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ABSTRACT Single-image haze removal is a challenging ill-posed problem. Recently, methods based on
training on synthetic data have achieved good dehazing results. However, we note that these methods can
be further improved. A novel deep learning-based method is proposed to obtain a better-dehazed result for
single-image dehazing in this paper. Specially, we propose a dual multi-scale network to learn the dehazing
knowledge from synthetical data. The coarse multi-scale network is designed to capture a large variety of
objects, and then fine multi-scale blocks are designed to capture a small variety of objects at each scale.
To show the effectiveness of the proposed method, we perform experiments on a synthetic dataset and real
hazy images. Extensive experimental results show that the proposed method outperforms the state-of-the-art

methods.

INDEX TERMS Dual multi-scale, dehazing, synthetically data, deep learning, real haze image.

I. INTRODUCTION

The turbid medium in the atmosphere often degrades the
image quality. Outdoor images taken in bad weather tend to
show a hazy and blurry appearance. Atmospheric absorption
and scattering cause haze, which reduces the contrast and
fades the color of outdoor images. The light reaches by the
camera from the scene objects is attenuated along the line of
sight and blended with the atmospheric light. The absorption
and scattering processes are commonly modeled by a linear
combination of the direct attenuation and the air-light [1]:

Ix)=Jx)tx)+A(—1t(x)), (1)

where the 7 is the input hazy image, and the J it the cor-
responding clean image, ¢ represents how much the light
reflected from objects is received by camera, A is the air-light.

Single-image dehazing, which aims at removing haze from
single input image as much as possible, has a wide variety
of applications, such as auto driving, semantic segmentation,
image recognition, etc. Due to its wide applications, dehazing
has attracted much attention. There are two key steps in the
dehazing process: 1) estimation of transmission map and
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atmospheric light, and 2) compute the final dehazed result.
Prior-based methods [2], [3] have been proposed to remove
haze based on two steps of dehazing. Due to the fact prior
is based on simple statistic law, which cannot be satisfied by
real cases. For example, dark channel prior (DCP) [2] cannot
deal the white objects well.

Inspired by the success of data-driven methods, many
researchers proposed end-to-end CNN models [4], [5], [6],
[7], [8] for single-image dehazing. Although these methods
have shown effectiveness on a synthetic dataset. However,
these methods have limitations due to large-scale arbitrari-
ness caused by haze. Furthermore, The distribution of haze is
depend on depth, which needs different receptive field sizes
to estimate the depth for each pixel.

To overcome these two issues jointly, we propose a dual
multi-scale dehazing network. The formation of haze can be
affected by various factors, such as temperature, altitude, and
humidity, making the distribution of haze at individual spatial
locations space-variant and non-homogeneous. To capture the
distribution of haze, we propose a dual multi-scale dehazing
network, which has different perceptive fields and captures
objects with different sizes. We compare our method with
traditional and learning-based methods [2], [9] in Fig 1. The
main contributions of this work are listed as follows:
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(c) PhysicsGan

(d) Ours

FIGURE 1. Visual comparisons on a challenging real-world hazy example.
The dehazed result of DCP tends to show a dark appearance and the tree
area cannot be recovered well, compared with (d). The dehazed result of
PhysicsGan looks better than DCP, there is still room for improvement.
Compared with DCP and PhysicsGan, our method often generates a visual
favorable result.

o We propose a dual multi-scale dehazing network, which
can capture the large and small variety of objects and
understand the distribution of haze. The distribution
of haze is very large, we employ a coarse multi-scale
network to capture the global haze distribution. We then
capture the small variety of distribution of haze via fine
multi-scale blocks. The proposed model can capture the
global and local distribution of haze well and effectively
improves the dehazing performance.

« We propose a fine multi-scale block, which can cap-
ture small varieties of objects. The distribution of haze
depends on the depth, which is different for different
objects. However, the distribution of haze within one
object tends to show homogeneous. It is critical to design
a network that can capture small varieties of object sizes
in each scale, which motivates us to design a fine multi-
scale block.

« We conduct extensive experiments to quantitatively
and qualitatively compare the proposed method with
the state-of-the-art single-image dehazing methods and
demonstrate the effectiveness of the proposed model.

