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ABSTRACT The advent of Fifth Generation (5G) technology has ushered in a new era of advancements
in the aviation sector. However, the introduction of smart infrastructure has significantly altered the threat
landscape at airports, leading to an increased vulnerability due to the proliferation of endpoints. Conse-
quently, there is an urgent requirement for an automated detection system capable of promptly identifying
and thwarting network intrusions. This research paper proposes a deep learning methodology that merges
a Convolutional Neural Network (CNN) with a Gated Recurrent Unit (GRU) to effectively detect various
types of cyber threats using tabular-based image data. To transform time series features into 2D texture
images, Gramian Angular Fields (GAFs) are utilized. These images are then stacked to form an N-channel
image, which is fed into the CNN-GRU architecture for sequence analysis and identification of potential
threats. The provide solution GAF-CNN-GRU achieved an accuracy of 98.6% on the Cranfield Embedded
Systems Attack Dataset. We further achieved Precision, Recall and F1-scores of 97.84%, 91% and 94.3%.
To evaluate model robustness we further tested this approach, using a benchmark random selection of
input features, on the Canadian Institute for Cyber-Security (CIC) 2019 Distributed Denial-of-service attack
(DDoS) Dataset achieving an Accuracy of 89.08%. Following feature optimisation our approach was able
to achieve an accuracy of 98.36% with Precision, Recall and F1 scores of 93.09%, 95.45% and 94.56%
respectively.

INDEX TERMS Aviation, cyber security, denial-of-service attack (DoS), fifth generation (5G), digital
aviation, neural network, time series.

I. INTRODUCTION

The future aviation communications topology is one based
on rapid, network centric operations. Traditional communi-
cations methods such as Very High Frequency (VHF) and the
Aircraft Communications, Addressing and Reporting Sys-
tem (ACARS) are no longer suitable for the high rate, low
latency communications expected by both Airline Service
Providers and Passengers. To meet this expectation standard
Internet Protocol (IP) based systems are deployed for both
air-side and land-side operation for services ranging from

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong

Electronic Flight Bags (EFBs) to real time passenger info-
tainment. The migration from legacy systems to IP driven
topologies has allowed Airline Service Providers and the
wider airport domain to automate previously manual pro-
cesses. This has been done through a heterogeneous, real
time, omnipresent data exchange structure that enables data
exchanges between the airport, aircraft, and ground crews.
This provides a medium to transfer performance, safety and
entertainment data in a fast efficient manner [1]. The core
benefits of IP system deployment are:

o Real Time Data Transfer
o Access to Performance Data in flight
o Access to Safety Data in flight
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« Reduction in Aircraft downtime due to expedited data
transfer rates
« Potential performance and efficiency increase

Despite the advantages of next gen systems, those utilising
Internet Protocol Version 6 (IPV6) or based on 5G architec-
ture, such as increased transmission rate, performance and
efficiency [2], [3]; deployment of open loop wireless topolo-
gies results in the expansion of the aviation threat landscape.

The proliferation of smart technology within the aviation
domain has generated an increase in the number of potential
attack points for cyber criminals [4]. Unprotected terminals
and networks can be accessed and misused by malicious
actors to gain access, edit or delete data. Therefore, any host
device deployed to a public or shared area network should be
viewed as a target for cyber criminals. Given the evolution of
attacker strategies [5] detection methods must adjust accord-
ingly — focusing on the intricacies and inter-dependencies of
the user network interaction. The development of novel attack
stratagems is a constant issue within the cyber and informa-
tion security domain. While researchers and industry develop
new methods of detection and mitigation, threat actors work
to find flaws in defensive solutions through both novel and
modified attack vectors. A current method that is gaining pop-
ularity within the domain is the modified Distributed Denial
of Service (DDoS) attack, Distributed Reflective Denial of
Service (DrDoS) - depicted in Figure 1.

- Attacker

==

N

E] . P

Target

FIGURE 1. Structure of a DrDoS attack.

