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ABSTRACT Turbocharger is one of the vital parts of a diesel engine causing a high failure rate. Its surface
vibration signal contains important time-varying features. To better process the nonstationary signals with
time-varying features and perform the time-frequency transformation on the turbocharger surface vibration
signal, a novel multi-objective matched synchrosqueezing chirplet transform method is proposed in this
paper. The method is based on the Linear Chirplet Transform to optimize the selection of the demodulation
rate. Parameters such as Rayleigh entropy and signal-to-noise ratio are used as targets to select the value
of the optimal demodulation rate. Then the local maximum synchrosqueezing transform is used as a
post-processing method for time-frequency rearrangement of the signal. This method improves the energy
concentration of the transformation result while maintaining the ability of signal reconstruction. On the test
stand, the turbocharger fault samples were obtained. The time-domain signals of the turbocharger at the 1×,
2×, and 9× frequencies were reconstructed based on the time-frequency transformation results, and fault
characteristic parameters were extracted from them. Then the effectiveness of the fault feature parameter
identification ability was validated by Principal Component Analysis. The study showed that our proposed
MOMSSCTmethod’s transformation results have high time-frequency energy aggregation, clear trajectories,
and a 37.5% reduction in frequency spread width. The extracted fault characteristic parameters have good
fault classifiability under various turbocharger operating conditions. Using the fault features extracted by
MOMSSCT, the diagnostic accuracy rate can reach more than 85%.

INDEX TERMS Fault feature parameter extraction, time-frequency transformation, turbocharger.

I. INTRODUCTION
As one of the crucial components of marine diesel engines,
the turbocharger experiences difficult working conditions.
It is easy to fail and accounts for the highest failure rate of
all engine parts. As a result, its failure will have a significant
negative effect on the dependability of diesel engines [1],
[2]. To prevent and avert malignant turbocharger mishaps,
research on turbocharger monitoring and diagnosis technol-
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ogy have tremendous significance and engineering applica-
tion value [3], [4].
One of the commonly used techniques for conditional

monitoring and fault diagnosis of rotating machinery is
vibration analysis [5], [6]. Vibration signals from mechan-
ical devices under monitoring are measured. Then, the
condition identification and fault diagnosis of mechanical
equipment can be accomplished by extracting their charac-
teristics with signal analysis processing techniques [7], [8].
One way to analyze the signal is The Fourier transform.
The Fourier transform can be used to evaluate and process
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smooth signals whose frequency does not change over time
strongly [9], [10]. Due to the marine turbocharger’s vari-
able operating conditions, the instantaneous frequency of
its vibration signal changes swiftly. Time-varying stiffness
caused by mechanical failure will also give rise to the sig-
nal’s strong modulation characteristics [11]. For the above
reasons, it is challenging to analyze and process the tur-
bocharger’s vibration signal using the Fourier transform [12].
The conventional approaches for processing non-stationary
signals include the short-time Fourier transform (STFT) and
wavelet transform. Time-frequency analysis (TFA) calculates
the time-varying properties of time-series signals by extend-
ing them into time-frequency representations (TFR) [13],
[14]. To improve the resolution of the time-frequency
representation, obtain detailed time-varying features and
maintain the reconstructability of the signal, some schol-
ars [15], [16], [17] proposed a new time-frequency analysis
method. Due to Heisenberg’s inaccuracy principle, the gen-
erated time-frequency representation is commonly blurred.
An accurate time-frequency description of time-varying sig-
nals is difficult to provide.

Auger and Flandrin [18], [19] developed a time-frequency
rearrangement (RM) as a post-processing method for the
traditional time-frequency analysis of TFA to enhance the
aggregation of the original time-frequency representation.
A two-dimensional redistribution integral is then performed
on the time-frequency representation to obtain clearer char-
acteristics. However, the time-frequency rearrangement is
based on the time-frequency spectrum to redistribute energy
from both time and frequency directions. The ability of
signal reconstruction is lost. The newly assigned posi-
tions of each time-frequency point are calculated based
on the time-frequency phase information. By concentrat-
ing the time-frequency energy on the instantaneous fre-
quency estimation trajectory in the frequency direction,
the synchrosqueezing transform (SST) greatly enhances
the TF resolution of the traditional TFA approach [20],
[21]. SST is frequently utilized in machine defect detec-
tion [22], [23], radar FM signals [24], speech process-
ing [25], and other applications. However, the energy in the
time-frequency representation still seems to be scattered. And
its time-frequency aggregation is much diminishedwhen SST
is used to evaluate the turbocharger’s strongly time-varying
signal.

