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ABSTRACT Quickly recognizing the real-time operating states will be helpful to identify the instantaneous
and permanent power loss of the renewable energy station, so as to realize the continuous operation under the
influence of the instantaneous disturbances caused by faults. This paper proposes a state recognition method
for renewable energy units based on sparse stacked auto-encoder(SSAE) feature extraction and improved
k-nearest neighbor (KNN) algorithm. The characteristics of this method is that the electrical parameters of
the unit port are collected directly without relying on the unit’s supervisory control and data acquisition
(SCADA) system, whose acquisition speed is too slow to meet the recognition accuracy requirement, and
that the unit operation states can be recognized quickly and accurately. Firstly, operation states of renewable
energy unit are divided, and the framework for the unit’s state recognition is proposed. Moreover, improved
strategies for state recognition of renewable energy unit are proposed. Finally, the power system analysis
software package (PSASP) is used to obtain the electrical parameters of renewable energy units and the
improved KNN algorithm is used to recognize operation states after extracting features based on SSAE.
By comparing the method proposed with the traditional KNN algorithm, the effect of the proposed method
for states recognition is shown to be the best, with an accuracy of 98.16% and computing time of 50ms. The
results show the validity of the proposed method.

INDEX TERMS Feature extraction, improved k-nearest neighbor algorithm, renewable energy, sparse stack
auto-encoder, state recognition.

I. INTRODUCTION
The renewable energy unit has a fault ride through process
under the fault condition of the power grid due to the unit’s
current carrying capacity. With the increasing penetration of
renewable energy and its gradual dominance on the safety and
stability characteristics of the power system, the high-power
shock brought by power grid fault has an increasingly seri-
ous impact on the safety and stability control of the grid.
In extreme cases, it may even cause the third line of defense
of the grid to act leading to blackouts. Traditional power
grid security control is mainly based on the permanent power
loss of generating units, which is difficult to adapt to the
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instantaneous power shock caused by the renewable energy
unit fault ride through in a novel power system. Quickly rec-
ognizing the real-time operating states of renewable energy
units will be beneficial to identify the instantaneous and
permanent power loss of the renewable energy station, so as
to meet the demand of the power shock perception of renew-
able energy station during and after the event in the process
of power grid security control, and realize the continuous
control under the instantaneous power shock of the fault.

Nowadays, most of traditional operation states recognition
of renewable energy unit are based on supervisory control and
data acquisition (SCADA) system. Kong et al. [1] proposed
a condition monitoring method for wind turbines based on
SCADA data to accurately recognize the health state of wind
turbines. McKinnon et al. [2] recognized the states of wind
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turbine pitch system based on SCADA data, and monitors
the faults of turbine hydraulic system. Furthermore, Dao [3]
used the structural fracture detection in SCADA data to
recognize the states of wind turbine transmission system.
However, the aforementioned studies did not address state
recognition for whether the unit is in a fault ride through
or off-grid state. A wind turbine gearbox monitoring model
based on SCADA data is proposed by Wu et al. [4], which
analyzes the unseen SCADA vibration data to detect poten-
tial faults. Santolamazza et al. [5] proposed a method based
on machine learning technology and used SCADA data to
predict abnormal operation states of gearbox and generator.
While these two studies solely concentrate on recognizing
fault states within specific generator components, the process
from data acquisition to states recognition is time-consuming.
In addition, Liu et al. [6] used the gearbox oil temperature
and generator temperature in SCADAdata to warn the fault of
wind turbine. However, the speed of SCADA system to col-
lect data is in the second level, which cannot meet the speed
requirements of millisecond emergency continuous control of
power grid.

Machine learning methods have been employed in the
area of fault recognition. For instance, Yu et al. [7] used the
k-nearest neighbor (KNN) algorithm to recognize rubbing
faults and identify their locations. However, this study pur-
sued the accuracy of recognition only, but neglected the speed
of recognition. Duan et al. [8] used sparse stack auto-encoder
(SSAE) to represent the target dynamics and then to rec-
ognize abnormal dynamics of space targets. Wang et al. [9]
proposed a method based on SSAE to diagnose faults of
rolling bearings. Zhang et al. [10] built a simulation system
based on power system analysis software package (PSASP)
and studied the transient power characteristics of photovoltaic
generation system with it. However, the proposed methods
of above studies have not been applied in the field of state
recognition.

