
Received 2 June 2023, accepted 28 June 2023, date of publication 18 July 2023, date of current version 26 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296537

Flexible Traffic Signal Control via Multi-Objective
Reinforcement Learning
TAKUMI SAIKI AND SACHIYO ARAI
Department of Urban Environment Systems, Division of Earth and Environmental Sciences, Graduate School of Science and Engineering, Chiba University,
Chiba 263-8522, Japan

Corresponding author: Takumi Saiki (afma6906@chiba-u.jp)

This work was supported in part by the Industrial Technology Research Grant Program from the New Energy and Industrial Technology
Development Organization (NEDO) of Japan under Grant P18010, and in part by the Japan Science and Technology Agency Support for
Pioneering Research Initiated by the Next Generation (JST SPRING) under Grant JPMJSP2109.

ABSTRACT Deep reinforcement learning has been extensively studied for traffic signal control owing to its
ability to process large amounts of information and achieving superior performance control. However, this
method acquires flow-specific policies during learning. Thus, its performance under inexperienced traffic
flows is not guaranteed. Moreover, the traffic signal control problem formulation assumes that the optimal
policy differs for each traffic flow ratio owing to the trade-off between orthogonal roads at an intersection.
Therefore, multiple policies must be switched to avoid performance decay for traffic flow changes. In this
study, we use multi-objective reinforcement learning to determine the policy corresponding to each traffic
flow ratio exhaustively. Subsequently, these policies are switched to the current traffic flow ratio to achieve
flexible control over traffic flow changes. The proposed method achieves the shortest average travel times
in all environments compared with rule-based and single-objective reinforcement learning methods for
stationary traffic and traffic flows with varying flow ratios.

INDEX TERMS Traffic signal control, reinforcement learning, multi-objective optimization.

I. INTRODUCTION
Reinforcement learning (RL)methods have beenwidely stud-
ied in traffic signal control (TSC) as new alternatives to
rule-based methods with a heavy hand computational burden.
Generally, in rule-based methods, the goal is to reduce con-
gestion and bias. However, guaranteeing optimal control with
these methods is often challenging [1], [2].

By contrast, RL guarantees optimal convergence and is
expected to obtain a policy (control law) with performance
superior to rule-based methods. However, the computational
power and requiredmanual settings of the considered features
have limited the early application of RL methods. The advent
of deep reinforcement learning (DRL), which uses deep
learning for feature extraction, has substantially improved
performance owing to its ability to learn with more detailed
information. Since then, several TSC methods based on DRL
have been proposed [3], [4], [5], [6].
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In this study, we focus on the following two features that
render the application of RL to TSC challenging:

1) Non-Markov properties
RL generally requires Markovian assumptions regard-
ing the environment. Therefore, most current research
addresses the control of stationary traffic flow. In gen-
eral, actual traffic flows can also be assumed stationary
for a particular period. However, several periods can
have different flow rates. Thus, different Markov deci-
sion process models should represent these periods.

2) Different policies are required for different traffic
flows
The optimization target of RL is a scalar reward. This
setup is natural for a problem with a single objec-
tive. However, in a multi-objective problem, providing
multiple types of rewards is essential. Furthermore,
if a trade-off exists between objectives, it may not be
possible to obtain policies that consider the priority of
each objective.
Multi-objective reinforcement learning (MORL) is
attracting attention in these fields. MORL is an
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TABLE 1. MDP/MOMDP element.

extension of RL applied tomulti-objective optimization
problems and can learn a Pareto policy that consid-
ers the priority of each objective. MORL is used
in automated driving [7] and pedestrian simulation
[8]. Moreover, the TSC problem presents a traffic
flow trade-off between orthogonal roads. However, the
time-varying nature of traffic flow implies that the pri-
ority of each road varies. Therefore, multiple policies
tailored to different traffic flows are required to pre-
vent performance degradation under changing traffic
flows.

For (1), stable control has been achieved in [9], even
under traffic conditions that are not experienced during train-
ing, whereas for (2), no studies have yet considered this
trade-off.