To further enhance the aggregation of the time-frequency
representation when working with strongly time-varying sig-
nals, Oberlin et al. proposed a second-order and higher-order
synchrosqueezing transform method [26], [27]. However, the
computational capacity required to implement this method
grows exponentially with the number of transform orders.
Yu et al. suggested a multiple synchrosqueezing transform
method [28] that effectively concentrates the time-frequency
representation’s energy without requiring more computation.
The above Muti-order synchrosqueezing transform’s time-
frequency point allocation is a prevalent problem that affects
all of the aforementioned methods. The time-reassigned syn-

chrosqueezing transform, the local maximum synchrosqueez-
ing transform (LMSST), and the synchroextracting transform
were all devised by He et al. [29], [30], [31]. The LMSST
successfully resolves the issue of multiple time-frequency
point allocations. Its processing capacity for strongly
time-varying signals increased. Whereas, the effect of the
time-frequency transformation depends on whether the
LMSST’s window function is well-matched with the sig-
nal. The exact bandwidth of the signal components is dif-
ficult to calculate, which will also blur its time-frequency
representation.

The above discussion indicates that the existing time-
frequency transformation produces a blurred picture of rep-
resentations, when processing strongly time-varying signals.
It is difficult to capture turbocharger fault features in vibration
signals. To effectively reduce the influence of the signal
strongly time-varying characteristics on the time-frequency
transformation, the multi-objective matched synchrosqueez-
ing chirplet transform (MOMSSCT) method is proposed
in this paper. It improves the energy concentration of the
time-frequency representation for turbocharger vibration sig-
nals with strongly time-varying characteristics. On a tur-
bocharger stand, a fault simulation test for dynamic unbal-
ance and bearing wear was performed. Based on the results
of MOMSSCT, the 1, 2 and 9-octave time domain signals
of the turbocharger were reconstructed. And fault feature
parameters of the turbocharger were extracted from the time
domain. The turbocharger’s vibration, speed, and orbit of the
shaft centre were measured simultaneously at various speeds.
The validity of the fault feature parameter identification is
confirmed by Principal Component Analysis and Diagnostic
algorithm.

This article’s main contributions are summarized below.
1) This paper examines the theoretical limitations of the

LMSST. It provides a detailed explanation of why LMSST
cannot accurately represent the TF information of strongly
time-varying signals.

2) This article presents an improved LMSST technique,
MOMSSCT, which eliminates the difficulty in calculating
the exact bandwidth of the signal components. It increases
the energy concentration of the transformation result while
maintaining signal reconstruction capability.

3) The validity of fault characteristic parameters extracted
by MOMSSCT is verified by principal component analysis
and diagnosis algorithm. The diagnostic accuracy rate can
reach more than 85%.

4) This article gives an excellent tool for moni-
toring nonstationary turbocharger vibration data, which
aids in determining the source of aberrant
vibration.

II. METHODOLOGY
A. PROBLEM DEFINITION AND ANALYSE
The study of signal analysis is based on the SST theory. Con-
sider amulti-component signal s(t) having FM characteristics
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[30], then we formulate it as:

s(t) =

K∑
k=1

Ak (t)eiϕk (t) (1)

where K is the total number of signal components, and
Ak (t) and ϕk (t) stand for the kth component’s instantaneous
amplitude (IA) and instantaneous phase (IP), respectively.
The signal is subjected to STFT. The window function, g(t),
is utilized to translate it to the time-frequency domain using
the transformation equation:

G(t, ω) =

∫
+∞

−∞

s(u)g(u− t)e−iω(u−t)du (2)

When the signal is a strong time-varying signal, the phase
function of the signal needs to be described by a higher-order
Taylor expansion. Assuming that ∃ε is sufficiently small, for
∀t ,

∣∣ϕ′′′
k (t)

∣∣ ≤ ε, and
∣∣A′

k (t)
∣∣ ≤ ε. Based on the above

assumptions, the second-order expansion of the signal can be
written as the form u= t, Ak (u) = Ak (t). Thus ϕk (u) and s(u)
can be written in the following form [30]:

ϕk (u) = ϕk (t) + ϕ′
k (t)(u− t) +

ϕ′′
k (t)(u− t)2

2
(3)

s(u) =

K∑
k=1

Ak (t)e
i
[
ϕk (t)+ϕ′

k (t)(u−t)+
ϕ′′(t)(u−t)2

2

]
(4)

where ϕ′
k (t) and ϕ′′

k (t) are the instantaneous frequency and
modulation rate of the kth component of the signal. The
optimal frequency interval 1ω(t) in LMSST is shown in (5).