In view of the above problems, this paper proposes a
state recognition method for renewable energy unit based
on SSAE feature extraction and improved KNN algorithm.
The characteristic of this method is that it does not need
to rely on the SCADA data of the unit itself, and directly
collects the electrical parameters of the unit to quickly and
accurately judge the operation states of the unit. Firstly,
operation states of renewable energy unit are divided, and
the process framework of renewable energy unit state recog-
nition is proposed. Secondly, to overcome the problems
of low recognition accuracy and speed of traditional KNN
algorithm, improved strategies suitable for state recognition
of renewable energy unit are proposed. Finally, PSASP is
used to obtain the electrical parameters of the renewable
energy unit and the improved KNN algorithm is used to
recognize operating states after extracting features based
on SSAE. Compared with the traditional KNN algorithm,
the improved KNN algorithm proposed in this paper has
obvious improvements on both speed and accuracy of state
recognition.

II. OPERATION STATES RECOGNITION FRAMEWORK OF
RENEWABLE ENERGY UNIT
The division of states of the renewable energy unit can
refer to the latest wind turbine fault ride through standard
in China [11], which stipulates that the unit should have
low/high voltage ride through capability, that is, when the grid
fault or disturbance causes the voltage to drop/rise, the wind
turbine canmaintain the ability to operate within the specified
voltage change and time. The voltage ride through curve of
the wind turbine is shown in Fig. 1, which is modified version
of the Chinese national standard. [11]. Considering that oper-
ating states of the renewable energy unit should fully reflect
the power loss of the unit to meet the stability control require-
ments, operating states of renewable energy units are divided
into: ‘normal state’, ‘low voltage ride through (LVRT) state’,
‘LVRT recovery state’, ‘high voltage ride through (HVRT)
state’ and ‘off-grid state’.

FIGURE 1. Voltage ride through curve of the wind turbine.

The feature extraction and state recognition of renewable
energy units can be divided into the following steps, as shown
in Fig. 2. The 4 steps in Fig. 2 are explained as follows:
Step 1: Collect electrical parameters of renewable energy

unit. The electrical parameters are collected at a millisecond
speed through a source control terminal device mounted at
the port of renewable energy unit.
Step 2: Data pre-processing and sample set generation.

The electrical parameters collected are stored, and the local
outlier factor (LOF) algorithm is applied to exclude any
bad data in the electrical parameters collected, followed by
normalization of the remaining valid data as sample set.
Step 3: Extract features of the renewable energy unit oper-

ation states based on SSAE. The sample set generated from
step 2 is input into SSAE, and then the activation function and
the number of SSAE layers are preset. The extracted features
from the sample set are output and the network parameters
are recorded after SSAE training.
Step 4: Operation states recognition of renewable energy

unit. The extracted features from step 3 are input into the
improved KNN classifier for training. The five operating
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FIGURE 2. Flowchart of renewable energy unit states recognition.

states of the renewable energy unit are recognized after run-
ning the improved KNN classifier, and then calculate the
recognition speed and accuracy.

III. STACK AUTO-ENCODER
In recent years, deep learning has developed rapidly in var-
ious industries and achieved remarkable results, which also
provides a new direction for the state recognition of renew-
able energy units. Different from the traditional methods with
complex modeling and threshold judgment, deep learning
extracts more useful features from a large number of training
data by building a hidden layer neural network, and finally
completes the classification task with high speed and high
accuracy. Moreover, after collecting the electrical parameters
corresponding to various operating states of the renewable
energy unit, extracting the effective features that charac-
terize operating states of the unit is the key to recognize.

Stack auto-encoder (SAE) is a deep learning algorithm with
flexible structure and high efficiency. It has the powerful
ability to extract data abstract features through layer-by-layer
unsupervised greedy training, and avoids relying on manual
experience to select features. With the prosperity of the era
of big data, SAE is widely used in image recognition classi-
fication, data analysis visualization, audio classification and
other fields of life.

A. AUTO-ENCODER
Auto-encoder (AE) is the basic unit of SAE, which is
composed of three layers of neural network: input layer,
hidden layer, and output layer [12]. The structure of AE
is shown in Fig. 3. The AE has two functions: encoding
and decoding [13]. It converts the input information into
low-dimensional features and outputs them to the decoder
through the encoder, and then reconstructs the features into
the original input information through the decoder [14].
When the reconstruction error between the input and output
data is small enough, the output of the hidden layer is the best
dimensionality reduction data structure, thus successfully
extracting the features of the input data.