Attacks against system availability for a broad scope of
services that utilise IP or 5G cellular protocols have become
a popular attack vector [6]. To facilitate a DrDoS attack
the malicious actor sends a forged request from a victim’s
spoofed IP address to multiple servers. The server in question
then transmits replies to the victim node in much greater
quantity than the initial request. The optimal result for the
attacker is the bandwidth or other targeted system resource
depleted and the victim unable to function within the bounds
of standard operation.

While the flexibility given by 5G sliced cellular networks
promotes the ideal solution for intra-environment aviation
connectivity, there are several fundamental security con-
cerns that need to be addressed. Standard DRDoS detection
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methods operate for specific protocols, evaluating the sta-
tistical relationship between client server pairs looking for
asymmetry [7]. Unfortunately, while effective in a niche envi-
ronment, protocol driven Intrusion Detection Systems (IDSs)
often fail to detect novel DrDoS attacks which utilises a
different protocol. As such protocol agnostic solutions are
required.

The principal issue with Al deployment within cyber secu-
rity is the need for much higher accuracy and discriminatory
ability than is currently being achieved. The automatic seg-
regation and filtering that is a hallmark of machine learning
has the potential to be just as disruptive as a deployed cyber
attack. Wherein the incorrect detection of normal traffic as
malicious results in obtaining a high false positive rate within
the system. In this instance the system will often block
or drop benign user traffic. Traditional methods of anoma-
lous behaviour detection based on statistical methods can be
prone to identifying sufficiently diverged legitimate traffic
as anomalous. Existing deep learning approaches primarily
utilise convolutional Neural Networks (CNNs) [8] or some
derivation of the Recurrent Neural Network (RNN) architec-
ture. The use of convolutional methods to classify non-image
data does not utilise the full advantage CNN capability as
methods that operate on tabular data are unable to learn
and use the feature relationships to improve the prediction
performance and therein their accuracy. We propose a novel
solution - inspired from work done by [9] who used the
Python Matplotlib functionality to map IEEE 14-bus and
IEEE 1180-bus system states to 2D images to detect cyber
anomalies. The innovative contribution of this paper lies in
its exploration of a new aspect by focusing on classifying
the transition in network state from benign to attack. The
novelty is achieved through the development of a unique
approach that combines benign and attack traffic types, sim-
ulating the sudden change in network performance metrics
during a DDoS attack. This hybrid approach is then fed
into a CNN-GRU architecture, enabling the classification of
network traffic state by analysing multivariate time series
and extracting spatial and temporal features simultaneously.
Given the background research and existing literature regard-
ing DDoS attack detection the contribution of this paper is as
follows:

« Unlike previous work this paper explores classifying the
change in network state from benign to attack. This has
been achieved by splicing together benign and attack
traffic types in order to simulate the sudden change in
network performance metrics that occur when a system
is under DDoS attack and fed in to a CNN-GRU archi-
tecture.

« We propose a novel framework for the classification of
network traffic state via multivariate time series analysis
of dynamic network statistics in the form a hybrid CNN-
GRU model. The hybrid approach combines the benefits
of the CNN such as noise filtering of the input data
and automatic feature extraction, with the GRU ability
for effective learning. In addition, the GRU relies on
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FIGURE 2. Aviation 5G SDN enabling airport environment architecture design.
sequential data and can be used to extract temporal o We have exceeded the accuracy of both singular and

features. This combination of CNN and RNN allows
evaluation of spatial and temporal features simultane-
ously. This is achieved as the GRU is able to maintain
temporal features while the CNN extracts the spatial and
global components.

We use Gramian Angular Fields to construct a
unique image of a localised frame; preserving
both temporal dependency and highlighting temporal
correlations.
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hybrid topology state of the art methods using a dataset

that has been reduced by 96.59% when using our opti-

mised feature subset.
The rest of the paper is laid out thus; Section II explores and
identifies various security vulnerabilities and cyber threats
to 5G driven aviation networks. Section III examines exist-
ing literature and techniques for D(D)oS detection, rang-
ing from statistical methods to deep learning. Section IV
presents our proposed methodology. Section V comprises
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results and discussion. Concluding remarks are given in
Section VL.