1ω(t) =

K∑
k=1

√
2
[
1 + ϕ′′

k (t)
2
]
ln

1
t0

(5)

From(5), the 1ω(t) value is calculated using the window
function width t0 and the modulation rate ϕ′′

k (t). However,
for most signals, it is difficult to calculate the modulation
rate directly. So the optimal frequency interval value is also
difficult to calculate.

B. NEW MOTHED
The limitations of the LMSST method were analyzed in
the previous section. For processing strongly time-varying
signals, this paper proposes the MOMSSCT. Based on the
Linear Chirplet Transform (LCT), a MOMSSCT is proposed.
To optimize the parameters of the FM transform, the four
parameters of Rayleigh entropy (RE), signal-to-noise ratio
(SNR), root mean square error (RMSE) and peak signal-to-
noise ratio (PSNR) are taken as targets. The optimal matching
with the modulation rate of signal components is achieved.
After the LCT, the LMSST is applied to the signal as a
post-processing method to form a new time-frequency rep-
resentation.

LCT processes the signal by adding a demodulation oper-
ator to the Fourier transform and selecting the appropriate

demodulation parameter c from it for calculation. The vibra-
tion signal s is transformed to obtain the time-frequency result
G. The specific calculation processes for LCT are as follows:

G(c, t, ω) =

∫
+∞

−∞

s(u)g(u− t)e−iω(u−t)e−ic(u−t)2/2du (6)

c = tan(β) ·
Fs
2Ts

(7)

β = −
π

2
+

π

Nc + 1
, −

π

2

+
2π

Nc + 1
, . . . ,−

π

2
+

Ncπ
Nc + 1

(8)

Nc is the number of demodulation rates, it takes the value of
11 in this mothed. The sampling time is Ts and the sampling
frequency is Fs, they take the values of 1000Hz and 4s. The
relationship between the rotation angle β and the demodula-
tion rate c in the time-frequency plane is given in (7). The
values of β are −

5π
15 , −

4π
15 , −

3π
15 , . . . . . .

5π
15 respectively. The

original LCT method is based on the principle of maximum
time-frequency coefficient to select the appropriate demodu-
lation parameters. But its noise immunity is poor. Redundant
LCT results are generated when the noise amplitude in the
signal is larger than the amplitude of the component signal.

RE, SNR, RMSE and PSNR were used as target param-
eters to calculate the above demodulation rate. The closer
the demodulation rate and the modulation rate of the signal
components are to one another and the smaller the Rayleigh
entropy, the greater the time-frequency aggregation effect
is. Rayleigh entropy is used to quantitatively evaluate the
closeness of the demodulation rate of the windowed signal
to the transform parameters. Additionally, the signal’s anti-
noise effect is assessed using the SNR, RMSE, and PSNR.
The higher the signal-to-noise ratio, the greater the noise
resistance is. The four target parameters are calculated as
follows:

RE = −
1
2
log2

(∫
∞

−∞

∫
∞

−∞

|G(t,w)|ξdwdt/∫
∞

−∞

∫
∞

−∞

|G(t,w)|dwdt
)

(9)

SNR = 10 log10

[(
m∑
i=1

x(i)2
)

/

(
m∑
i=1

(s(i) − x(i))2
)]

(10)

RMSE =

√√√√ 1
m

m∑
i=1

(s(i) − x(i))2 (11)

PSNR=10 log10

[
max

(
x(i)2

)
/
1
m

×

(
m∑
i=1

(s(i) − x(i))2
)]
(12)

where s is the time domain signal, x is the effective signal, and
m is the number of sampling points. After the above analysis,
the optimal demodulation rate ĉ can be obtained as:

ĉ(t, ω) = argmin
c

{RE + SNR+ PSNR− RMSE} (13)
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Finally, the time-frequency transformation equation can be
expressed as:

Gĉ(t, ω)

= G(ĉ, t, ω)

=

K∑
k=1

Ak (t)eiϕk (t)
√

2σπ

1 − iσ
[(

ϕ′′
k (t) − ĉ

)]e− σ[ω−ϕ′
k (t)]

2

2[1−iσ[(ϕ′′
k (t)−ĉ)]]

(14)

The bandwidth 1ω of the multi-objective matched chirplet
transform is calculated by the following equation.

