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ABSTRACT Indoor target tracking based on Wi-Fi signals entails the integration of both the target
motion model and the measurement model. However, a single motion model is inadequate to match the
changing motion state of the target at each moment, and linearization of the measurement model may
introduce additional errors. To tackle these problems, we propose a localization method called IMM-MLKF.
For themeasurement equation, we adopt the fingerprintingmodel to performmaximum likelihood estimation
on the target, obtaining themean and covariancematrix of the target state distribution. Thismethod eliminates
the error introduced by linearization. For the motion equation, multiple models are used for parallel computa-
tion. The likelihood function values generated by each model from the measurements are used as their model
confidences, enabling the combiningmodel to match themotion of the target.We validated themethod in two
different scenarios using channel state information as the fingerprint feature. Our results show that compared
with similar Bayesian filtering methods based on interactive multiple models, this method has superior
tracking accuracy. Additionally, this method’s operating efficiency is higher than particle filtering methods.

INDEX TERMS Indoor tracking, multiple model, maximum likelihood estimation, channel state
information.

I. INTRODUCTION
The advancements in mobile communication and internet
technologies have significantly enhanced convenience in peo-
ple’s daily lives. Location-based services (LBS) have become
an important aspect of people’s intelligent life, and its funda-
mental challenge is to use wireless communication networks
or positioning methods to acquire the current location of
the target device. In terms of positioning scenes, positioning
technology can be classified into two categories, namely
indoor positioning and outdoor positioning. At present, the
global positioning system (GPS) is generally used for outdoor
positioning [1]. However, the complex indoor environment
and the obstacles in it cause the attenuation and multipath
effect of wireless signals, which makes it impossible to find
a solution for all indoor scenarios. Therefore, a variety of
wireless signals are applied to different positioning problems,
such as Wi-Fi [2], Bluetooth [3], ZigBee [4], Radio Fre-
quency Identification Device (RFID) [5], Ultra-wide Band

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueqin Jiang .

(UWB) [6], and visible light [7]. Since most smartphones,
laptops, and other portable mobile devices are equipped with
Wi-Fi chips, the cost of Wi-Fi positioning solutions is greatly
reduced [8], making Wi-Fi the most popular and promising
positioning technology.

Generally speaking, indoor location methods can be
divided into two categories: geometric mapping and fin-
gerprinting [9]. Geometric mapping calculates the relative
geometric information, such as distance and angle, between
the target position and the reference position using received
signals [10]. Geometric methods, such as trilateral position-
ing, are then used to estimate the position of the target. The
reliability of the geometric mapping method depends heavily
on the reception of the line of sight (LOS) signal [11], and
the indoor multi-path effect can seriously affect the position-
ing accuracy. Fingerprinting methods collect signal features
from all positions in the environment to create a fingerprint
database. These methods transform the location problem into
a matching problem between the signal features collected at
the location and the fingerprints in the database. The perfor-
mance of the fingerprinting method depends on the signal
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differentiation between different positions [12]. However,
a disadvantage of fingerprinting methods is that they require
additional work to build a database, and the fingerprint
database needs to be updated when the environment changes.

In wireless localization systems, there are many signal
indicators that can be used for positioning, including time
of arrival (TOA), time difference of arrival (TDOA), round
trip time (RTT), angle of arrival (AOA), received signal
strength indicator (RSSI), channel state information (CSI),
etc. Among them, TOA, TDOA, RTT, and AOA can be con-
verted into information about the distance or angle between
the target and the wireless access point (AP), and the target’s
location can be estimated through geometric mapping; while
in the fingerprinting localization process, RSSI and CSI are
the most commonly used positioning indicators to explore
differences between different locations [13]. Although RSSI
is easy to obtain, it is susceptible to the accumulation ofmulti-
path signals, and can only roughly estimate the position. CSI,
on the other hand, includes amplitude and phase information
of all subcarriers in the transmission signal and can pro-
vide higher accuracy in determining location compared to
RSSI [14]. Therefore, CSI-based indoor positioning has a
higher theoretical upper limit than RSSI-based methods.