Il. RELATED WORK

Single image dehazing methods can be mainly grouped into
two approaches: physical model based recovering methods
and color information based enhancement approaches.
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A. SINGLE IMAGE DEHAZING METHODS

Physical models based methods [10], [11] assume that hazy
images can be modeled by Eq. (1), which models hazy images
as the linear sum of clean image and atmospheric light [12].
Clean image means the scene information that are not affected
by medium particles. Based on this model, most existing
algorithms focus on recovering the scene that not reaches the
camera sensors, i.e., estimating the transmission map #(x) for
each hazy image. For example, a improved image formation
model is proposed by [13]. This model is designed for the
estimating of transmission map and surface shading. The
hazy image can be treat as regions of constant albedo, and
we can infer the the scene transmission from hazy image.
Dark channel prior (DCP) is inferred from the features of
non-sky haze-free images. The DCP assumes the at least one
pixel contains a channel whose intensity is close to zero.
[10] extends the DCP and proposes a more general boundary
constraint. Four haze-relevant priors are studied [14] and a
multi-scale dehazing method are designed to improve the
dehazing performance. Reference [15] finds that the relation
between brightness and saturation in a clear image patch, and
proposes a color attenuation prior to compute transmission
maps. Reference [3] finds that a clean image can be presented
by hundreds of color clusters. However, a hazy image cannot
be presented by hundreds of color clusters. Based on this
observation, [3] design a non-local method to compute the
transmission map. However, these hand-crafted priors are
statistical properties over a large number of images and thus
cannot hold always in practical scenarios. For example, when
the scene objects are close to the airlight, the dark channel has
bright values near such objects, which means that the dark
channel prior is not hold, and as a result the haze layer will
be overestimated [2].

To avoid designing statistical features, several algo-
rithms employ deep convolutional neural networks (CNN)
to improve image dehazing. Both DehazeNet [11] and
MSCNN [16] use a deep neural network for transmission esti-
mation and then follow the conventional method to estimate
atmospheric light and haze-free image. Instead of computing
the transmission map and the atmospheric light separately,
AOD-Net [17] incorporates the transmission and the airlight
into a new variable and design an light dehazing method.
Howeyver, this method tends to retain haze in dehazed result.
DCPDN [18] and DDN [19] are two methods, which incorpo-
rate the scattering model into deep network. These methods
need two networks to compute transmission maps and atmo-
spheric lights first, then restore final dehazed images by
inversing the model (1). An end-to-end fusion-based dehaz-
ing network [20] is proposed to predict weight maps to
combine three derived inputs into a single one by choosing
the most important features of them. However, GFN also
computes three inputs using traditional methods and interme-
diate confidence maps were needed to be computed. Qin et
al. design a novel pixel and channel attention [5] to improve
the dehazing performance. Pan et al. design a physics-based
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FIGURE 2. The architecture of the proposed network. The coarse multi-scale network contains three different scales, which are used to capture global
and local information. Another core of the proposed network is the fine multi-scale block, which is designed to choose the most important feature from
multi-scale features. The adaptive fusion module is designed to fuse the multi-scale features from the coarse multi-scale network.

generative networks [9] for image restoration problem, which
can incorporate the physics model to boost the dehazing per-
formance. Dong et al. employ the boosting strategy to design
a multi-scale dehazing network [21]. Zheng et al. study the
ultra-high-definition image dehazing [22] based on the phys-
ical model. Although promising results have been obtained,
the assumption that hazy images is the sum of clean image
and airlight does not hold in real complex scenes, especially
when the haze is heavy and contains noise. To improve the
dehazing performance on natural hazy images, Shao et al.
propose a domain adaptation dehazing method [23]. Different
from these methods, our method takes multi-scale ability
into the proposed network for dehazing and achieves the fast
dehazing performance.

Prior based dehazing methods can restore dehazed sharp
results at the expense of low quantitative results for synthetic
images. Data-driven dehazing methods obtain high quantita-
tive results for synthetic images but cannot remove haze from
real hazy images completely. To address the disadvantages
of prior based dehazing methods and data-driven dehaz-
ing methods, neural augmentation based dehazing meth-
ods [24], [25], [26] are proposed. Neural augmentation based
dehazing methods estimate the atmospheric light and trans-
mission map firstly, and then data-driven methods are used
to refine the the atmospheric light and transmission map.
The dehazed results are obtained by physical model with the
estimated the atmospheric light and transmission map.

Iil. PROPOSED METHOD

The proposed model is a dual multi-scale dehazing network,
the overall framework is shown in Fig. 2. The dual multi-scale
ability is from coarse multi-scale network and fine multi-scale
blocks. We firstly introduce the motivation, and then the dual
multi-scale dehazing network, which learns dehazing ability
from synthetic images.