12
ω =

1
2π

∫
+∞

−∞

ω2
|Gĉ(t, ω)|

2 dω

=
1
2π

K∑
k=1

A2k (t) 2π(
1 +

(
ϕ′′
k (t) − ĉ

)2)1/2


×

∫
+∞

−∞

ω2e
−

(ω−ϕ′
k (t))

2(
1+(ϕ′′

k (t)−ĉ)
2
)
dω

=

K∑
k=1

A2k (t)
(√

πϕ′
k (t) +

√
2
(
1 +

(
ϕ′′
k (t) − ĉ

)2))
(15)

As can be seen from (15), the closer the demodulation
rate and the modulation rate of the signal components, the
less bandwidth is affected by the modulation rate. After the
transformation, a time-frequency rearrangement is performed
by the LMSST method. The LMSST is applied as a post-
processing method. And a local maximum compression is
applied to the signal to form a new time-frequency repre-
sentation (TFR)MGsĉ(t, ξ ). The specific steps of the LMSST
method are as follows:

MGsĉ(t, ξ ) =

∫
+∞

−∞

Gĉ(t, ω)δ(ξ − ω̂(t, ω))dω (16)

where the instantaneous frequency estimate is calculated
from (17):

ω̂(t, ω) =


argmax

ω
|Gĉ(t, ω)| , ω ∈ [ω − 1, ω + 1],

if |Gĉ(t, ω)| ̸= 0
0, if |Gĉ(t, ω)| = 0

(17)

Equation (17) produces an unbiased estimate of the instan-
taneous frequency when the SST’s bandwidth matches that of
the signal component time-frequency transform. Algorithm 1
is the implementation code of MOMSSCT.

Algorithm 1MOMSSCT
Step 1: Initialization
Input s, Ts and Fs in Equation (7)∼(12).
Step 2: Improved linear chirplet transform
Calculate RE, SNR, RMSE and PSNR by Equation (9)∼(12).
Calculate optimal demodulation rate ĉ by Equation (13).
Obtain Gĉ(t, ω) through performing LCT by Equation (6).
Step 3: Time-frequency post-processing
Calculate1ω by Equation (15).
Perform LMSST by Equation (16) and (17).

III. EXPERIMENT
A. SIMULATION TEST
The effectiveness of the time-frequency analysis of
MOMSSCT is verified with a set of simulated strong time-
varying signals, which consist of two components. The two
components have nonlinear characteristics. And the latter has
stronger time-varying characteristics. This signal is designed
in such a way to test the ability of the MOMSSCT to handle
strongly time-varying signals.

s (t) = sin(2π (15t + 4sin2t))

+ sin(2π(35t + arctan(2(t − 1)2))) (18)

With a sampling frequency of 1000Hz and a sampling
duration of 4s, the simulated signal is produced. Mean-
while, we added Gaussian white noise with a signal-to-
noise ratio of 3db to the signal. The signals produced using
these parameters meet the criteria for the signal processing
method test. Figure 1 compares the outcomes of various
time-frequency transform techniques. The time-frequency
diagram of the short-time Fourier transform is shown in
Figure 1(a). Because of the Heisenberg inaccuracy princi-
ple’s restriction and the strong time-varying properties of
the signal, the time-frequency results are not aggregated and
there is severe energy blurring. A continuous wavelet trans-
form time-frequency diagram is shown in Figure 1(b). Only
the general shape of the signal’s components can be seen
because of the signal’s strong time-varying properties. The
Fourier synchrosqueezing transform time-frequency diagram
in Figure 1(c) shows the two signal components’ time-
frequency trajectories, though their energies are still a little
hazy. The time-frequency energy aggregation of the wavelet
synchrosqueezing transform time-frequency map is shown in
Figure 1(d). The time-frequency diagram for the local max-
imum synchrosqueezing transform is shown in Figure 1(e).
There is still some energy diffusion in the high-frequency
component despite the relatively effective time-frequency
energy aggregation and improved frequency trajectory esti-
mation. Figure 1(f) is the time-frequency diagram of the
MOMSSCT proposed in this paper. Its energy is highly
concentrated. The LMSST’s average spread widths of high
and low frequencies in 4 seconds are 1.9 Hz and 2.1 Hz,
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TABLE 1. Test instruments and equipment in stand test.

respectively. While the average spread widths of high and
low frequencies in 4 seconds are 1.2 Hz and 1.3 Hz for the
MOMSSCT. The frequency spread width reduces by 37.5%.
So this method can effectively analyze the characteristics of
strong time-varying signals.

B. PRACTICAL TEST SETTING
A type of turbocharger with a pressure ratio of 4.5, which can
be matched with a marine diesel engine with a power range of
600 kW to 1000 kW, is used in the test. The fault simulation
tests of dynamic imbalance and bearing wear were carried
out in the turbocharger stand to provide fault samples for the
subsequent verification of the feature parameter extraction
method.