In most localization scenarios, it’s important to obtain
real-time position information of moving objects. Current
real-time target tracking methods are largely based on
Bayesian filtering [15], which combines prior information
and measurement information probabilistically. At each sam-
pling time point, the position estimate is updated by fusing
signal and target motion information. Most Wi-Fi based tar-
get tracking methods use the information obtained by other
sensors to improve the positioning accuracy, such as UWB
sensors [16], inertial sensors [17] and landmarks [18].

The main principle of Bayesian filtering for tracking is
to fuse the information contained in the target’s motion
state with the information obtained by the sensors. Once the
system’s state equation and measurement equation are estab-
lished, the posterior probability density function (PDF) of the
system state can be recursively calculated through Bayesian
filtering to achieve an estimation of the target state. If these
two equations do not meet the conditions of linearity and
Gaussianity, approximatemethods need to be used to simplify
them, which can be divided into two categories: one category
of the approximation methods does not require explicit con-
straints on the posterior PDF, and the most commonly used
method among them is particle filtering (PF) [19]. Particle
filtering uses the method of stochastic importance sampling
to approximate the posterior probability density function,
which effectively deals with nonlinear problems and avoids
the assumption of Gaussianity about the system. However,
the estimation accuracy of PF depends on the number of
particles, and the time and space complexity increases as
the number of particles increases [20]. The other type of
approximation method requires a Gaussianity assumption for
the posterior probability density function. Based on the linear
minimum variance estimation criterion, different nonlinear

filtering methods are formed according to different numeri-
cal calculation methods, such as extended Kalman filtering
(EKF) [21], unscented Kalman filtering (UKF) [22], and
cubature Kalman filter (CKF) [23] etc.

In addition, the methods mentioned above only apply to
fixed motion models. Once the target’s maneuvering mode
changes, it will bring serious errors to the tracking result.
Obviously, using a single model for target tracking can no
longer meet the tracking requirements at this time. Therefore,
the multiple model (MM) algorithm was developed [24].
Currently, the best multiple model algorithm is the interactive
multiple model (IMM) algorithm [25]. This algorithm uses
a set of models, obtains model likelihood functions based
on the innovation between prediction and measurement, and
computes the target position according to the feedback like-
lihood function. The IMM algorithm is often combined with
algorithms such as EKF [26], UKF [27] and CKF [28], and
can improve the accuracy of positioning in appropriate sce-
narios.

In this paper, a new target tracking algorithm based on
Bayesian filtering and IMM is proposed, which is combined
with CSI fingerprint positioning. We establish a fingerprint
model of CSI and use the maximum likelihood estimation
method to obtain the static positioning result of the target.
Then, multiple filters are established in parallel for differ-
ent motion models, and the model probability is updated
based on the model matching likelihood function. The posi-
tion of the target is obtained by combining the modified
state estimation values of all filters. The static positioning
process of maximum likelihood estimation fully utilizes the
location information contained in the CSI signal, and the
parallel calculation of multiple linear motion models can
better predict the target’s motion trajectory while ensuring
efficiency. In summary, the main contribution of this paper
is to effectively combine CSI fingerprint positioning, IMM,
and Bayesian filtering, match suitable motion models for
different motion states of the target, and efficiently integrate
with the information provided by CSI through maximum
likelihood Kalman filtering. The experimental results in this
paper show that compared with other similar methods, the
proposed method can balance computational efficiency and
positioning accuracy.

The structure of this paper is outlined as follows. Section II
reviewed the related work on CSI-based fingerprint localiza-
tion and Bayesian filtering. Section III outlines the position-
ing problem. The innovative localization method is outlined
in Section IV. In Section V, we present numerical evidence
demonstrating the benefits of the proposed method. Finally,
the paper concludes with final remarks in Section VI.

II. RELATED WORK
A. CSI FINGERPRINTING METHODS
CSI is a kind of fine-grained channel response information
obtained in communication systems under the orthogonal fre-
quency division multiplexing (OFDM) protocol. It includes
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attenuation information of the signal on each transmission
path. CSI is represented as channel impulse response (CIR)
and channel frequency response (CFR) in the time domain
and frequency domain, respectively. The channel frequency
response can be expressed as

Y = HX + N , (1)

where X is the transmission signal vector, Y is the received
signal vector, N is the channel noise matrix, andH represents
a complex matrix that includes channel state information.
By collecting the information of the H matrix at different
locations, a fingerprint database can be established.