A. MOTIVATION
Objects often have different sizes, which are hard for dehaz-
ing. As shown in Fig. 3, persons in red rectangles have
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FIGURE 3. Visual examples for objects with different scales. The objects
tend to show large variation in (a) and (b), while show small variation in
(c) and (d).

(a) (b)

different sizes due to the different depths, which result in
different densities of haze for these areas. We note that the
trees in black rectangles also have different sizes. We can see
that the objects in near areas have large size, while the objects
in far areas have small sizes. To capture such a dramatic
variation of object sizes, we propose a coarse multi-scale
network that increases the receptive field via down-sampling.
As shown in Fig. 3(c) and (d), we note that the sheep and
cranes have similar object sizes and show small variations
of object sizes, it is important to capture such a variation for
image dehazing. To capture such small variations of object
sizes, we propose a fine multi-scale block, which employs
different dilation rates to understand the variations in local
areas. In order to capture the large and small variations of
objects, we combine the coarse multi-scale network with fine
multi-scale blocks.

B. DUAL MULTI-SCALE DEHAZING NETWORK

Based on the analysis in Section III-A, we propose a dual
multi-scale dehazing network (DMSDN), the network detail
can be found in Fig. 2. The dual multi-scale dehazing network
consists of a coarse multi-scale network and fine multi-scale
blocks. The coarse multi-scale network contains three scales.
The first scale (coarse scale) contains six fine multi-scale
blocks, the second (median scale) contains six fine multi-
scale blocks, and the third scale contains six fine multi-scale
blocks. To capture the global and local features, the model
employs three scales of information to explore useful features
for dehazing.
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FIGURE 4. The architecture of the proposed fine multi-scale block (FMB).
The block contains a dense dilated block and a channel-wise attention
block. The dense dilated block is designed to extract multi-scale
information, and then the channel-wise attention block chooses the most
important information from the multi-scale information.

low Middle High Fused Convolution

FIGURE 5. The architecture of the proposed adaptive fusion module.
We first concat the multi-scale features and then use a convolution
operation to extract effective feature for dehazing.

As the learned feature map exists redundant information,
which is a reason for deep learning models cannot learn
effective features for dehazing. In order to boost the learn-
ing efficient, we propose a fine multi-scale block. The fine
multi-scale block (FMB) contains multi-scale information
extracting and an attention module, which is shown in Fig 4.
Based on the observation, the feature map contains redundant
information, applying a convolution on it cannot learning
information as much as possible. We split the feature into four
sub-features, which contain sub-information of the original
feature. We apply a convolution on one sub-feature, and
obtain a new feature (O1). We concat the O; with another
sub-feature and obtain a concated feature (Cy), then we apply
a convolution on C and obtain a new feature (O;). We repeat
this process, and obtain O3 and O4. We concat O1, O3, O3 and
04, We then apply a channel attention on the concated feature
and obtain the active feature for dehazing. The proposed
module reduce the computation time and model complexity.

To further improve the information flow, we propose an
adaptive fusion module (AFM), which fuses the features
from each scale of a coarse multi-scale network adap-
tively. As shown in Fig. 5, we first concat the high-level,
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middle-level, and low-level features, and then a convolution
operation with 1 x 1 kernel is applied, which obtains the fused
feature.

C. TRAINING LOSS

Let F denote the mapping function which is learned by the
network, and ® represents the parameters of the network. Let
{;;i =1,2,--- ,N}and {J;,i = 1,2,---, N} denote the
hazy input images and the corresponding clean ones, respec-
tively. It has been widely acknowledged that L, loss tends
to produce blurry dehazed results [18]. To solve this issue
efficiently, we introduce a novel edge-preserving loss, which
is composed of two different parts: L; loss and perceptual
loss. £ is defined as follow:

1 N
Lr= 5 D |FU @) = 7], )
i=1

where N is the number of training pair data.

To eliminate the visual artifacts of dehazed images,
we employ perceptual loss to train the model. The percep-
tual loss consists of Feature Reconstruction Loss and Style
Reconstruction Loss. Instead of encouraging the pixels of the
dehazing image J to exactly match the pixels of the ground
truth image, feature reconstruction loss encourages them to
have similar feature representations. The perceptual loss can
be defined as follow:

14,
Lper = 2, 2 |40 = 80|

i=1 j=1

> 3)

where ¢ presents the VGG-19 network, which is trained on
ImageNet, N demotes the number of training samples, and
Jj denotes the layer number. We select the layers ‘convl-2’,
‘conv2-2’, ‘conv3-2’, ‘conv4-2’, and ‘conv5-2’ in the VGG-
19 network to compute the feature reconstruction loss.