FIGURE 3. Structure of AE.

For a training sample set X = {x1, x2, . . . , xN } with a
total number of N samples, x i is the ith sample in the training
sample set, and the dimension of each sample is m. Let the
output vector of the hidden layer after the encoder is Y =

{y1, y2, . . . , yN }, yi is the ith vector of the hidden layer output,
and the dimension of each vector is n, then there is an encoder
model:

Y = f(M ,b)(X ) = sf (MX + b) (1)

whereM represents the weight matrix between the input layer
and the hidden layer; b represents the coding bias vector; sf
represents the encoding activation function.

Sigmoid function is a mathematical function with a beau-
tiful S-shaped curve, which has a wide range of applications
in logistic regression and artificial neural networks. The sig-
moid functionmaps the domain of definition between 0 and 1.
It is continuous and smooth and monotonically differentiable
in the domain of definition, and these properties make the
output of the sigmoid function interpreted as the probability
of the classification result, which is suitable for classification
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problems. In this paper, sigmoid is used as the activation
function, which is sensitive to small changes in themiddle and
relatively insensitive in both ends, and is suitable for the AE.
The sigmoid function is defined as sigmoid(a) = 1/(1+e−a),
where a is the input vector of each neuron.

The decoder uses the output vector of the hidden layer to
reconstruct the original data. Let Z be the output vector set
after decoding, Z = {z1, z2, . . . , zN }, where zi is the output
vector corresponding to the ith sample, and the dimension of
each vector is also m. The decoder model is:

Z = g(M ′,b′)(Y ) = sg(M ′Y + b′) (2)

where M ′ represents the weight matrix between the output
layer and the hidden layer; b′ represents the decoding bias
vector; sg represents the decoding activation function.
The goal of AE is to extract the features of the original

data by minimizing the reconstruction error L(x i, zi) between
the input and output vectors. The reconstruction error can be
expressed as:

L(x i, zi) =
1
N

N∑
i=1

∥∥∥x i − zi
∥∥∥2 (3)

The network weights and biases can be continuously updated
by minimizing the reconstruction error through the gradient
descent algorithm. The update criteria can be defined as:

M (k+1)
= M (k)

− ε
∂L(x, z)

∂M

b(k+1)
= b(k) − ε

∂L(x, z)
∂b

(4)

where ε is the initial learning rate.

B. SPARSE STACK AUTO-ENCODER
The SAE is composed of multiple AE stacks, and the input
of the upper AE is provided by the lower AE [15]. By train-
ing each AE model layer by layer, the entire network can
be trained to extract more compact and effective abstract
features.

The SAE model structure is shown in Fig. 4.
In the first layer of the model, the weight and bias of

AE are randomly initialized, and the input from the training
sample set is mapped to the hidden layer output vector using
the encoder. Next, the decoder reconstructs the hidden layer
output vector while minimizing the reconstruction error (3)
by continuously updating the weight and bias. This process
completes the training of the first AE. Furthermore, the output
vector of the hidden layer is used as the input of the next level
AE, and the next level AE is trained according to the above
method, and so on, until all AE training is completed. At this
time, the output vector of the last AE hidden layer is the final
feature vector.

When the number of hidden layer nodes is greater than
the number of input layer nodes, the AE will not be able to
successfully extract the features of the input data, and the
sparse auto-encoder can solve this problem to ensure that
the encoder achieves feature dimension reduction extraction.

The sparse auto-encoder adds sparse regularization con-
straints on the basis of each AE to control the number of
hidden layer node activation [16], that is, adds sparse regular-
ization penalty terms to the reconstruction error of AE. For
the sigmoid function, when the node output approaches 1,
it means that the node is ‘activated’, while when the node
output approaches 0, it means that the node is ‘suppressed’.
The sparse auto-encoder can ‘suppress’ most of the hidden
layer nodes to avoid extracting redundant features.

FIGURE 4. Model structure of SAE.

The sparse auto-encoder uses a regularization term to
sparsely represent the hidden layer, and its loss function L
can be expressed as:

L = L(x i, zi) + λωL2 + βωs (5)

where ωL2 is the L2 regular term; ωs is a sparse regular term;
λ and β are the corresponding coefficients.