In this paper, we propose a flexible TSC method and solve
problem (2) via the following two steps: (i) We formulate the
problem as a multi-objective optimization problem to mini-
mize the travel time for each roadway. Subsequently, we use
MORL to obtain Pareto policies and (ii) switch between the
obtained policies according to the traffic flow ratio.

The remainder of this paper is organized as follows:
Section II provides an overview of RL, Section III defines
the research problem, Section IV describes the proposed
method, Section V discusses the computer experiments, and
Section VI summarizes the study.

II. BACKGROUND KNOWLEDGE
A. MULTI-OBJECTIVE REINFORCEMENT LEARNING
RL is a machine-learning method [10] that obtains a policy
for an agent through trial and error in an environment that
consists of a Markov decision process (MDP). MORL [11]
extends RL to a multi-objective MDP (MOMDP). The MDP
and MOMDP are defined as ⟨S,A, T , R, γ ⟩. The elements
of the MDP and MOMDP are presented in Table 1. Notably,
the reward function R ∈ Rn returns a reward vector for each
objective. n indicates the number of objectives. The MDP
can be understood as a special form of the MOMDP in an
environment with a single objective (n = 1).
An agent’s policy π : S → A represents the probability

of selecting an action in each state. Equation (2) denotes the
value of state s. It is computed from the rewards in state s and
the expected value of future rewards.

The Q-value, which is the value of a pair of states and
actions, is represented by Equation (3).

The optimal policy with respect to the optimal Q-value
functionQ∗(s, a) is the action that maximizesQ∗(s, a) for any
given s, which is denoted by Equation (1). The agent’s goal is

to determine the optimal policy π∗ satisfying Equation (1).

π∗
= argmax

a
Q∗(s, a) (1)

Vπ (s) = Eπ

{
∞∑
k=0

γ krk+1

}
(2)

Qπ (s, a) = Eπ

{
∞∑
k=0

γ krk+1

}
(3)

Note that the policy with weights (priorities) must be
scalarized for each objective during the learning process to
determine the optimal policy indicated in Equation (1) from
the reward vector. The policy obtained in this process is
known as the Pareto policy. For the value functions V π i

and
V π j

that are obtained from the Pareto policies π i and π j in
the MOMDP for objective n ∈ N , V π i

n > V π
j
n , ∃n ∈ N

and V π i
n ≤ V π

j
n , ∀n ∈ N , π i dominates π j. A policy that is

not dominated by all policies π is known as a Pareto optimal
policy, and the set of Pareto optimal policies is referred to as
the Pareto front.

1) SINGLE-POLICY AND MULTIPLE-POLICY APPROACH
The scalarization method from the reward vector can be
divided into single-policy and multiple-policy approaches,
as shown in Figure 1, depending on the scalarization
procedure.
In the single-policy approach (Figure 1 top), the acquired

reward is immediately scalarized using a scalarized function.
The weight w is a predetermined priority for each objective.
Moreover, the linear weighted sum presented in Equation (4)
is used as a simple scalarization function, and the optimal pol-
icy presented in Equation (1) is obtained from the scalarized
rewards using Equation (2) and Equation (3). The usual RL
algorithm can be used in the single-policy approach; however,
only one Pareto solution is obtained, and multiple training
cycles with different weights are required to obtain a Pareto
front.

R = w · r = w1r1 + w2r2 + . . .wnrn (4)

w1 + w2 + . . .wn = 1 (5)

By contrast, the multiple-policy approach (Figure 1 bot-
tom) computes V and Q directly from r as vectors using
Equation (2) and Equation (3). This approach scalarizes V
and Q with weights w at the action-choosing time. No prior
weight or the Pareto front in single training is required for
this approach. However, a dedicated algorithm for learning
as vectors is required.

B. DRL; APE-X DEEP Q-NETWORK
DRL which introduces deep learning for feature extraction,
has significantly improved performance because this method
can learn with more detailed information. In the DQN, the
Q function is approximated by a deep neural network that
enables learning in real-time even in continuous-valued and
multi-dimensional state spaces [12]. A correlation exists
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FIGURE 1. Single-policy approach(top) and multiple-policy approach
(bottom) MORL workflow. Single-policy Q function inputs a state and
outputs the scalarized Q-value. Multiple-policy Q function inputs the Q
function and outputs the Q vector. Both methods share many parts (gray
areas).

between the (s, a, s′, r) tuples that the agents experience,
and updating the network in the order in which they are
experienced causes a bias. The DQN solves this problem
by using experience replay, which randomly retrieves and
updates the previous agents’ experiences that are stored in
the replay buffer.