After the fingerprint database is established, the position-
ing problem is transformed into a matching problem between
the received signal and the information stored in the finger-
print database. Thismatching process requires the use of posi-
tioning algorithms, such as k-nearest neighbor (KNN) [29],
support vector machine (SVM) [30], and linear discriminant
analysis [31]. Compared to these methods, deep learning-
based Wi-Fi positioning methods can automatically filter out
the irrelevant information in the raw signals that is not useful
for positioning, extract reliable features, and achieve better
positioning accuracy and robustness in complex indoor envi-
ronments. Wang et al. [32] proposed a deep learning-based
indoor positioning method called DeepFi. This method uses
a deep neural network with 7 hidden layers to classify data
obtained from an AP with 3 antennas. Qin et al. [33] pro-
posed a positioning method called CADE-CNN positioning
(CCPos), which utilizes a convolutional denoising autoen-
coder (CDAE) to denoise the signals and extract key features,
followed by a convolutional neural network (CNN) to output
the location estimation.

However, if positioning is treated as a classification prob-
lem, only discrete positioning results can be obtained and
their accuracy depends on the number of fingerprints col-
lected during the initialization phase. To address these prob-
lems, some regression-based positioning algorithms have
also been proposed, such as Gaussian process regression [34]
and support vector regression (SVR) [35]. Once an analytical
expression for the regression model, which maps location
information to fingerprint signals, is found, then the local-
ization problem can be transformed into an optimization
problem, as in the method used in Section IV-B of this paper.

B. BAYESIAN FILTERING METHODS
During the positioning process at time t , we do not need to
obtain the motion state of the target at all times x0:t . We only
need to obtain the current state xt from the marginal posterior
distribution p(xt |y1:t ). Bayesian filtering is a class of recursive
methods based on Bayesian theory used to calculate the value
of p(xt |y1:t ) at time t [36]. The calculation process can be
divided into the following steps:

• Initialization: set the prior distribution p(x0) for the ini-
tial state;

• Prediction: estimate the state xt of the target at time t
using the previous t − 1 observation values y1:t−1:

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1; (2)

• Update: by using the predicted value and the newly
obtained measurement value at time t , combined with
the Bayes formula, we can get:

p(xt |y1:t ) =
p(yt |xt )p(xt |y1:t−1)∫
p(yt |xt )p(xt |y1:t−1)dxt

. (3)

If both the state variables and observation variables follow
normal distributions, and it is assumed that the state transition
equation and measurement equation are linear functions, the
Bayesian filter takes the form of Kalman filter. Otherwise,
some sub-optimal nonlinear filters can be obtained through
approximate methods. The simplest approximate method is
to linearize the non-linear measurement equation, i.e., extend
Kalman filter [37]. However, for highly non-linear systems,
EKF may bring significant biases. Based on this problem, S.
Julier et al. proposed the unscented Kalman filter based on
the idea of unscented transformation [38]. It approximates
the non-linear function using the probability density function
of the state vector, producing 2n + 1 sampling points with
certain weights, and then propagating through the non-linear
system using these sample points, reaching the accuracy of
the second-order extended Kalman filter algorithm. Com-
pared to the EKF filtering algorithm, the UKF algorithm does
not ignore the high-order terms of the Taylor series, nor does
it involve solving problems with the Jacobians matrix [39].
However, as the dimension of the system increases, the UKF
algorithm may result in the situation where the covariance
matrix is not positive definite and cannot be filtered. To over-
come the problem of low filtering accuracy of UKF in high
dimensional situations, Arasaratnam and Haykin proposed
the cubature Kalman filter method based on cubature inte-
gration transform [23]. This method selects a set of volume
points to approximate the mean and covariance of the func-
tion, reducing the error of linearizing nonlinear functions.

Another approach for estimating the mean and covariance
of the target state is particle filtering, whose principle is to
use a large number of random particles to approximately
represent the probability density function of the state [40].
As the number of particles increases, the approximation
results become more and more accurate, but at the same time,
a large amount of computational resources will be consumed.
The maximum likelihood Kalman filtering (MLKF) method
proposed in [41] has effectively solved this problem, and it
has good handling of the nonlinearity of the measurement
equation through maximum likelihood estimation, and has
higher computational efficiency than particle filtering. How-
ever, this method is only applicable to a single linear motion
model. Another improved algorithm named maximum like-
lihood particle filter (MLPF) [42] optimizes the distribution
of sampled particles in particle filtering, enhancing the oper-
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ational efficiency of particle filtering, but still requiring the
calculation of several tens of particles for an ideal result.