Il. RELATED WORK

Working with SDN-Edge-IoT networks is challenging for
multiple reasons including but not limited to large volumes of
data combined with heterogeneous sensor inputs and outputs,
high dimensionality and multi-modality of data. In this paper,
anomaly detection refers to the task of identifying data in
which attributes are statistical outliers from the expected.
Classical approaches for anomaly and intrusion based detec-
tion are based on signature-based detection systems [10].
These systems detect attacks by comparing incoming patterns
against databases of known attack patterns and predefined
rules. These reactive methods are incapable of detecting
zero-day attacks as they rely on a pre-existing set of rules.
To create an effective system there are several key network
characteristics that must be taken in account prior to design-
ing any Intrusion Detection System:

o Speed

o Adaptability

« Reduced Overhead

o Lightweight

« System/Protocol Agnostic

Any model developed should be able to detect and classify
threats within an acceptable time period and be able to detect
novel attack patterns and stratagems. While doing so the IDS
should be seamless, via techniques such as minimising sys-
tem resource requirements, in order not to take a negative toll
on the front end system. Finally, the diverse loT environment
that is prevalent within aviation requires any IDS to be able
to analyse differing architectures linking back to the need for
any solution to be protocol agnostic. This section explores
and evaluates anomaly based D(D)oS detection methods -
evaluating both traditional statistical methods and machine
learning applications.

A. STATISTICAL APPROACHES FOR INTRUSION
DETECTION

A common approach for network analysis and D(D)oS detec-
tion is by measuring the statistical properties of various
network traffic variables - evaluating entropy variation for a
given network feature [11]. Information Entropy (IE) is a sta-
tistical technique used to measure the information uncertainty
for a given variable. When applied to network traffic, IE eval-
uates the change in distribution of traffic. A high entropy
score indicates high variation; conversely low entropy val-
ues indicate less variation in the traffic packets’ origins or
behaviour. In theory, volumetric D(D)oS attacks are typically
characterised by a significantly larger number of traffic pack-
ets compared to standard operational traffic. These attackers
send huge quantities of traffic to one or more targets causing
a drop in distribution of known traffic attributes. Entropy
methods have been used with varying degrees of success.

VOLUME 11, 2023

Literature [12] utilised entropy statistics to detect DDoS
attacks by evaluating the rate at which packet drops occur in
order to classify the occurrence of DDoS attack in quasi-real
time - achieving an accuracy of between 97-100% dependent
on the percentage attack rate. Reference [13] implemented
a D(D)oS detection method based on Chi-Square analysis
of port number and source IP address. Reference [14] pro-
poses an entropy technique using randomness to calculate
the number of incoming packets to defined hosts and com-
pares the flow rate against a threshold value. Reference [15]
similarly uses time duration to detect DDoS attacks. A flow
controller evaluates the accumulation on packets determined
‘non valid’ over a given time frame to determine if a DDoS
attack is occurring. Entropy based detection has been used
for lightweight edge network deployment; [16] utilised anal-
ysis of flow statistics and entropy calculations deployed
on switches to detect anomalies in networks similar to the
lightweight solution presented in [14]. Reference [17] pro-
poses a novel Network Intrusion Detection System (NIDS)
combining both Genetic Algorithms and Fuzzy Logic with
the approach achieving an accuracy of 96.53% on real time
network data.

A consistent issue with both statistical and entropy based
techniques is the requirement to select a relevant detection
threshold. Due to the heterogeneous sensor feeds that are
pervasive throughout both the aviation topology and the vari-
ation in traffic type and volume. This fluctuation means it is
difficult to ascertain an acceptable detection threshold that
will minimise false classifications under attack conditions.