Figure 2 shows the schematic diagram of the test system,
in which T , P and ω represent temperature, pressure and
speed sensors [32]. V and O represent the vibration and orbit
of shaft centre sensors. The test stand primarily consists of
a turbocharger, a combustion chamber, and a gas valve. The
injector injects fuel into the combustion chamber for com-
bustion. The high-temperature gas enters the turbine to do
work to drive the rotor shaft rotation. The coaxial compressor
compresses the air. Finally, when the self-circulation valve
opens, the pressurized air enters the combustion chamber to
form a self-circulation. Figure 3 (a) shows the site of the tur-
bocharger test stand. In Figure 3 (b) and (c), 1∼8 are vibration
sensors, 9 are speed sensors, and 10 are displacement sensors
for measuring the shaft orbit. The vibration sensors operate in
the temperature range of -55 to +125 ◦C. The turbocharger
case temperature exceeds this range. So the vibration sensors
are mounted on the turbocharger base to avoid damage.

The temperature and pressure of the turbine and com-
pressor before and after intake/ outlet, the speed of the
turbocharger, the vibration acceleration of the turbocharger
base and the orbit of the shaft centre were measured in the
test. The vibration, orbit of the shaft centre and speed were
collected by the Siemens LMS SCADASMobile system. The
speed signal, temperature and pressure signals were collected
by the turbocharger measurement and control platform of the
experimental site. The main test instruments and equipment
used in the test are shown in Table 1.

The turbocharger was put through four different test-
ing sequences: severe dynamic imbalance, severe dynamic
imbalance plus bearing wear, slight dynamic imbalance and

TABLE 2. Turbocharger failure test program table.

normal condition. To reduce the test cost, the severe dynamic
imbalance failure test was first carried out; secondly, the
faulty bearing was replaced for the double failure test of
severe dynamic imbalance plus bearing wear; then the nor-
mal bearing was replaced and the rotor dynamic imbalance
was reduced on the dynamic balancing machine for the
minor dynamic imbalance failure test; finally, the dynamic
imbalance of the rotor was reduced to the normal value on
the dynamic balancing machine for the normal state test.
The turbocharger test speed in working condition is from
35000 r/min to 60000 r/min, the interval is 2500 r/min, and
the test program is shown in Table 2. There are two sets of
experiments in the dynamic unbalance condition. There is
one set of experiments for each of the other states. In the
subsequent subsections, we processed and analyzed the test
data using MOMSSCT.

C. TEST DATA PROCESS AND EVALUATION MATRIX
One of the frequent failures of turbochargers is rotor imbal-
ance. According to statistics, rotor imbalance is a factor in
more than 50% of failures of rotating machinery. The follow-
ing aspects need to be taken into account while analyzing the
mechanism of marine diesel engine turbocharger imbalance
failure. When a turbocharger turns at a speed of up to tens
of thousands of revolutions per minute, the unbalanced mass
of the rotor—however small—will result in a very strong
centrifugal force. A turbocharger’s rotor rotates once to pro-
duce one shock when there is an unbalance. And its vibration
response characteristics are mirrored in 1× frequency peak.
If the compressor impeller has n main blades and n from
blades. Then the rotor rotates 1 turn and the impeller blade
air oscillates n times, producing n times of vibration response
characteristics. This paper will focus on the 9× frequency
of the vibration signal, because the compressor impeller has
9 main blades and 9 from blades.

One of the most common causes of component failure
is wear. It occurs when two objects come into touch with
one another and the surface micro-convex peaks continue
to fall off. It eventually damages the material’s surface or
causes residual deformation. There isn’t a lot of research on
turbocharger bearingwear failure right now. The load, friction
coefficient, eccentricity, oil film pressure, temperature and
bearing capacity of the sliding bearing all attain a condition of
dynamic equilibrium when it operates in the state of hydro-
dynamic lubrication. When the bearing area wears out and
fails, there will be a local pressure surge that will hit the shaft
tile’s surface and cause excitation. At the same time, the oil
film thickness changes, making the turbocharger vibration
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FIGURE 1. Comparison of the effect of different time-frequency
transformation methods.

FIGURE 2. Schematic diagram of the turbocharger test system.

response also change. According to the preliminary analysis
of the vibration response signal spectrum, 2× frequency and
the blade through frequency of turbocharger is more sensitive
to bearing wear failure.

Figures 4 and 5 depict the turbocharger’s vibration signals
at 60,000 r/min and 50,000 r/min under normal, dynamic
unbalance and dynamic unbalance with bearing wear sit-
uations. Under turbocharger speeds of 60,000 r/min and
50,000 r/min, when the turbocharger switches from normal to

dynamic unbalance, the root mean square value and variance
of the signal increase. And the changing of the maximum
and minimum values of the signal is not apparent. When
the turbocharger switches from dynamic unbalance to double
fault, the root mean square value and variance of the signal
decrease, and the maximum and minimum values of the
signal are changed.

