. 2021.

[53] D. Ray, P. Bhale, S. Biswas, S. Nandi, and P. Mitra, ‘‘DAISS: Design
of an attacker identification scheme in CoAP request/response spoof-
ing,’’ in Proc. TENCON IEEE Region Conf. (TENCON), Dec. 2021,
pp. 941–946.

[54] J. Yi, T. Clausen, and Y. Igarashi, ‘‘Evaluation of routing protocol for
low power and lossy networks: LOADng and RPL,’’ in Proc. IEEE Conf.
Wireless Sensor (ICWISE), Dec. 2013, pp. 19–24.

[55] J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, Routing Metrics
Used for Path Calculation in Low-Power and Lossy Networks, docu-
ment RFC 6551, IETF, 2012, pp. 1–30.

[56] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, The Trickle Algorithm,
document RFC 6206, Internet Eng. Task Force, 2011.

[57] C. G. Cassandras, Discrete Event Systems: Modeling and Performance
Analysis. Boca Raton, FL, USA: CRC Press, 1993.

[58] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, ‘‘Diagnosability of discrete-event systems,’’ IEEE Trans.
Autom. Control, vol. 40, no. 9, pp. 1555–1575, Sep. 1995.

[59] S. H. Zad, R. H. Kwong, andW. M.Wonham, ‘‘Fault diagnosis in discrete-
event systems: Framework and model reduction,’’ IEEE Trans. Autom.
Control, vol. 48, no. 7, pp. 1199–1212, Jul. 2003.

[60] A. Dunkels, B. Gronvall, and T. Voigt, ‘‘Contiki—A lightweight
and flexible operating system for tiny networked sensors,’’ in
Proc. 29th Annu. IEEE Int. Conf. Local Comput. Netw., Nov. 2004,
pp. 455–462.

[61] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, ‘‘FIT IoT-LAB:A large scale open experimental IoT testbed,’’
in Proc. IEEE 2nd World Forum Internet Things (WF-IoT), Dec. 2015,
pp. 459–464.

[62] S. Godard. SAR—Collect, Report, or Save System Activity Information.
Accessed: Mar. 10, 2023. [Online]. Available: https://manpages.ubuntu.
com/manpages/lunar/en/man1/sar.sysstat.1.html

[63] A. Tirumala. (1999). IPERF: The TCP/UDP Bandwidth Measurement
Tool. [Online]. Available: http://dast.nlanr.net/Projects/Iperf/

[64] S Nayak, N. Ahmed, and S. Misra, ‘‘Deep learning-based reliable routing
attack detection mechanism for industrial Internet of Things,’’ Ad Hoc
Netw., vol. 123, pp. 1–11, Dec. 2021.

[65] I. S. Alsukayti and A. Singh, ‘‘A lightweight scheme for mitigating
RPL version number attacks in IoT networks,’’ IEEE Access, vol. 10,
pp. 111115–111133, 2022.

[66] A. Le, J. Loo, Y. Luo, and A. Lasebae, ‘‘Specification-based IDS for
securing RPL from topology attacks,’’ in Proc. IFIP Wireless Days (WD),
Oct. 2011, pp. 1–3.

[67] S. Sharma and V. K. Verma, ‘‘Security explorations for routing attacks
in low power networks on Internet of Things,’’ J. Supercomput., vol. 77,
pp. 4778–4812, Oct. 2020.

[68] Z. A. Almusaylim, N. Z. Jhanjhi, and A. Alhumam, ‘‘Detection
and mitigation of RPL rank and version number attacks in the
Internet of Things: SRPL-RP,’’ Sensors, vol. 20, no. 21, pp. 1–25,
2020.

[69] R. Sahay, G. Geethakumari, and B. Mitra, ‘‘A novel blockchain based
framework to secure IoT-LLNs against routing attacks,’’ Computing,
vol. 102, no. 11, pp. 2445–2470, Nov. 2020.

[70] H. Neminath, S. Biswas, S. Roopa, R. Ratti, S. Nandi, F. A. Barbhuiya,
A. Sur, and V. Ramachandran, ‘‘A DES approach to intrusion detection
system for ARP spoofing attacks,’’ in Proc. 18th Medit. Conf. Control
Autom. (MED), Jun. 2010, pp. 695–700.

[71] F. A. Barbhuiya, S. Biswas, N. Hubballi, and S. Nandi, ‘‘A
host based Des.approach for detecting ARP spoofing,’’ in Proc.
IEEE Symp. Comput. Intell. Cyber Secur. (CICS), Apr. 2011,
pp. 114–121.

[72] D. Ray, P. Bhale, S. Biswas, S. Nandi, and P. Mitra, ‘‘ArsPAN: Attacker
revelation scheme using discrete event system in 6LoWPAN based buffer
reservation attack,’’ in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst.
(ANTS), Dec. 2020, pp. 1–6.

[73] A. Le, J. Loo, A. Lasebae, A. Vinel, Y. Chen, and M. Chai, ‘‘The impact
of rank attack on network topology of routing protocol for low-power
and lossy networks,’’ IEEE Sensors J., vol. 13, no. 10, pp. 3685–3692,
Oct. 2013.