However, experience replay requires large amounts of data
to reduce sampling bias, and its simulation is time consuming.
Ape-X deep Q-network (DQN) [13] is a deep RL method
based on the DQN [12] accelerates learning by parallelizing
the simulations.

C. MAX PRESSURE CONTROL
Max pressure control is a rule-based decentralized TSC
method [2] with proven superior performance [14]. Con-
ventional rule-based methods only observe the vehicles that
enter an intersection. However, such methods do not consider
congestion at adjacent intersections, making coordinated con-
trol between intersections impossible and complicating the
entire traffic network optimization. By contrast, max pressure
control adds the outbound traffic flow from the intersection
to the observation range and sets control rules considering
congestion at adjacent intersections.

III. PROBLEM DOMAIN AND RELATED RESEARCH
A. FLEXIBILITY TO CHANGES IN TRAFFIC FLOW
This study aims to achieve flexible control of various traffic
flows in TSC using RL. A schematic of the intersection
environment (isolated intersection) considered in this study is
shown in Figure 6. The observation area consists of a control-
ling intersection and roads up to adjacent intersections. The
traffic flow to be controlled is of vehicles at the intersection

with traffic signals and on connecting roads. Two types of
lanes connect at each intersection: one is to the intersec-
tion (inbound lane), and the other is from the intersection
(outbound lane). Furthermore, the east-west and north-south
roads are orthogonal to each intersection.

Changes in the traffic flow at the intersection can be clas-
sified into two categories: (1) changes in the traffic flow (the
number of vehicles in the inbound section) and (2) changes
in the traffic flow ratio (the ratio of the number of vehicles in
the east-west and north-south directions). Cabrejas et al. [9]
investigated the performance of RL-TSC for the problem (1).
They reported that RL-TSC can achieve lower delays and
fewer waiting vehicles compared to rule-based control, even
when the traffic flow is higher than that experienced during
the training phase.

Therefore, problem (2) can be solved if flexibility to
changes in the traffic flow ratio can be achieved and real-
izing control that can be executed in a natural environment
is feasible. However, as mentioned in the previous section,
a trade-off exists between orthogonal roads, and no optimal
policy is available to accommodate multiple traffic flows.

Therefore, we propose a new TSC method that obtains
multiple policies for each traffic flow ratio and switches
among them according to the traffic flow ratio.

B. RELATED RESEARCH
1) TSC via RL
Several previous studies have focused on acquiring a single
objective optimal policy.

Genders and Razavi [3] used changes in the delay as
rewards to minimize vehicle loss time. Gao et al. [15] used
the change in the sum of the waiting times of all vehicles
as a reward. Huo et al. [16] proposed a method to real-
ize cooperative control among agents in multi-agent RL to
control multiple intersections. In this study, the number of
speed-restricted vehicles in the entire traffic network is used
as a reward to achieve cooperative control.

All these indicators present an accurate image of the vehi-
cle’s condition. However, they are difficult to quantify in
practice. Therefore, several methods have been proposed to
use easily measurable indicators as rewards. Zheng et al. [17]
investigated state representation and rewards in TSC using
RL and demonstrated that sufficient performance can be
obtained even with the queue length. Both Wei et al. [5] and
Chacha et al. [6] used pressure, an idea from max pressure
control, as a reward to achieve cooperative control when
different agents control a multiple-intersection environment
at each intersection.