Our overall loss function is:

LU, J)= L1+ 2 Lper )

where A, controls the contribution of perceptual loss.

D. IMPLEMENTATION DETAILS AND DATASET

In the proposed model, we set 3 x 3 as the kernel size for
all convolution layers except the ones in AFM. In our exper-
iment, we set the scale number to 3. For each scale-aware
attention module, we set the dilation rate to 1, 2, 4 and 8. All
dilated layers are initialized using an identity initializer [27].
We set 11=0.01 and A,=0.01 in all the experiments. We use a
leaky rectified linear unit (LReLU) as our activation function.
We use Adam optimizer with §; = 0.9 and B> = 0.9999 to
train the network. The batch size and the learning rate are
1 and 0.0005, respectively. During training, we decrease the
learning rate decreases half for every 30 epochs. The net-
work was trained for totally 100 epochs by Pytorch with an
Nvidia GTX 2018Ti GPU. We train the proposed network on
the SOTS dataset from RESIDE [28] as the state-of-the-art
dehazing methods [5], [29].
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(a) Hazy input
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FIGURE 6. Visual comparisons of dehazed results of various dehazing methods and proposed method on real-world hazy images. It showed that
dehazed results of the proposed method are much clearer than the results of other state-of-the-art methods.

TABLE 1. Average PSNR/SSIM of dehazed results on the SOTS dataset from RESIDE.

DCP NLD | MSCNN | DehazeNet | AOD-Net GFN GDN | EPDN | BPPNet | PhysicsGan | FFA-Net | MSBDN | AirNet Ours
PSNR | 16.62 | 17.29 17.57 21.14 19.06 2230 | 32.16 25.06 27.16 29.43 36.39 33.79 20.58 34.80
SSIM 0.82 0.75 0.81 0.85 0.85 0.88 0.98 0.92 0.93 0.93 0.99 0.98 0.87 0.99

TABLE 2. Averaged DHQI scores for 79 natural hazy images. The best result is marked with red color, while the second best is marked with blue color.

DehazeNet | FFA-Net | MSDBN | EPDN | DCP | NLD | AOD-Net | Our
58.96 5533 5432 | 60.84 | 51.92 | 5275 | 5567 | 59.06

TABLE 3. Density values for a natural hazy image in Fig. 9. The best result is marked with red color, while the second best is marked with blue color.

Tnput | FFA-Net | AECR-Net | AiNet | EPDN | FAMEDNet | MSBDN | PSD-Net | SGID-PFF | Our

1832 | 0737 | 0294 | 0634 | 0293 | 0743 | 0802 | 0230 | 0233 | 0.185
IV. EXPERIMENTAL RESULTS A. QUANTITATIVE COMPARISON
Several state-of-the-art methods are compared in our exper- 1) RESIDE DATASET

iment including Dark Channel Prior (DCP) [2], Non-  REalistic Single-Image DEhazing (RESIDE) [28] is the
Local Dehazing (NLD) [3], MSCNN [16], AOD-Net [17],  first large-scale simulated haze dataset, which provided
Gated Fusion Network (GFN) [20], EPDN [30], GridDe-  indoor and outdoor hazy images. The hazy images in this
hazeNet [29], PhysicsGan [9], FFA-Net [5], MSBDN [21],  dataset have the ground truth, we can evaluate the dehazing
AirNet [31], and Dehamer [32] on hazy images. performance using PSNR and SSIM. The indoor part of

VOLUME 11, 2023 84703
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(a) Hazy input (b) PSD-Net (c) AirNet (d) Ours

FIGURE 7. Visual results of some recently dehazing methods and proposed method. The PSD and AirNet employ hazy images to train the
dehazing model. The dehazed results of PSD have a bright appearance and tend to leave haze. The dehazed results of AirNet have a dark
appearance and tend to show haze. The proposed method tends to show a bright appearance and recover more image details and show a
colorful dehazed results.

(d)
FIGURE 8. Demo of the degradations in the same image is not similar. We can see that the haze in yellow rectangles is thiner than areas in red
ones.

() (b)

RESIDE dataset simulates hazy images using NYU indoor 500 hazy images for test. We then evaluate the perfor-
dataset [33]. The indoor part of RESIDE dataset contains mance of our proposed network on the SOTS dataset from
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FIGURE 9. Visual results of some recently dehazing methods and proposed method.