Figure 6 and Figure 7 are the time-frequency diagrams
obtained by the MOMSSCT method under the three fault
states of the turbocharger in 60,000 r/min and 50,000 r/min
operating conditions. It can be seen that the time-frequency
energy is concentrated. Figure 6 shows the results of
the time-frequency transformation of the turbocharger at
60,000 r/min. The fundamental frequency is 60,000 ÷ 60 =

1000 Hz. It is shown in Figure 6(a) as the horizontal line
at 1000 Hz in the vertical coordinate. And similarly its 2×,
3× and 9× frequencies are the horizontal lines at 2000 Hz,
3000 Hz and 9000 Hz in the vertical coordinate. Figure 7
shows the turbocharger at 50,000 r/min, and its 1×, 2×,
3× and 9× frequencies are the horizontal lines at 833 Hz,
1667 Hz, 2500 Hz and 7500 Hz. In the 60,000 and 50,000
r/min speed conditions, when comparing Figure (a) and
Figure (b), the turbocharger changes from normal to dynamic
unbalance. The 1× frequency amplitude increases and the 9×
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FIGURE 3. Turbocharger test stand.

frequency amplitude decreases. When comparing Figure (b)
and Figure (c), the turbocharger changes from dynamic
unbalance to double fault, and the 2× frequency and 9×
frequency amplitude increase.

From the obtained time-frequency results, the 1×, 2×,
and 9× domain vibration signals are reconstructed. And the
frequency lines of 1×, 2×, and 9× are extracted along the
frequency ridges. Their time domain signal are reconstructed
according to Equation (19):

s(t) =
1

2π ĝ(0)

∫
+∞

−∞

∫
+∞

−∞

MGsĉ(u, ξ )e
iωtdudξ (19)

where ĝ(ω) is the Fourier transform of the window function.
Figure 8 and Figure 9 show the time-domain vibration sig-

nals of 1× frequency, 2× frequency, and 9× frequency after
the reconstruction of time-frequency maps. It can be seen that

FIGURE 4. Vibration signal of turbocharger 60,000 r/min operation.

the instantaneous frequency estimation accuracy based on
the MOMSSCT method is high. It makes the reconstruction
accuracy of each component of the vibration signal also
relatively good. And the noise in the signal is small. When the
turbocharger is in three different states, the parameters such as
amplitude and energy of its 1× frequency, 2× frequency and
9× frequency vibration signals change. In the turbocharger
60,000 r/min and 50,000 r/min conditions, when it changes
from the normal state to the dynamic unbalance state, the
amplitude of its 1× frequency vibration signal rises and the
amplitude of 9× frequency decreases.When the turbocharger
changes from the dynamic unbalance state to the double fault,
the amplitude of its 2× frequency and 9× frequency vibration
signal rises.

According to the aforementioned fault cause analysis, 1×
frequency, 2× frequency and 9× frequency are more sensi-
tive to the two faults of dynamic unbalance and bearing wear.
According to the reconstructed 1, 2 and 9-octave component
signals, the fault characteristic parameters such as the effec-
tive value of vibration (R1, R2, R9), the ratio between octave
components (E21,E91,E92) and the ratio of the effective value
of vibration to health status (RN1,RN2,RN9) can be extracted.
The variation coefficients of parameters also contain cer-
tain fault information. And the fault characteristic param-
eters are also extracted, such as the rotor frequency phase
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FIGURE 5. Vibration signal of turbocharger 50,000 r/min operation.

difference variation coefficient, the variation coefficient of
the effective value of the frequency vibration, the standard
deviation of the effective value of the frequency vibration,
the variation coefficient of the instantaneous frequency of the
frequency vibration, the speed fluctuation coefficient of the
turbocharger, and the variation coefficient of the cross and
longitudinal coordinates of the rotor axis orbit. Because R1
and R2 will increase with the rise of rotational speed, the two
parameters R1

/
f 2N and R2

/
(2fN )2 are extracted and named as

rotor unbalance factor and bearing wear factor. The summary
of 18 parameters is detailed in Table 3.

D. PRACTICAL TEST RESULT
Table 4 shows the turbocharger vibration data under the
four states of the turbocharger. after MOMSSCT and signal
reconstruction, the extracted turbocharger fault characteristic
parameters can provide data support for the subsequent char-
acteristic parameter merit selection.