However, due to the complex and diverse motion processes
of targets, it is difficult to describe them using a single model.
To solve this problem, the interactive multiple model was
proposed [43]. The IMM algorithm uses multiple filters for
parallel processing. Each filter corresponds to a different state
space model, and different state space models correspond to
different target maneuvering models. Therefore, each filter
has a different estimate of the target state. The basic idea of
the IMM algorithm is to assume that a certain model is effec-
tive at the current time, and to obtain the initial conditions
of the filter that matches this specific model by mixing the
estimated values of all filters at the previous time. Eachmodel
corresponds to a filter that performs parallel calculations.
Finally, the model probabilities are updated based on the
likelihood functions. The estimation of the IMM algorithm is
a combination of estimates obtained from different models,
rather than simply choosing the completely correct model
estimate at each time.

Zhang et al. [26] used two extended Kalman filters for
positioning in both line-of-sight and non-line-of-sight sce-
narios, and fused the results using the IMM algorithm.
Lee et al. [27] established different motion models by ana-
lyzing different human motion patterns, such as straight-line
motion, accelerated motion, and turning, and applied the
IMM-UKF algorithm to track the target. Experimental results
demonstrated that this method is more effective in improving
localization accuracy and response speed than single-model
filteringmethods such as KF and PF. Radhika et al. [28] com-
bined the IMM algorithm with CKF to propose a tracking
method for highly maneuverable targets, and verified the
improvement by calculating the posterior Cramér-Rao lower
bound.

III. PROBLEM DESCRIPTION
Assume that the positioning environment is a two-dimensional
plane (R2), and the target is located at xt ∈ R2 at time
t . At this time, the fingerprints obtained by the target
from the Wi-Fi access point (AP) is denoted as yt =[
y(1)⊤t , · · · , y(N )⊤

t

]⊤

. We also assume the xt and yt are gen-
erated from the following model:

µt+1 = Fµt + wt , (4)

yt = h (Jµt) + ιt . (5)

The state µt =
[
x⊤
t , ẋ⊤

t
]⊤ consists of the position and

velocity of the target at time t . The state-transition matrix is
denoted by F ∈ R4×4, and the process noise is represented
bywt ∼ N (0,Q), while the measurement noise is denoted by
ιt ∼ N (0,R). The white process noise wt and measurement
noise ιt are jointly independent. The selection matrix J =

[I, 0]⊤, where I is the identity matrix, is used such that
Jµt = xt .
Assuming that the fingerprint yt is known but the matrix

R is unknown, we can choose different matrices F and Q

depending on the motion model (4). Then, the positioning
problem can be formulated as follows:
Problem 1: Based on the model (4) and (5), as well as the

fingerprint yt , the problem is to solve the target’s position xt
at each time t ∈ N.

IV. PROPOSED METHOD
This section introduces a novel indoor positioning technique
referred to as IMM-MLKF. It completes an iteration at each
time t , which contains 4 stages, namely input building, max-
imum likelihood filtering, model probability updating and
combine estimation.

A. INPUT BUILDING
Assume µ

j,0
t−1 is the state value we use to predict the state at

time t for the j-th model, which is composed of all r models
we use in a certain proportion. 6j,0

t−1 is the covariance matrix
and stands for the uncertainty of themodel.We compute these
2 parameters as follows:

µ
j,0
t−1|t−1 =

r∑
i=1

ζ
i|j
t−1µ

i
t−1|t−1, (6)

6
j,0
t−1|t−1 =

r∑
i=1

ζ
i|j
t−1[6

i
t−1|t−1 + (µi

t−1|t−1 − µ
j,0
t−1|t−1)·

× (µi
t−1|t−1 − µ

j,0
t−1|t−1)

⊤], (7)

in which ζ
i|j
t−1 is the mixing probability between models.