The sparse regularization constraint is added to each AE
in the SAE to form SSAE, which can ideally extract the
dimensionality reduction features of the input data and avoid
feature redundancy.

IV. IMPROVED KNN ALGORITHM RECOGNIZER
A. TRADITIONAL KNN ALGORITHM RECOGNITION
The KNN algorithm was proposed by Cover and Hart in
1967. It is a simple and effective classification method and
is widely used in pattern recognition, text classification and
other fields [17].

It is assumed that the operating state of the new energy unit
at a certain moment can be expressed by an n-dimensional
vector:

X = [x1, x2, x3, · · ·, xn] (6)

where X is the operating state of the unit; xi is the ith feature
and there are n features.

The key of KNN algorithm is to determine the proxim-
ity between the classification objects. Nowadays, there are
many methods to measure the proximity, such as Euclidean
distance, Hamming distance and so on.

The Euclidean distance D(X,Y) between two points X
and Y in the sample space is defined as [18]:

D(X,Y) =

√√√√ n∑
i=1

(xi − yi)2 (7)
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First, a sample set is formed with data whose states are
known. Once a new data with unknown state is entered, the
Euclidean distance between the new data vector and each
vector in the sample set is calculated. Subsequently, the first
k vectors in the sample data set that are most similar to the
new data are selected, and usually k is an odd number less
than 20. Finally, algorithm selects the state with the most
occurrences in these k vectors as the classification of new
data. The classification principle of KNN algorithm is shown
in Fig. 5, where the query is assigned to Class 1 in the case of
k = 5 according to the KNN algorithm.

FIGURE 5. Classification diagram of KNN algorithm.

B. IMPROVED STRATEGIES OF KNN ALGORITHM
RECOGNITION
The structure of the traditional KNN algorithm is relatively
simple. When the input feature data dimension is too high
and the sample set data is large, the calculation amount will
increase significantly, which will slow down the output of the
recognition result. In addition, when the sample training set
changes, the k value of the traditional KNN remains fixed,
which is unable to adapt to the sample and output the most
accurate result. When the sample data distribution is uneven,
the recognition accuracy of traditional KNN algorithm will
decrease. Considering that the dimension of the electrical
parameters from the renewable energy unit port is high, and
the distribution of the electrical parameters in each state is
uneven, it is difficult to obtain great effect of state recognition
by using the traditional KNN algorithm. Therefore, this paper
improves the traditional KNN algorithm by adding improved
strategies and inputting the features extracted by SSAE into
the KNN classifier, so that the algorithm is able to get high
accuracy and speed for state recognition of renewable energy
units.

1) BAD DATA PROCESSING
When collecting electrical parameters from the generator
port, bad data affecting the accuracy of recognition are
usually collected due to sensor failure, human record devi-
ation and other reasons. In view of this situation, this paper

introduces the anomaly detection LOF algorithm to process
the input electrical parameter samples, eliminate the bad data
in the sample set, and then improve the accuracy of the
algorithm recognition.

In 2000, Breunig et al. proposed the idea of using LOF
to detect local outliers in samples, which determines outliers
by comparing the ratio of the local density of a point in the
sample to the local density of its adjacent points [19].

In the sample set, the distance between the objects m
and n is defined as d(m, n). The k-distance of an object n
is represented by dk (n) when there are at least k objects x
such that d(x, n) ≤ d(m, n), and at most k-1 objects x with
d(x, n) < d(m, n). The set of objects with a distance less than
or equal to dk (n) from the object n is called the k th distance
field of n, denoted by Nk (n). Obviously, the value of dk (n) is
smaller in the area with high object density, while the value
of dk (n) is larger in the area with low object density. The
reachable distance dreach(p, q) of object p relative to object q
in the sample set is defined as [20]:

dreach(p, q) =

{
dk (q)(d(p, q) ≤ dk (q))
d(p, q)(d(p, q) > dk (q))

(8)

In Fig. 6, k = 6, the reachable distance between object p1 and
object q is d(p1, q), and the reachable distance between object
p2 and object q is dk (q).
The local reachable density lrdk (p) of object p is defined

as the derivative of the average of all reachable distances in
its kth distance neighborhood, namely:

lrdk (p) = |Nk (p)| /
∑

q∈Nk (p)
dreach(q, p) (9)

where Nk (p) is the k th distance neighborhood of object p.
The neighbor data of the object p becomes more concentrated
as lrdk (p) increases, which increases the possibility that the
object p and its neighbors are similar data.