B. MACHINE LEARNING FOR INTRUSION DETECTION

Machine learning explores hidden patterns and relation-
ships to give predictions for new data. Supervised machine
learning algorithms need labelled data, while unsupervised
machine learning algorithms can describe data structure with
unlabelled data. Data used as input for machine learning
algorithms are considered features, and should be chosen
carefully to improve accuracy and reduce computation time.
Feature selection is a necessary phase to analyse high dimen-
sional and noisy data. Algorithms in common circulation
are Support Vector Machine, K-Nearest Neighbour, Neural
Network, Decision Tree, Naive Bayes etc. Within their litera-
ture [18] has conducted a comparative study; utilising the J48,
Multi-Layer Perception (MLP), Random Forest and Naive
Bayes algorithms to classify D(D)oS attacks achieving an
accuracy of 98.64%, 98.63%, 98.10% and 96.93% respec-
tively. Within this work we see the benefits of the J48 decision
tree as there is no need for prepossessing data. Furthermore
the algorithm is able to efficiently Handel co-linearity of
data. Interestingly, the J48 decision tree (DT) achieves high
scores across all classification metrics despite the DT ten-
dency to lose information when utilised on continuous data.
The paper also evaluates the potential of Naive Bayes as a
Cyber Attack classifier as it has the ability to handle both
discreet and continuous data allowing it to operate over all
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aspects of cyber network statistics. This, combined with its
ability for real-time classification and insensitivity to irrel-
evant features promote Naive Bayes as a rapid deployment
method for cyber-threat detection. However, the assumption
of Conditional Independence between each variable excludes
the Naive Bayes model from evaluating possible solutions
based on possibility of co-linearity. The final two approaches
are Random Forest and a Multi-Layer Perceptron (MLP).
As with Naive Bayes the Random Forest approach is able
to work well with both categorical and numerical data. Fur-
thermore, they operate a form of feature selection to optimise
their methodology. However, a major drawback is the high
computational intensity for large datasets, an attribute which
is not explored within the paper. Finally the authors propose
the use of multi-class classification using a Multi-layer Per-
ceptron model. The core advantage of the MLP is its able to
be applied to complex non linear problems. However it has
high computational time and the functionality of the model
is dependent on the quality of the training. Reference [19]
explored the use of stateless features to detect DDoS attacks
in IoT network traffic. Varying machine learning method
have been used to detect and mitigate cyber-attacks. Ref-
erence [20] utilised anomaly-based methods combined with
XGBoost and Adaboost on the NSL-KDD dataset achieving
84.2% accuracy. The relatively low accuracy compared to
literature can be explained by the dataset description where
minority classes in training are seen as majority elements
within the testing domain - this discrepancy results in a large
number of false positives within the binary classifier. Several
ensemble learning methods have been proposed such as [21]
and [22]. As would be expected for an ensemble classifier,
accuracy exceeds that of a singular network. The authors
of [23] have proposed an approach utilising ID3, Random
Forest, Naive Bayes and Logistic Regression; achieving 78%,
65% and 69% on Precision, Recall and F1-score respectively.
Reference [24] proposed a near real-time SDN environment
utilising the CNN DL and multi-dimensional IP flow analysis
accuracy of: 95.4%, Precision - 93.3%, Recall - 95.7% and
F-measure - 92.8%. Similarly, [25] presented a methodology
based on a Restricted Boltzman Machine (RBM) and Deep
Belief Network (DBN). The method achieved a detection rate
of 97.90% on the NSL-KDD Cup’99 dataset with a false
negative rate of 2.47%. Reference [26] propose a deep learn-
ing structure trained on the NSL-KDD’99 dataset attaining
a 99% accuracy. The authors of [27] propose the use of a
Self Organising Map (SOM) to be deployed within an open-
flow environment. The lightweight DDoS attack detection
operates with a low computational overhead. While obtaining
arelative number of false positives the detection rate is on par
with other ML approaches.

C. DEEP LEARNING FOR INTRUSION DETECTION

Deep Learning is a subset of machine learning; utilising
multiple layers of neural network structures to extract, refine
and classify input vectors. The authors of [28] propose a Deep
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Learning algorithm which utilises a recurrent Neural Network
to extract learnt patterns from network traffic sequences and
evaluate network attack activities. In this model LSTM-based
approach attains the highest accuracy of 97.96%, while the
combination of CNN and LSTM achieves an accuracy of
95.90%. Reference [29] combines statistical approaches with
deep learning; combining entropy features with DL-based
classifiers. The evaluation demonstrates improved perfor-
mance over the threshold-based approach with higher pre-
cision and recall; furthermore, this approach addresses the
problem of threshold setting in entropy-based techniques
mentioned previously. Reference [30] have attempted to gen-
erate a holistic solution by integrating deep convolutional
layers with advanced probabilistic layers focusing on the min-
imisation of false positives and false negatives to enhance and
improve detection accuracy. Reference [31] use a regularised
CNN combined with L1 and L2 in order to reduce over-fitting
by the Convolutional architectures. The work indicates that
the L1 and L2 regularisation helps to address performance
short comings on unseen data by assigning penalty term to
the loss function. Reference [32] utilize a novel Transformer
based network intrusion detection system. The benefits of
which are that transformers will efficiently extract high
dimensional data in to its low dimensional representation;
furthermore the method employs a self attention mechanism
to capture contextual information between network traffic for
detection.