RESIDE [28]. The comparison results on SOTS are shown
in Table 1. From the experimental comparisons, it has been
demonstrated that the proposed method outperforms the cur-
rent state-ofthe-art methods [21], [29], and achieves superior
performance with great improvements. It should be pointed
out that the FFA-Net achieves the best scores for RESIDE
dataset. However, its performance on real hazy images is
poor. We term the GridDehazeNet [29] as GDN.

B. QUALITATIVE COMPARISON

To further evaluate the proposed method, we use real images
to compare with different state-of-the-art methods. Fig. 6
shows the qualitative comparison of results with the seven
state-of-the-art dehazing algorithms [2], [9], [11], [17], [18],
[20], [21], [31], [32] on challenging real-world images.
As shown in Fig. 6(b), most of the haze is removed by
DCP, and the details of the scenes and objects are well
restored. However, the results significantly suffer from over-
enhancement (for instance, the building regions of the first
and second images are much darker than it should be.

The results of DehazeNet, AOD-Net, FFA-Net, MSBDN,
Dehamer, GridDehazeNet, and DCPDN do not have the over-
estimation problem and maintain the original colors of the
objects as shown in Fig. 6. But these methods have some
remaining haze in the dehazed results. The method of AirNet
and GFN tend to non-uniformly estimate haze concentration
and results in inhomogeneous dehazed images in Fig. 6(k).
The PhysicsGan, and EPDN generates relatively clear results,
but the images show some color distortions. In contrast, the
dehazed results by our method are clear and the details of the
scenes are enhanced moderately as shown in Fig. 6(n).

We note some works employ hazy images to train dehazing
network [6], [31]. PSD [6] employ hazy images to fine-
tune dehazing network. AirNet [6] designs a encoder-decoder

VOLUME 11, 2023

network, which can handle unknown corruption images.
As shown in Fig. 7, we can see that the dehazed of AirNet
and PSD show a haze appearance. We also note some color
distortion in the deazed result of PSD in the second row in
Fig. 7. The dehazed of AirNet looks darker than the dehazed
results of proposed method and PSD. In contrast, the pro-
posed method can restore the images details and recover a
reasonable global appearance. The AirNet assumes that the
degradations in the same image should be similar, which is
not true for image dehazing. We show an example in Fig. 8§,
which shows that the degradations in the same image is not
similar. The PSD employs several well-grounded physical
priors to fine-tune the dehazing model. However, the physical
priors arenot true for all hazy images. The proposed method
employ haze-aware model to fuse the dehazed result, which
helps the model restore high quality dehazed result.

We further compare the proposed method with some
recently End-to-End dehazing methods [5], [6], [21], [30],
[311, [34], [35], [36]. We show an example in Fig. 9. The
dehazed results of FAMED, FFA-Net, MSBDN, AECR, and
AirNet tend to retain haze. EPDN can remove haze. However,
the dehazed result of EPDN tend to lose image details. SGID-
PFF can remove haze. However, some areas of dehazed are
completely dark. PSD can enhance the hazy image. However,
the dehazed result of PSD tends to retain haze and show color
distortion. In contrast, the proposed method can restore the
images details and recover a reasonable global appearance
and colorful dehazed result.

To show the effectiveness of the proposed method, we com-
pare it with other dehazing methods. First, we show the
dehazing performance of dehazing methods on real hazy
images. Second, we show the densities of dehazed results
obtained by different dehazing methods. As shown in Table 2,
we can see that the proposed method achieve the second best
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TABLE 4. Quantitative comparison results on the indoor hazy images from RESIDE with different modules and losses.

Base | BaseNet | BaseAFM | BaseFMB Ls Full
PSNR | 27.05 32.89 33.26 34.03 34.60 | 34.80
SSIM | 0.92 0.97 0.98 0.98 0.98 0.99
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FIGURE 10. The architecture of the BaseFMB. As shown, BaseFMB contains three scales, and FMBs are used to extract features at each scale, AFM

represents the adaptive fusion module.

dehazing performance with metric DHQI [37]. The proposed
method is a data-driven dehazing method, which may do not
perform well for real-world images. However, the proposed
method is better than other data-driven dehazing methods.
To Further show the performance of the proposed method,
we show the density of the results obtained by dehazing
methods. As shown in Table 3, we can see that the proposed
method can remove haze better than other dehazing methods.