FIGURE 6. Schematic diagram of reachable distance.

Define the LOFk (p) to characterize the possibility that the
object p is an outlier [21]:

LOFk (p) = (
∑

q∈Nk (p)
lrdk (q)/lrdk (p))/ |Nk (p)| (10)
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If LOFk (p) is close to 1, it means that the density of p is
close to that of the points in its k-distance neighborhood, so p
may belong to the same class as the point in its k-distance
neighborhood. The smaller LOFk (p) is less than 1, indicating
that the density of p is higher than that of other points in its
neighborhood, and p is more likely to belong to the same
class as the points in its neighborhood. The more LOFk (p)
is greater than 1, indicating that the density of p is less than
the density of other points in its neighborhood, and the more
likely p is an outlier.
The LOF algorithm can effectively eliminate the bad data

in the sample set, and is equally accurate in the case of
uneven distribution of electrical parameters in different states
of renewable energy unit, which can effectively improve the
accuracy of state recognition.

2) SAMPLE SET COMPRESSION
Since the KNN algorithm needs to calculate and sort the
distance between the sample points to be tested and each point
in the training set, and the feature of the SSAE input KNN
classifier is a large sample set, which will greatly increase the
computational complexity of the KNN algorithm, resulting
in slower recognition speed. In order to solve this problem,
this paper proposes a method of compressing sample set to
reduce the number of sample point distance calculations of
KNN algorithm.

Because operating states of renewable energy unit have
been divided into five categories, and each category has
multiple samples, this paper compresses the samples of SSAE
input KNN classifier based on the idea of clustering using
representatives (CURE) [22]. The specific steps are as fol-
lows:
Step 1: The input samples are divided into five sample sets

according to five states, named Sn(n = 1, . . . , 5).
Step 2: Remove duplicate data in sample Sn.
Step 3: Calculate the Euclidean distance between each

two points in the sample set Sn, and use the average value
to merge two points whose Euclidean distance is relatively
small. Repeat the above process until the Euclidean distance
from the nearest two points in the sample set is greater than
the set value ε, and then form a new sample set S ′

n.
After the sample sets are compressed, the number of sam-

ple sets input to the KNN classifier is lessen, which reduces
the number of calculations of the Euclidean distance, ensures
the accuracy of the recognition results, and improves the
recognition efficiency of the algorithm.

3) K VALUE ADAPTIVE
The selection of k value in KNN algorithm will directly
affect the recognition results. If the k value is too small, the
recognition results may be affected by some outliers. If the k
value is too large, the recognition result may be affected by
too many samples and uneven distribution [23]. The tradi-
tional KNN algorithm is difficult to guarantee the recognition
accuracy when the training samples change because k takes

a fixed value. Aiming at the above problems, this paper
adopts the k value adaptive strategy, selects the best k value
according to the training samples.

The optimal k value is determined by the test recognition
accuracy of the training samples, and the recognition accu-
racy P is defined as:

P = 1 − Y/Z (11)

where Y is the number of output error recognition results in
the test, and Z is the total number of tests.
When the data of the sample training set changes, the value

of k will also be changed, and then the training samples will
be used to calculate the recognition accuracy under each k
value. The k value with the highest accuracy is returned as
the best k value under the training sample.