2) TSC via MORL
The purpose of TSC is to facilitate traffic; however, mul-
tiple facilitation indicators are available. Therefore, several
studies have introduced MORL to TSC and considered mul-
tiple objectives. Liao et al. [18] proposed a TSC method
that considers traffic safety and maximum throughput.
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Sometimes, some drivers ignore the red signal when their
waiting time exceeds their impatience limit. For this, they
introduced impatience as additional rewards with throughput.
Gong et al. [19] proposed the MORL-based TSC method to
obtain the policy that considers the trade-off between accident
prevention and traffic jam reduction. This method focuses
on the influence of vehicle location and signal switching
on the probability of accidents. From the two rewards of
safety and efficiency, TSC is implemented at the expense
of efficiency in situations with an increasing probability of
accidents. The method uses a single-policy approach to find a
Pareto solution. As safety is an objective and a parameter that
does not change over time, only one type of policy is required.
However, multiple policies are required if the objectives’
weights vary over time, rendering the single-policy method
unsuitable.

3) TSC THAT SWITCHES MULTIPLE POLICIES
Focusing on the priority of each road, Abdoos et al. [20] pro-
posed a method that switches between a control considering
the wide-area traffic network and that considering only the
vicinity of the intersection. This method trains two policies.
One policy uses rewards from all roads adjacent to the inter-
section. The other policy uses rewards related to arterial roads
only. Subsequently, the method switches between the two
policies based on rules, depending on the traffic situation.

IV. PROPOSED APPROACH
This study focuses on MORL for acquiring multiple control
methods according to traffic flow ratios. Owing to trade-offs
between orthogonal intersections, obtaining a Pareto policy
is necessary to implement optimal control over the traffic
flow. However, a single Pareto policy is not always optimal
owing to changing traffic flows. Therefore, it is necessary to
obtain multiple Pareto policies with different weights exhaus-
tively. Notably, twomethods are required to select the optimal
Pareto policy for the current traffic flow. In the MORL
framework, the weights of each road replace the traffic flow
ratio, and rewards for each objective replace the rewards for
each orthogonal road. Our proposed method considers the
following two-step approach:

1) Acquiring multiple Pareto policies using MORL.
MORL learns the Q vector and V vector from r.

2) Calculating appropriate weights for selecting Pareto
policy using the current traffic condition. With weights
and Q,V, we can choose a single policy to control the
traffic signal.

A. TERMINOLOGY
The terminology for the proposed method is defined as
follows.
Phase: Phase is a vector that indicates the permitted direc-

tion of traffic at an intersection.
Policy: In this study, we define a policy as a traffic signal

switching law for a given traffic flow ratio.

FIGURE 2. Pareto frontier and CCS.

Reward Vector : The reward in this study is the optimization
goal in RL. Because MORL is used in this study, the rewards
are the measured vectors for each orthogonal road.
State Vector : Based on the proposal by Wei et al. [5] and

Chacha et al. [6], this study uses the number of vehicles in
each lane as an input to the RL agent.

B. OBTAINING MULTIPLE POLICIES
1) ENVELOPE MOQ-LEARNING
The acquisition of multiple Pareto policies requires low com-
putational complexity and exhaustiveness of Pareto policies.
Therefore, we employed envelope MOQ-learning [21] to ful-
fill this requirement. Envelope MOQ-learning is an MORL
method for obtaining a convex coverage set (CCS) in one
training. CCS is the convex hull of the Pareto front in the
Pareto solution set, as illustrated in Figure 2. Although the
Pareto front includes a nonconvex solution set, only the CCS
is obtained because envelope MOQ-learning scalarizes the
weights per objective using linear summation.

The algorithm for envelope MOQ-learning is presented in
Algorithm 1. The goal of the envelope MOQ-learning is to
estimate the Q vector before scalarization. The original loss
function LA for this objective is presented in Equation (6).

LA(θ ) = Es,a,w

[
||y− Q(s, a,w; θ)||22

]
(6)

As the Pareto front contains numerous discrete solutions,
the optimal loss plane is not flat; thus, directly optimiz-
ing the loss function LA is challenging. Therefore, envelope
MOQ-learning introduces an auxiliary loss function LB,
as Equation (7) indicates. The optimization function is
applied to the weighted sum of the two loss functions using
Equation (8), and convergence to the optimal solution is
achieved by gradually increasing the weight of LA. This
method is known as homotopy optimization.