The initial states and covariance matrices of each model are
weighted and mixed according to the mixing probability to
obtain the mixed initial state and covariance matrix. ζ i|jt−1 can
be calculated by

ζ
i|j
t−1 =

pijζ it−1|t−1∑r
k=1 pkjζ

k
t−1|t−1

, (8)

where pij is the transfer probability from model i to model j.

B. MAXIMUM LIKELIHOOD FILTERING
In this stage, we use maximum likelihood Kalman filter to
get the prediction and update the state value at time t . This
method can deal with nonlinear measure models without
increasing running time significantly [44].

1) MAXIMUM LIKELIHOOD ESTIMATION
In this step, we use the maximum likelihood estimation
method based on the fingerprint model to obtain the result
of static localization x̂t by the current target’s received fin-
gerprint signal yt .

x̌t = argmax
x

Lt (x), (9)

λt = J⊤x̌t , (10)

3t = J⊤ČtJ , (11)

where

Lt (x) = log p (yt |Jµt = x) , (12)
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p (yt |Jµt = x) = N
(
yt ; ĥ (x) , R̂

)
. (13)

where ĥ(x) is the fingerprint model we established and Čt can
be calculated as

Čt = −∇
2Lt

(
x̌t

)
, (14)

with ∇
2Lt (x) representing the Hessian of Lt evaluated at

x.

2) PREDICTION
The principle of this step is the same as that of the typical
Kalman filter. With µ

j,0
t−1|t−1 and 6

j,0
t−1|t−1 from equation (6)

and (7), we can predict the state value using the j-th motion
model.

µ
j
t|t−1 = F jt−1µ

j,0
t−1|t−1, (15)

6
j
t|t−1 = F jt−16

j,0
t−1|t−1(F

j
t−1)

⊤
+ Qj. (16)

3) UPDATE
Since the measurement equation is nonlinear, we use the
estimate x̌t obtained by equation (9) to get the filtering value
µ
j
t|t and 6

j
t|t .

µ
j
t|t = 6

j
t|t [(6

j
t|t−1)

−1µt|t−1 + 3tλt ], (17)

6
j
t|t = [(6j

t|t−1)
−1

− 3t ]−1. (18)

C. MODEL PROBABILITY UPDATING
In this stage, we compute the likelihood value of the model
to evaluate the accuracy of each model.

8
j
t =

1√
(2π )Ndet(S jt )

exp[−
1
2
(r jt )

⊤(S jt )
−1r jt ], (19)

r jt = yt − Htµ
j
t|t−1, (20)

S jt = Ht6
j
t|t−1(Ht )

⊤
+ Rj, (21)

where

Ht =
∂h(xt )

∂x⊤
t

. (22)

Then we can get the confidence of each model

ξ
j
t|t =

1
c
ξ
j
t|t−18

j
t , (23)

in which

ξ
j
t|t =

1
c
ξ
j
t|t−18

j
t , (24)

in which

ξ
j
t|t−1 =

r∑
i=1

pij8i
t , (25)

c =

r∑
i=1

ξ
j
t|t−18

i
t . (26)

ξ
j
t|t represents the confidence that the model accurately

describes the target’s motion at that time. The final output of
the filter is the weighted average of multiple filter estimates
based on this confidence level.

D. COMBINE ESTIMATION
In the last step, we mix all model estimates in proportion to
their confidence.

µt =

r∑
t=1

ξ it|tµ
i
t|t , (27)

6t =

r∑
i=1

µi
t|t [6

i
t|t + (µi

t − µt )(µi
t − µt )⊤]. (28)

The position of the target at time t is estimated as x̂t = Jµt .
Figure 1 shows the flow chart of the proposed algorithm.

V. EXPERIMENTAL VALIDATION
A. CSI FINGERPRINT
In this section, we assess the effectiveness of the indoor
localization method we proposed above. We need to obtain
the formula for calculating the likelihood function Lt (x) in
equation (12) and the Hessian matrix ∇

2Lt
(
x̌t

)
in equation

(14). The fingerprinting method we use is described in [45].
More precisely, the measurement model can be given by

ĥ(x) =

K∑
k=1

αkexp(−
I
1
3

2
∥x − pk∥2). (29)

At this point, we can get the analytic expression of
equation (13)

p(yt |Jµt = x) ≃N
(
yt ; ĥ (x) , R̂

)
(30)

=
1

|2πR|
1
2

exp[−
1
2
(yt − ĥ(x))⊤R−1

·

× (yt − ĥ(x))]. (31)

Then the equation (12) could be written as

Lt (x) = logp(yt |Jµt = x) (32)

≃ −
1
2
log|2πR| −

1
2
(yt − ĥ(x))⊤R−1(yt − ĥ(x)).