V. EXAMPLE ANALYSIS
A. ELECTRICAL PARAMETERS ACQUISITION OF
RENEWABLE ENERGY UNIT
During the actual operation of renewable energy units, most
of them are in ‘normal state’, and the electrical output param-
eters are stable within a certain range. It is not easy to obtain
the electrical output parameters of actual renewable energy
unit under other operating states such as ‘LVRT state’ or
‘HVRT state’. Therefore, this paper uses PSASP to simulate
various operating states of renewable energy unit and obtain
the electrical parameters. The electrical parameters waveform
of renewable energy unit under different operating states is
shown in Figs. 7-9, where U , I , P, Q, Ip, Iq, and f represent
voltage, current, active power, reactive power, active current,
reactive current, and frequency, respectively. Among them,
the waveform before 0.2 s is the electrical parameters in
‘normal state’, and different faults are set in PSASP at 0.2 s,
so that the unit can enter the LVRT mode, HVRT mode,
or off-grid state. Figure 7 shows the variation of unit elec-
trical parameters under ‘LVRT state’ and ‘LVRT recovery
state’. Figures 8 and 9 show the variation of unit electrical
parameters in ‘off-grid state’ and ‘HVRT state’, respectively.
In Fig. 7, U , P and Ip fall at 0.2 s due to a short circuit fault,
then start to recover after the fault ends; I increases steeply at
the moment of failure, then decays and finally recovers after
the fault ends; Iq increases during the fault to provide reactive
support to the system; Q increases steeply at the moment of
the fault, then decays, and increases in reverse after the fault
ends and then returns to normal; f increases slightly during
the fault. Figures 8 and 9 are in different states due to different
faults and the unit electrical parameters change differently.

Considering the influence of different types of renew-
able energy unit and different types of faults on electrical
parameters, this paper sets doubly-fed wind turbine, direct-
drive wind turbine, and photovoltaic power generation as
the renewable energy unit, respectively, and then sets single-
line-to-ground short-circuit, line-to-line short-circuit, three-
phase-to-ground short-circuit faults and load shedding distur-
bance faults. The renewable energy unit will enter different
operating states in the face of different faults. The sampling
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FIGURE 7. Electrical parameters waveform in ‘LVRT state’ and ‘LVRT
recovery state’.

FIGURE 8. Electrical parameters waveform in ‘off-grid state’.

FIGURE 9. Electrical parameters waveform in ‘HVRT state’.

interval is set to 1ms, and a total of 6,000 electrical parameter
samples under each operating state are collected through
multiple simulations.

B. ELIMINATE ERROR DATA
Considering that error data will be collected due to sensor
failure and other reasons in practical applications, this paper
uses a random number generation function to generate error

FIGURE 10. Distribution of error data.

FIGURE 11. Distribution of LOF.

data and insert it into the 500 ‘normal state’ sample sets
irregularly. The error data distribution is shown in Fig. 10.
On this basis, the bad data processing strategy is used to
calculate the LOF of the sample points which is shown in
Fig. 11. The LOF of five sample points in Fig. 11 is much
larger than 1, indicating that it is the error data that should be
eliminated, which is consistent with the generated error data.

C. FEATURE EXTRACTION OF OPERATION STATES BASED
ON SSAE
In this paper, the neuron activation function of SSAE is set to
‘sigmoid’ function, and the training round of each AE is set to
200 times. Since the number of input layer nodes of SSAE is
the same as the dimension of electrical parameters samples,
and the number of input/output layer nodes is set accordingly,
so only the number of hidden layer nodes and layers of SSAE
need to be determined. The types of electrical parameters
collected for states recognition of renewable energy unit are
shown in Table 1. A total of 6,000 samples were collected to
form a 6000 × 7-dimensional matrix as the input of SSAE.
Since the input samples to SSAE is 7-dimensional data,

the number of hidden layer nodes is considered to be within
100, and the number of hidden layers is considered to be an
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integer of 1 to 5. After obtaining the structural parameters of
the first layer AE, the number of nodes in the hidden layer of
the next layer AE is superimposed until the performance is
optimal. Finally, the optimal structural parameters of SSAE
are obtained.

TABLE 1. The type of 7 electrical parameters collected.

Feature extraction tasks often use principal component
analysis (PCA) to complete [24], but the PCA is based
on linear transformation to achieve feature extraction, and
SSAE extracts abstract data features by nonlinear mapping
of input data through multiple hidden layers, which improves
the performance of nonlinear classification tasks. This paper
compares the ability of PCA and SSAE to extract the fea-
tures of electrical parameters. First, PCA is used to extract
the features of electrical parameters, and the two principal
components with the highest contribution rate are projected
into the rectangular plane, as shown in Fig. 12. Then, a hid-
den layer with two nodes is inserted after the last hidden
layer of the SSAE model. After the electrical parameters are
inputted into the SSAE model, the two-dimensional abstract
features extracted from the hidden layer are projected in the
rectangular plane, as shown in Fig. 13.