LB(θ ) = Es,a,w

[
|wTy− wTQ(s, a,w; θ )|

]
(7)

∇θL(θ ) = (1 − λ)∇θLA(θ ) + λ∇θLB(θ ) (8)
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Algorithm 1 Envelope MOQ-Learning
Require: weight distribution Dw, trajectory pλ, balance weight λ (increasing from 0 to 1)
1: replay Dτ , initialize network Qθ , λ = 0.
2: for episode = 1, . . . ,M do
3: sample the linear weights w ∼ Dw.
4: for t = 0, . . . ,N do
5: observe st and ϵ-greedy action selection

6: at =

{
random action a ∈ A (ϵ)
max
a∈A

wTQ(st , at , rt , st+1) (1 − ϵ)

7: Vector reward rt , observe next state st+1. Store transition (st , at , rt , st+1) in Dτ .
8: if Update then
9: Sample Nτ transitions (st , at , rt , st+1) ∼ Dτ and Sample Nw weights W = {wi ∼ Dw}

10: for all 1 ≤ i ≤ Nw and 1 ≤ j ≤ Nτ do
11: Compute yij = (T Q)ij =

12:


rj, sj+1 is in terminal states
rj + γ argQ max

a∈A
w′

∈W

wT
i Q

(
sj+1, a,w′

; θ
)
, (otherwise)

13: end for
14: Qθ updated using Equation (8).
15: λ increased for each Pλ trajectories
16: end if
17: end for
18: end for

TABLE 2. Notation list.

The multiple-policy approach requires more samples for
training than the single-policy method because it is necessary
to determine a policy for each weight. In envelope MOQ-
learning, the state transition probabilities are independent
of the weights w. Envelope MOQ-learning improves the
sample efficiency by updating the network using experience
acquired by other weights regarding hindsight experience
replay [22].

2) STATE REPRESENTATION
The notation for the environment is listed in Table 2.
The agent controlling intersection I observes the number of

vehicles {v(l), l ∈ I (L)} in each lane connected to intersection
I and the current signal indication pt (I ) as a one-hot vector at

FIGURE 3. Action Set.

FIGURE 4. Phase Changing setting.

time t . Therefore, the observed dimensions of the agent are
|L(I )| + 4.

3) ACTION SETTING
The agent action involves selecting the present phase pt+1 in
the next step and selecting one among four types of phases,
including the left-turn-only phases shown in Figure 3. The
phase change following this action selection is depicted in
Figure 4. If the selected phase differs from the previous phase,
this phase is changed to a new phase after the yellow and red
phases. In this study, when the same indication is continued,
the green phase is shown for 10 s, and when it changes, the
yellow and red phases of ty = 2 s tr = 3 s, respectively, are
interspersed, followed by a green signal of 5 s.

VOLUME 11, 2023 75879



T. Saiki, S. Arai: Flexible Traffic Signal Control via MORL

FIGURE 5. Proposed method of control flow.

4) REWARD FUNCTION
The concept of max pressure control has been applied to
the state and reward representation in recently proposed RL
methods [5], [6]. Our method also implements this con-
cept as the state and reward representation. Here, pressure
is expressed in q(l) using the queue lengths l ∈ LIN of
the incoming lane and l ∈ LOUT of the outgoing lane for
the roads connected to the intersection. The pressure is an
index that increases along a direction that does not worsen
the congestion occurring at adjacent intersections, and it is
suitable for rewards in multi-agent control when intersections
are required to cooperate. Moreover, the pressure is used as
a vector reward for each orthogonal road, as Equation (10)
indicates.

Pt (L(I )) = −

 ∑
L(I )IN

qt (l) −

∑
L(I )OUT

qt (l)

 (9)

rt = (Pt (L(I )NS ),Pt (L(I )EW )) (10)

5) PARAMETER SHARING
The learning process may be more complicated in a
multi-agent environment than in a single-agent environment
because the actions of each agent affect the state transitions
of the environment. We use parameter sharing, where the
policies are shared among agents, to accelerate the learn-
ing process and improve performance by allowing agents to
acquire various experiences.

6) PARALLELIZATION
Envelope MOQ-learning differs from the DQN only in the
network structure [12], whereas the primary learning struc-
ture is the same. Therefore, we parallelized the actor based
on Ape-X DQN [13] to accelerate the experiments.