[74] K. T. Cheng and A. S. Krishnakumar, ‘‘Automatic functional test gener-
ation using the extended finite state machine model,’’ in Proc. 30th Int.
Design Autom. Conf. (DAC), 1993, pp. 86–91.

[75] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, ‘‘A fast
automaton-based method for detecting anomalous program
behaviors,’’ in Proc. IEEE Symp. Secur. Privacy (S&P), May 2000,
pp. 144–155.

[76] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou,
‘‘Specification-based anomaly detection: A new approach for detecting
network intrusions,’’ in Proc. 9th ACM Conf. Comput. Commun. Secur.,
Nov. 2002, pp. 265–274.

[77] P. K. Biswal, H. P. Sambho, and S. Biswas, ‘‘A discrete event sys-
tem approach to on-line testing of digital circuits with measurement
limitation,’’ Eng. Sci. Technol., Int. J., vol. 19, no. 3, pp. 1473–1487,
Sep. 2016.

DIPOJJWAL RAY received the B.Tech. degree in
electronics and communication engineering from
the Institute of Engineering and Management
(IEM), Kolkata, West Bengal, India, in 2010. He is
currently pursuing the dual master’s and Ph.D.
degree in computer science with the Department
of Computer Science and Engineering, Indian
Institute of Technology (IIT) Guwahati, Guwa-
hati, Assam, India. Prior to joining IIT Guwahati,
he was with Tata Consultancy Services as a Win-

dows Phone Application Developer and later as a Research Fellow of big
data with the Department of Computer Science and Engineering, Indian
Institute of Technology (IIT) Bombay, Mumbai, Maharashtra, India. His
current research interests include formal methods and verification, discrete-
event systems, computer network security, and hardware security.

77290 VOLUME 11, 2023

http://dx.doi.org/10.1007/s10207-023-00665-3

D. Ray et al.: Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT Networks

PRADEEPKUMAR BHALE (Student Member,
IEEE) received the B.Eng. degree in com-
puter science and engineering from the Gov-
ernment College of Engineering, Aurangabad,
Maharashtra, India, in 2010, and the M.Tech.
degree in information security from the ABV-
Indian Institute of Information Technology
Gwalior, Madhya Pradesh, India, in 2014. He is
currently pursuing the D.Phil. degree with the
Department of Computer Science and Engineer-

ing, Indian Institute of Technology Guwahati, Assam, India. He was
with Tech Mahindra Pvt. Ltd., as a Technical Associate, for two years.
He joined as an Assistant Professor with the Dr. B. R. Ambedkar National
Institute of Technology, Jalandhar, Punjab, India, for two years. His current
research interests include the IoT security, wireless networks, cloud security,
blockchain, and SDN security. He was awarded the State of Maharashtra
Post Graduate Fellowship for the master’s degree.

SANTOSH BISWAS (Senior Member, IEEE)
received the B.E. degree from the National Insti-
tute of Technology Durgapur, in 2001, the M.S.
degree (Hons.) from the Department of Electri-
cal Engineering, Indian Institute of Technology
Kharagpur, in 2004, and the Ph.D. degree from
the Department of Computer Science and Engi-
neering, Indian Institute of TechnologyKharagpur,
in 2008. He joined the Department of Computer
Science and Engineering, Indian Institute of Tech-

nology Guwahati, in 2009. Currently, he is the HOD of the EECS Depart-
ment, IIT Bhilai. He has been involved in several research projects sponsored
by industry and government agencies. He is engaged with academic and
industry-sponsored research related toVLSI testing and design for testability.
He has published about 150 research articles. His current research interests
include VLSI testing and design for testability, fault tolerance, network
security, discrete event systems, and embedded systems.

PINAKI MITRA (Member, IEEE) received the
B.Tech. degree in computer science and engineer-
ing from Jadavpur University, Kolkata, in 1987,
India, the M.Tech. degree in computer science and
engineering from the Indian Institute of Science,
Bengaluru, India, in 1989, and the Ph.D. degree
from Simon Fraser University, Canada, in 1994.
He was with the Department of Computer Science
and Engineering, Jadavpur University. He joined
the National Institute of Management, Kolkata,

and served as an Assistant Professor. He joined IIT Guwahati, in December
2004, where he is currently an Associate Professor with the Department of
Computer Science and Engineering. His current research interests include
cryptography, network security, computer graphics, and multimedia.

SUKUMAR NANDI (Senior Member, IEEE)
received the Ph.D. degree in computer science
and engineering from the Indian Institute of Tech-
nology Kharagpur, India, in 1995. He was a
Visiting Senior Fellow with NTU, Singapore,
from 2002 to 2003. He is currently a Senior Pro-
fessor with the Department of Computer Science
and Engineering, Indian Institute of Technology
Guwahati, India. He has published more than
300 papers in reputed journals and conferences.

His current research interests include traffic engineering, wireless networks,
information security, computer architecture and algorithms, and VLSI design
and testing. He is a Senior Member of ACM. He is a fellow of the Indian
National Academy of Engineering (INAE), the Institution of Engineers,
India, and the Institution of Electronics and Telecommunication Engineers,
India.

VOLUME 11, 2023 77291