It can be seen from Fig. 12 that PCA has a weak ability
to distinguish the states of renewable energy unit, and the
samples of each type of the states overlap in a large area on
the two-dimensional plane. As can be seen in Fig. 13, the
two-dimensional features extracted from the electrical param-
eters by SSAE are distinguished clearly for various states
of renewable energy unit. Samples in different states form
a cluster, and there is almost no overlap between clusters.
In summary, SSAE has a strong ability to extract abstract
features through nonlinear mapping, and its feature extrac-
tion performance is better than the PCA based on linear
mapping.

The SSAE is used to extract 2-, 3- and 4-dimensional
features, and then inputted them into the KNN classifier.
The recognition accuracy and time consumption are cal-
culated. The method described in Section IV-B.2 is used
to compress the features of the output from SSAE into a
new sample training set. After compression, the number of
samples is reduced from 6,000 to 4,800, which decreases
the amount of calculation and improves the speed of the
algorithm.

FIGURE 12. Extract features used PCA.

FIGURE 13. Extract features used SSAE.

D. RECOGNITION RESULTS AND ANALYSIS
To verify the speed and accuracy of the SSAE-based and
improved KNN algorithm proposed in this paper, the recog-
nition accuracy and time consumption of the traditional KNN
algorithm and the proposed method are compared, as shown
in Table 2. In the Table, S1 represents the traditional KNN
algorithm, S2 represents the improved KNN algorithm with-
out using SSAE to extract features, and S3 represents the
improved KNN algorithm using SSAE to extract features.

It can be seen from Table 2 that the traditional KNN
algorithm takes the longest time to recognize states of renew-
able energy unit and has the lowest accuracy. The improved
methods of ‘bad data processing’, ‘sample set compression’
and ’k value adaptive’ increase the recognition accuracy of
KNN algorithm by about 10% and reduce the recognition
time consuming by 180 ms. Using SSAE to extract features
further improves the recognition accuracy of KNN algorithm.
Moreover, the 2-dimensional SSAE feature recognition takes
the shortest time, but the recognition accuracy is not as
good as the 3- and 4-dimensional features. The accuracy of
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TABLE 2. Recognition results.

the 4-dimensional SSAE feature recognition is only 0.07%
higher than that of the 3-dimensional, but its time consump-
tion is twice of that of the 3-dimensional feature. In summary,
the effect of extracting the 3-dimensional SSAE features for
states recognition is the best, with an accuracy of 98.16% and
time consuming of 50 ms, which meets the requirements of
speed and accuracy. The results provide a control basis for
the stability control devices of the electrical system which is
able to judge the power plant operation and the occurrence
of faults based on the unit operation states recognized by
using the improvedKNN and SSAE algorithms, so as tomake
corresponding actions to ensure the safe and stable operation
of the power system.

VI. CONCLUSION
In this paper, operation states of renewable energy unit are
divided into ‘normal state’, ‘LVRT state’, ‘LVRT recovery
state’, ‘HVRT state’ and ‘off-grid state’. A method based on
SSAE feature extraction and improvedKNN algorithm is pro-
posed to recognize operation states of renewable energy unit.
The recognition accuracy and time consumption of traditional
KNN algorithm, improved KNN algorithm with and without
SSAE feature extraction proposed in this paper are compared.
The results show that the traditional KNN algorithm takes the
longest time to recognize. The improvedmethods of ‘bad data
processing’, ‘sample set compression’ and ‘k value adaptive’
increase the recognition accuracy of KNN algorithm and
reduce the recognition time consumption. Using SSAE to
extract features further improves the recognition accuracy
of KNN algorithm. In addition, the 2-dimensional SSAE
feature recognition takes the shortest time, but the recognition
accuracy is not as good as the 3- and 4-dimensional features.
The accuracy of the 4-dimensional SSAE feature recognition
is slightly higher than that of 3-dimensional, but its time
consumption is twice that of 3-dimensional SSAE feature.

In summary, the recognition accuracy and speed of the
proposed method are significantly improved compared with
the traditional algorithm. Using the SSAE to extract the
3-dimensional features of electrical parameters and the
improved KNN algorithm proposed in this paper to rec-
ognize operating states of the renewable energy unit has
achieved the best results. The recognition accuracy and the

recognition time consumption can meet the states perception
requirements of renewable energy unit in the stability control
process and reduce the shock of faults from the grid.
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