(33)

Therefore, the i-th component of its gradient is

[∇2Lt (x)]i ≃
∂ ĥ(x)⊤

∂xi
R−1(yt − ĥ(x)). (34)

Then for equation (14), the (i, j)-th component of the Hes-
sian matrix is

∂ ĥ(x)
∂xi

=

K∑
k=1

αk
∂

∂xi
exp(−

I
1
3

2
∥x − pk∥2) (35)

= −
I
1
3

2

K∑
k=1

αkexp(−
I
1
3

2
∥x − pk∥2)

× ·
∂

∂xi
(x⊤x − 2p⊤

k x + p⊤
k pk ) (36)

=I
1
3

K∑
k=1

αkexp(−
I
1
3

2
∥x − pk∥2)(pk − x)⊤

∂x
∂xi

, (37)

where ∂x
∂x1

= [1, 0]⊤ and ∂x
∂x2

= [0, 1]⊤.
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FIGURE 1. Flow chart of the positioning algorithm.

B. ENVIRONMENT SETTING
Currently, obtaining CSI data involves modifying and cus-
tomizing the kernel of certain hardware. Given the richness
of data acquisition, the transmission hardware used in this
experiment is a TP-LinkWDR4310 router that is pre-installed
with the OpenWrt open-source system, as shown in Figure 2.
It captures CSI values of 56 subcarriers, using two 10-bit
values for each subcarrier’s phase and amplitude. Ground
truth positions are acquired using motion capture cameras
with millimeter level accuracy. Considering the limitations of
transmission and reception devices in real-world applications,
the transmission end uses 3 antennas while the receiving end
uses 1 antenna.

The first experimental environment is set as an empty
indoor environment, as shown in Figure 3. In the environ-
ment, we selected 70 initialization positions and 26 test posi-
tions. After comprehensive consideration of the fingerprint

collection workload and positioning accuracy, the distance
between the initialization positions is set as 1 meter. To obtain
the CSI values sent by the receiver, we use the Ping com-
mand to generate a request for the receiver to send a reply,
which results in one data packet from the receiver. In this
experiment, the Ping command interval is set to 0.1 seconds.
This is because the real-time data processing capability of the
server-side is limited, and a positioning interval of 0.1 sec-
onds is sufficient to meet the needs of most applications.
In order to select the fingerprint feature, we used only ampli-
tude, only unwrapped calibration phase differences (UCPDs)
described in [45], both amplitude and UCPDs as finger-
print features for static positioning. The results are shown
in Figure 4. As can be seen in the figure, when using CSI
amplitude for localization, its localization error is signifi-
cantly higher thanwhen using phase as the fingerprint feature.
When using both phase and amplitude for localization, the

VOLUME 11, 2023 74681



W. Wang, Y. Jia: Novel Indoor Tracking Method Based on IMM-MLKF With CSI Measurements

FIGURE 2. The TP-Link WDR4310 router with three antennas used for
positioning, with each antenna can receive a set of CSI values of
56 subcarriers.

FIGURE 3. The layout and database points of the empty room, where the
access point is positioned in the lower-right corner.

localization error is also slightly higher than when using
phase alone. In summary, in order to achieve the best local-
ization results, this section only uses phase features, that is,
the UCPDs as the fingerprint feature. In static positioning,
the average positioning error of using UCPDs as fingerprints
is 1.097 meters, while the positioning error of using RSSI as
fingerprint features is 3.0824 meters.

Subsequently, we compared the impact of using data
from different transmit antennas on the localization results,
as shown in Figure 5. As can be seen from the figure,
when using three antennas individually for localization, the
obtained localization error results are relatively similar, and
both are slightly higher than when using data from all three
antennas for localization. Therefore, the fingerprints are from
all three transmission antennas.