C. ABLATION STUDY

To better show the effectiveness of the proposed modules,
we design an ablation study that includes a coarse multi-
scale network, fine multi-scale blocks, and adaptive fusion
modules. We construct the series variants with different pro-
posed modules: 1) To show the effectiveness of the coarse
multi-scale network, we design a single scale model termed as
Base; 2) We add coarse multi-scale ability by removing AFM
and replacing FMBs with traditional dense blocks, which is
termed as BaseNet. We show the architecture of the BaseFMB
in Fig. 10; 3) We add AFM to the BaseNet, and we term it
as BaseAFM; 4) We replace traditional dense blocks with
FMBs, and we term it as BaseFMB; 5) The architecture
proposed in Section III, which is termed as Full. All models
are trained in the same way and tested on the indoor part from
RESIDE. As shown in Table 4, each proposed module shows
its contribution to image dehazing.

To show the influence of loss function, we add an
experiment, which only use L; norm to train the pro-
posed model. As shown in Table 4, we can see that
model trained with L; norm obtains lower quality dehazing
results.

To show the efficiency of the proposed model, we show the
run time from the variants of the proposed model. As shown

84706

TABLE 5. Run time comparison results for the variants of the proposed
model on the indoor hazy images.

BaseNet
0.0309

BaseAFM
0.0310

BaseFMB Full
0.0288 0.0289

method Base
time (ms) | 0.0303

TABLE 6. Run time comparison results for the proposed method and
other state-of-the-art dehazing methods on the indoor hazy images.

method GDN
time (ms) | 268.82

MSDBN
199.14

DMSDN
111.80

in Table 5, we can see that the proposed model run faster
than other models, such as Base, BaseNet, and BasecAFM.
The models are tested on a computer equipped with a Nvidia
Geforce 1060.

D. RUN TIME

We note that the dehazing performance has been greatly
improved. However, the dehazing speed is slow. In this
subsection, we compare the propose model with some dehaz-
ing methods, which achieve high dehazing performance.
We test the dehazing speed on a server platform, which
is equipped with eight TITAN V GPUs. The CPU of the
platform is Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz
and the memory is 512 GB. We resize the hazy images to a
fix size 512 x 512. We show the dehazing speed of state-of-
the-art methods in Table 6. As we can see that the proposed
dehazing is almost two times faster than MSDBN.

E. LIMITATION
Although the proposed model is effective for most hazy
images. However, the proposed method maybe failed for

VOLUME 11, 2023



S. Zhang et al.: Dual Multi-Scale Dehazing Network

IEEE Access

(c) Refined
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FIGURE 11. Visual results of the transmission maps and the
corresponding dehazed result of guided with (b).

some dense hazy images. We address the this problem by
using DCP loss. We show an example in Fig. 11, which is
from the prior work [38]. As shown, we can see that the
dcp loss may result in artifacts around depth jump areas.
In order to further improve the dehazing quality, we design a
novel method to improve the accuracy of transmission map.
We show the different between the DCP and the proposed
method in Fig. 11. Although the proposed model is trained
with the transmission maps estimated by DCP, The proposed
model also trained with synthetic dataset, which improve the
accuracy of the estimated transmission maps. As shown in
Fig. 11, we can see that the the transmission maps estimated
by DCP contains more details. In contrast, the visual result of
the proposed method is much smoother. We can use the new
transmission map predicting network and real hazy image to
boost the dehazing performance on real hazy images.

As proved by [39], [40], DNN-based methods often learn
low-frequency functions, while ignore the high-frequency
information. The neural augmentation framework [24] is pro-
posed to address such a problem. In the feature, we also adopt
the neural augmentation framework to improve the dehazing
quality of the proposed method.

V. CONCLUSION

In this paper, we design a dual multi-scale dehazing net-
work for single-image dehazing. The model contains a coarse
multi-scale network and fine multi-scale blocks. The coarse
multi-scale network which capture is designed to capture
large variations of object sizes, while fine multi-scale blocks
are designed to capture small variations of object sizes.
The coarse multi-scale network contains three scales, which
extract pyramidal features from the input image. To further
explore the multi-scale information, we develop a fine multi-
scale block, which extracts multi-scale information using
dilation convolution with different dilation rates and channel-
wise attention. The adaptive fusion module is designed to
boost information flowing. Extensive experiments are con-
ducted on public synthetic indoor images and natural hazy
images to show the effectiveness of the proposed method.
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