C. SWITCHING POLICIES
We use envelope MOQ-learning to acquire policies for
multiple road priorities. Subsequently, we switch policies

Algorithm 2Weight Caluculation
Require: East-west incoming lane L(I )EW , north-south

incoming lane L(I )NS , number of vehicles per lane L(I ).
Ensure: weight vector w

1: wNS =

∑
L(I )NS v(l)∑

L(I )EW v(l) +
∑

L(I )NS v(l)

2: wEW =

∑
L(I )EW v(l)∑

L(I )EW v(l) +
∑

L(I )NS v(l)
3: w = (wEW ,wNS )

according to the procedure summarized in Figure 5. The
acquired neural network requires two weight inputs to com-
pute the action: (1) at the input and (2) as a scalarization after
the output.

In the TSC problem, the weights can be viewed as priorities
per road; that is, the traffic flow ratios per road. The exact
traffic flow ratio can be determined by considering the entire
intersection environment. In this study, a simple method was
used to determine the priority based on the ratio of the number
of vehicles using the algorithm presented in Algorithm 2.

V. COMPUTER EXPERIMENTS
The performance of the proposed method was evaluated by
conducting computer experiments using the traffic simulator
SUMO [23]. We used a machine with Corei-9 10980XE,
RTX-2080 Ti with 128 GB RAM. The performance of the
proposed method was compared with that of the rule-based
and single-objective RL methods.

Two experimental environments were established: an iso-
lated intersection environment, and an environment with four
intersections arranged in a grid, as illustrated in Figure 6.
The distances between intersections and from the edges of
the environments to the intersection were 200 m in both
environments.

A. COMPARISON METHODS
The rule-based max pressure control and single-objective
RL methods were used for comparison. The single-objective
RL method had the same state representation and actions
as the proposed method, and its reward was immediately
scalarized.

B. TRAFFIC FLOW
We used a 60 min simulation per episode with a stationary
traffic flow ofFEW = FNS = 0.3 veh/sec for training. During
the test, two types of traffic flows were used: (1) the same
stationary traffic flow as in the training simulation, and (2) a
traffic flow where the traffic flow ratio changed every 10 min
while maintaining FEW + FNS = 0.6 veh/sec according to
Table 3. The simulation was performed for 80 min in a traffic
flow environment. The environment considered 2×2 intersec-
tions and the traffic flow on two roads in the same direction
was assumed to vary identically.
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FIGURE 6. Experimental environments (Isolated intersection and 2 × 2
Intersections).

TABLE 3. Traffic flow setting in ratio-diverse traffic flow (80 [min]).

C. EVALUATION
The moving average of the vehicles that appeared in the
environment during each 10min periodwas used as a compar-
ison index. The mean and standard deviation of the moving
average for each of the ten tests accounted for performance
differences owing to random numbers.

D. EXPERIMENTAL RESULTS
1) ISOLATED INTERSECTION ENVIRONMENT
We compared the performance of the three methods for the
isolated intersection, as illustrated in Figure 6. The average
travel times of the three methods under the same training
traffic flow are summarized in Figure 7, and the average and
standard deviation of the ten trials of the average travel time
every 10 min are listed in Table 4. The proposed method
reduced the average travel time compared with the single-
objective RL method. Moreover, the average travel time was
comparable to the rule-based max pressure control. The per-
formance of the single-objective RL method was poor than
that of the proposed method under the learned traffic flow
owing to the policy change during congestion. Even if the
traffic flow is stationary at intersections, the priority of each
road constantly changes owing to congestion.

The experiments considering changing traffic flow ratios
are illustrated in Figure 8 and Table 5. The performance of
the single-objective RL method was poor and less flexible
because it could not follow the changes in the traffic flow

FIGURE 7. Average travel time of (1) Max Pressure Control,
(2) Single-Objective RL, and (3) Proposed Method under stable traffic
flow.