Figure 10 shows the variation law of the characteristic
parameters with the degree of failure. The variation of the
RMS value of the turbocharger, the RMS value of the 2×
frequency vibration, the RMS value of the 9× frequency
vibration, and the standard deviation of the RMS value of the
1× frequency vibration with the dynamic unevenness of the
rotor are shown in Figure 10(a). The RMS value of the 1×

FIGURE 6. Turbocharger 60,000 r/min operating conditions MOMSSCT
transformation time and frequency diagram.

frequency vibration and the standard deviation of the RMS
value of the frequency vibration increase with the increase of
the dynamic unevenness. The RMS value of the 2× frequency
vibration and the RMS value of the 9× frequency vibration
decrease with the increase of the dynamic unevenness. The
changes of the turbocharger 1× frequency vibration RMS,
2× frequency vibration RMS, 9× frequency vibration RMS,
and the standard deviation of the 1x frequency vibration RMS
with the roughness of the bearing are shown in Figure 10(b).
The 1× frequency vibration RMS and the 1× frequency
vibration RMS decrease with the increase of the bearing
surface roughness. The 2× frequency vibration RMS and 9×
frequency vibration RMS increase with the increase of the
bearing surface roughness.

E. COMPARISON OF VISUALIZATION RESULTS
The validity of the characteristic parameters was verified
using sample data of the turbocharger. The states when the
data is collected include a health condition, a minor dynamic
unbalance failure, a severe dynamic unbalance failure, and
a dynamic unbalance plus bearing wear failure. The sample
data contains the vibration acceleration signals, rotor speed
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FIGURE 7. Turbocharger 50,000 r/min operating conditions MOMSSCT
transformation time and frequency diagram.

signals and shaft centre orbit of the measurement points. And
the operating points of the turbocharger at different health
states and speeds are given in Table 5.

Table 6 shows the data classification and labelling of each
fault state of the turbocharger. A, B, C and D represent the
healthy state, minor dynamic unbalance fault, severe dynamic
unbalance fault and dynamic unbalance plus bearing wear
fault, respectively. The fault data set of the turbocharger was
divided intoA1∼A3, B1∼B3, C1∼C3 andD1∼D3. The clas-
sification effect of the feature parameter extraction method
of different fault samples was visually determined. The com-
bination of different working condition samples under each
fault will be processed concerning the four-factor three-level
orthogonal test (Table 7). And the combinations were S1
(A1/B1/C1/D3), S2 ( A1/B2/C3/D2), S3 (A1/B3/C2/D3),
S4 (A2/B1/C3/D3), S5 (A2/B2/C2/D1), S6 (A2/B3/C1/D2),
S7 (A3/B1/C2/D2), S8 (A3/B2/C1/D3), S9 (A3/B3/C3/D1).
S1∼S9 denote 9 generalized working conditions. It can be
seen that 4 health states are included in each generalized
working condition.

FIGURE 8. Comparison of reconstructed signals in three states of
turbocharger 60,000 r/min operating conditions.

TABLE 3. Table of fault characteristic parameters.

To confirm the ability of the extracted feature parameters to
characterize the fault features, the data were mapped from the
original space to the two-dimensional space for visualization
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FIGURE 9. Comparison of reconstructed signals in three states of
turbocharger 50,000 r/min operating conditions.

TABLE 4. Extracted turbocharger characteristic parameters for each state.

TABLE 5. Turbocharger failure simulation test conditions.

using Principal Component Analysis (PCA) [33]. The steps
of the principal component analysis method are as follows:

1. De-mean normalize the matrix Xo composed of the
original data to obtain X = (xki )r∗p.

FIGURE 10. Variation law of characteristic parameters with the degree of
failure.

TABLE 6. Turbocharger fault data classification table.

2. Calculate the correlation coefficient matrix C .

C = (sij)p∗p (20)

sij =
1

r − 1

r∑
k=1

(xki − xi)(xkj − xj)i, j = 1, 2, · · · , p (21)

where r is the number of samples, p is the number of feature
parameters. And xi is the average of the i-th feature parameter
in matrix X .

3. Calculate the eigenvalues λi and eigenvectors ai of the
correlation coefficient matrix, i = 1,2, . . . , p;
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TABLE 7. Four-factor three-level orthogonal test table.

TABLE 8. The common characteristics parameters for turbocharger fault
diagnosis.

4. Transform X to get the new feature matrix Fi after
dimensionality reduction;

Fi = aTi Xi = 1, 2, . . . , d; (22)

where d is the dimensionality of the data after dimensionality
reduction. It is taken as 2 in this paper.

Common feature parameters for turbocharger fault diag-
nosis were selected for comparison with those extracted by
MOMSSCT. The G2 and G3 data were randomly selected for
analysis. The common feature parameters for turbocharger
fault diagnosis are shown in Table 8. The common fault char-
acteristic parameters of turbochargers were extracted from
G2 and G3 according to the table. Then it was visualized
using the PCA. Their PCA extraction visualization results are
shown in Figures 11(a) and (b). The aggregation degree of
the same fault type in two-dimensional space in G3 data is
acceptable. But the distribution of normal state samples in
two-dimensional space in G2 data is not aggregated enough.
And the splitting is serious. It indicates that after the PCA
extraction of common features, the aggregation of samples of
the same fault type is not high enough. In Figure 11 (a) and
(b), the rotor imbalance case is close to the double faults. And
even some data overlap together. Their sample features are
less distinguished. The results indicate that the common fea-

TABLE 9. Source domain auxiliary data and target domain data set
division.

tures of turbochargers shown in Table 8 are difficult to achieve
an effective classification of the fault states of turbochargers.