C. TRACKING PERFORMANCE
For the experiment on dynamic targets, we used a robot with
a control panel developed by NVIDIA Jetson Nano. The
selected motion models are CV and CT models as described
in the appendix VI. Considering the possible packet loss
during transmission and the need for data preprocessing, the
positioning interval is set as T = 0.5s. The comparison
methods include the MLKF algorithm [45], MLPF algorithm
with 50 particles [42], and IMM-EKF [26], IMM-UKF [27]

FIGURE 4. Influence of fingerprint feature selection on positioning error.

FIGURE 5. Influence of using different transmitting antennas on
positioning error.

and IMM-CKF [28] algorithms based on multiple interacting
models mentioned earlier. We controlled the target to move
along an approximately square path at a constant speed.
Firstly, we tested the difference in positioning accuracy
between differentmethodswhen using the CV andCTmodels
separately and when using interactive multi-modal methods.
The results are shown in Figure 6. From the results in the
figure, it can be seen that all three selected methods have a
certain degree of improvement in positioning accuracy when
combined with the interactive multi-modal methods.

The results of the experiment are shown in Table 1.
The data in the table shows that the proposed IMM-MLKF
algorithm and the MLPF algorithm have a clear advantage
in terms of average positioning error compared to other
algorithms. The IMM-MLKF algorithm performs better in
positioning errors at turns and consumes less computational
time in each iteration. The computation time of this method
at each iteration is also in the same order of magnitude
as other methods, which is significantly better than MLPF.
Figure 7 shows the cumulative distribution functions (CDF)
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FIGURE 6. Comparison of errors between different motion models.

TABLE 1. Positioning error (empty room).

FIGURE 7. Positioning error CDF (empty room).

of distance errors using these methods, and the true trajectory
of the object the tracking result of the proposed method is
shown in Figure 8.

The second experimental scenario was set up according
to a real office environment, shown in Figure 9, where the
target starts from the office and moves along the corridor as
shown in Figure 10. The results shown in Table 2 indicate
that the signal experiences a decline after passing through
the wall, affecting the positioning accuracy to some extent.
The MLKF method has a large error in this environment.
The IMM-UKF and the IMM-MLKF method proposed in
this paper have higher positioning accuracy at the turning

FIGURE 8. Tracking result (empty room).

FIGURE 9. The second experimental scenario and the positioning target.

FIGURE 10. Tracking result (office environment).

positions. However, overall, the IMM-MLKF method has
better positioning accuracy and its computational speed can
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FIGURE 11. Positioning error CDF (Office environment).

TABLE 2. Positioning error (office environment).

still meet the requirements of real-time positioning. The CDF
of the mean error is shown in Figure 11.

VI. CONCLUSION
In this paper, we proposed a new positioning method based
on the maximum likelihood Kalman filtering, referred to as
IMM-MLKF. The core advantage of this method is its ability
to adapt to different target movement states by using different
motion models, resulting in better positioning results for tar-
gets with more complex movement states. Additionally, this
method inherits the high computational efficiency of MLKF,
allowing it to be applied in real-time positioning. We verified
the method through experiments in two different positioning
environments, and it has a significant advantage over other
similar algorithms when considering the trade-off between
positioning accuracy and computational efficiency.

APPENDIX A LINEAR MOTION MODELS
A. CONSTANT VELOCITY MODEL
The constant velocity (CV)model is commonly used tomatch
the situation where the target is moving in a straight line at a
constant speed. In Equation (4),

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , (38)

and the covariance for the noise wt is

Q = q2


T 3

3
T 2

2 0 0
T 2

2 T 0 0
0 0 T 3

3
T 2

2
0 0 T 2

2 T

 . (39)

B. CONSTANT VELOCITY MODEL
The constant velocity (CT) model is used to simulate the
motion of a target undergoing constant angular velocity turn-
ing motion. In Equation (4),

F =


1 sin(ωT )

ω
0 −

1−cos(ωT )
ω

0 cos(ωT ) 0 −sin(ωT )
0 1−cos(ωT )

ω
1 sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )

 , (40)

and the covariance for the noise wt is

Q = q2


T 3

3
T 2

2 0 0
T 2

2 T 0 0
0 0 T 3

3
T 2

2
0 0 T 2

2 T

 . (41)
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