FIGURE 8. Average travel time of (1) Max Pressure Control
(2) Single-Objective RL (3) Proposed Method under radio-diverse traffic
flow.

ratios. The proposed andmax pressure control methods main-
tained stable average travel times in both experiments. The
max pressure control and proposed methods could follow the
changes in the road priority by prioritizing congested roads
and switching the Pareto policies, respectively. Thus, the
proposed method is flexible for both stationary and dynamic
traffic flows.

2) MULTIPLE INTERSECTION ENVIRONMENT
We compared the performance of the three methods in
multi-agent control of a multiple-intersection environment.
In particular, the average travel times of the three methods
under a stationary traffic flow are summarized in Figure 9,
and the average and standard deviation of the ten trials for
the average travel time every 10 min are listed in Table 6.

The proposed method consistently achieved a short
average travel time. This indicates that the proposed
method can obtain stable Pareto policies even in a multi-
agent environment. Unlike the experiment at the isolated
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TABLE 4. Average travel time of (1) Max Pressure Control, (2) Single-Objective RL, and (3) Proposed Method under stable traffic flow in an isolated
intersection environment.

TABLE 5. Average travel time of (1) Max Pressure Control, (2) Single-Objective RL, and (3) Proposed Method under ratio-diverse traffic flow in an isolated
intersection environment.

TABLE 6. Average travel time of (1) Max Pressure Control, (2) Single-Objective RL, and (3) Proposed Method under stationary traffic flow at multiple
intersections. The proposed method achieves the same performance as the existing methods for the learned traffic flows.

TABLE 7. Average travel time of (1) Max Pressure Control (2) Single-Objective RL, and (3) Proposed Method under ratio-diverse traffic flow at multiple
intersections. Only the proposed method achieved stable average travel times for traffic flow changes not experienced during training.

FIGURE 9. Average travel time of (1) Max Pressure Control,
(2) Single-Objective RL, and (3) Proposed Method under stable traffic
flow in 2 × 2 intersections environment.

intersection, the average travel time of the max pressure
control method was significantly worse than that of the other
two methods, and the average travel times of the proposed
and single-objective RL methods were almost the same. The
superior performance of the single-objective method com-
pared with that of the isolated intersections can be attributed
to the generalization of the learning policy through parameter
sharing.

The experiments considering changing traffic flow ratios
are illustrated in Figure 10 and Table 7. Although the
average travel time of the single-objective RL method deteri-
orated during the experiment, the proposed method always
maintained the same average travel time. In a multi-agent

FIGURE 10. Average travel time of (1) Max Pressure Control,
(2) Single-Objective RL, and (3) Proposed Method under ratio-diverse
traffic flow at 2 × 2 intersection environment.

environment, the traffic flow changes not only because of
the incoming traffic flow from outside but also owing to
the actions of other agents. Experimental results indicate
that only the proposed method can suppress the performance
deterioration caused by these two changes. This result sup-
ports the hypothesis that the proposed method is flexible to
traffic flow ratio changes.

VI. CONCLUSION
A. SUMMARY
In this paper, we proposed an RL-based TSC considering the
temporal variability of traffic flow and the inherent trade-offs
between adjacent roads.
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Although RL has been applied in various fields in recent
years, the optimization goal must be expressed as a reward
for scalar values. Therefore, MORL is used in multi-objective
environments where trade-offs need to be considered.

This study focuses on the changing tradeoffs between
orthogonal roads for the TSC problem. At intersections, it is
necessary to consider the tradeoffs among roads and obtain
a Pareto policy according to the traffic flow at the time of
control. However, a single Pareto policy may result in poor
performance because of the time-varying traffic flow. There-
fore, to achieve flexible control according to the traffic flow,
we proposed a method that employs a multi-policy approach
and selects Pareto policies based on observed conditions post-
training. The proposed method can be introduced in other
fields because it is widely applicable to problems wherein the
priority of each objective changes over time.

B. FUTURE RESEARCH
A possible future development is the introduction of hierar-
chical control. In the proposed method, the policy is switched
by considering only the area around the intersection to be
controlled. However, more global decisions can be made
by considering traffic conditions at adjacent intersections.
Hierarchical control, which separates actual signal switching
from road priority decisions, is therefore considered suit-
able because Pareto policy learning does not require global
decisions.
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