For S2 and S6 data, the turbocharger data were pro-
cessed by MOMSSCT. Then the signal was reconstructed.
And the fault feature parameters were extracted. The visu-
alization results of the feature parameters calculated by the
PCA method are shown in Figure 11(c) and (d). The inter-
val between different kinds of fault samples is large and
the distinction is obvious. The same fault types are clus-
tered together without the situation that different fault types
cross each other. This indicates that the extracted feature
parameters effectively reflect the fault characteristics of the
turbocharger. It achieved an effective classification of the
four states. In addition, it can be seen from Figure 11(c) and
(d) that the extracted feature parameters are unaffected by
the changes in the operating conditions of the turbocharger.
Under different generalized operating conditions, the fea-
ture parameter construction method proposed in this paper
can obtain a feature matrix with excellent performance.
It effectively solves the problem of classification performance
degradation of the turbocharger due to changes in operating
conditions.

To verify the effectiveness of the MOMSSCT extracted
features, the TrAdaBoost transfer learning algorithm is used
to diagnose the feature data. The characteristic data of three
faults simulated under 35000, 40000, 50000 and 60000 r/min
operating conditions of the turbocharger were used as the
source domain auxiliary data. The actually measured fault
characteristic data of the turbocharger were used as the target
domain data. Each fault was divided into three different fault
degrees. The data set was divided into a training set and a test
set according to a certain ratio, as shown in Table 9 and Tab.
10. The total number of sample data for simulation is 2840.
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FIGURE 11. PCA visualization results of turbocharger characteristic
parameters.

The number of source domain auxiliary training samples is
2400 (4 loads, 10 fault states, 60 samples for each state). The
number of target domain data in the training set is 20 and 40,

TABLE 10. Training set and test set samples.

TABLE 11. Accuracy of the algorithm with different numbers of target
samples in the training set.

respectively. And the number of target domain samples is 400
(4 loads, 10 fault states, 10 samples for each state).

As shown in Table 10, the training set contains a small
amount of target domain data, whose numbers are 20 and 40,
respectively. The test set contains a large amount of target
domain data with untagged state labels, the number of which
is 400. The data in the test set are the actual measured tur-
bocharger data on the test stand. And the data in the training
set are the data simulated using the turbocharger model plus
very few actual measured data. If the diagnosis success rate
is high, it indicates that MOMSSCT is effective.

Table 11 shows the accuracy of the algorithmwith different
numbers of target samples in the training set. The accuracy of
the algorithm increases when the number of target samples
in the training set increases. The accuracy of the TrAd-
aBoost algorithm reaches more than 85% in both cases. The
algorithm changes the weights of each target sample in the
training set through the training of source domain auxiliary
data. It enables the fault diagnosis model to better diagnose
the target domain data (Measured turbocharger data) and
improve the overall recognition effect of the model on the
target domain data. The diagnostic accuracy indicates that
the fault features extracted by MOMSSCT can effectively
diagnose turbocharger faults.

IV. CONCLUSION
(1) For the turbocharger vibration signal with strong time-
varying characteristics, a MOMSSCT method can effectively
avoid the fuzzy time-frequency transformation results. The
proposed method has high time-frequency energy aggre-
gation and clear trajectories. The frequency spread width
is reduced by 37.5% compared with the existing methods.
It can effectively analyze the strong time-varying signal of
turbocharger.

(2) The fault feature parameters were extracted based on
MOMSSCT. The RMS value of the 1× frequency vibration
and the standard deviation of the RMS value of the frequency
vibration increase with the increase of the dynamic uneven-
ness. The RMS value of the 2× frequency vibration and the

VOLUME 11, 2023 80713



F. Dong et al.: MOMSSCT for Fault Feature Extraction From Marine Turbochargers

RMS value of the 9× frequency vibration decrease with the
increase of the dynamic unevenness.

(3) The proposed feature construction method has a better
ability to classify faults than the common methods. The visu-
alization results showed that the distinction between different
kinds of faults was obvious. The selected feature parame-
ters had good fault classification ability at different speeds
of the turbocharger. Using the fault features extracted by
MOMSSCT, the diagnostic accuracy rate can reachmore than
85%.
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