D. TIME SERIES IMAGES

CNNs have achieved a great success in image recognition
due to their inherent ability to learn hierarchical feature rep-
resentation from raw data. A time series sequence is one
which as natural temporal ordering. Existing Time series clas-
sification (TSC) are usually based on varying perspectives.
Frequency domain methods such as spectral analysis [33] and
wavelet analysis [34] are commonplace as are time domain
approaches such as auto-correlation and regression [35]. Ref-
erence [9] utilised Time Series Images (TSI) to detect False
Data Injection Attacks (FDIA) within power networks. The
results and analysis shows that TSI is able reliably detect and
localise most of the FDIA over the networks. Furthermore,
comparative analysis shows that this approach is superior to
standard ML approaches such as Support Vector Machines
(SVM).

In this work we have chosen to use a 2-Dimensional
(TSI) representation of our data rather than the tradi-
tional 1-Dimensional representation. Image representation
of time-series generates varying feature types that are not
available for 1D signals; through this we are able to migrate
the problem into the realm of convolutional network tex-
ture analysis. Furthermore, the combination fusion of the
CNN and GRU methodologies promote several advantages
over existing techniques discussed. Compared to traditional
machine learning methods such as the MLP image analy-
sis via CNN experiences better data fitting and generalised
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FIGURE 3. Aviation operational domain systems and sub-systems.

performance [36], [37], [38]. Additionally, CNNs are more
location invariant, utilising only a small subset of the image
at any one time. Furthermore, the automatic feature analysis
and selection makes it an obvious choice. In tandem, the
Recurrent Neural Network (RNN) is unique in its ability to
correlate contextual information effectively and is suitable for
modelling sequence data. The hybrid CNN-GRU is adapted to
making use of the multi-scale spatiotemporal characteristics
to classify network operation to a higher accuracy and a lower
false positive rate than the current state of the art.

Ill. AVIATION ECOSYSTEM AND CYBER
VULNERABILITIES
Figures 3 and 4 show the aviation ecosystem as a fusion of
multiple silo-ed sub-networks, made up from heterogeneous
devices and connectivity capabilities communicating to pro-
vide seamless operation within the air side domain.

The co-existence of different generations of network tech-
nologies is due to legacy motivations and differing system
requirements and specifications across network sub-domains.

A. NETWORK ARCHITECTURE

The aviation safety and operational ecosystem is still evolv-
ing as the smart airport concept continues to develop. Recent
regulatory definitions are given in ARINC 858 [39]. High
rates of development have occurred in the domains of Airline
Operation Control (AOC) and Air Traffic Services (ATC)
related to integration within the Software Defined Network
(SDN) infrastructure. The core architecture comprises a
series of aircraft (mobile nodes) geographically distributed
over the airport where messages are exchanged between the
Aircraft, Airport Operation ControlCentre(AOCC) and Air
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FIGURE 4. Aviation domain presented as a global system of systems.

Navigation Service Provider (ANSP). Any aircraft is capable
of either generating or receiving data to/from the varying
ANSPs or ground actors. Incorporating an SDN architec-
ture promises to significantly simplify and reduce network
management and thereby enable evolution and development
within cyber operations due to the logically centralised net-
work intelligence based in the control plane. In this scenario
network devices and nodes operate solely as packet forward-
ing devices. However, the segregation of the control plane and
data plane inadvertently facilitates the option of availability
driven cyber attacks. D(D)oS style attacks are able to flood
the control plane, the data plane, or the communication chan-
nel. A successful attack against the control plane is highly
likely to cause complete network failure. Similarly, an attack
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perpetrated against the data plane or the communication link
would most likely entail a combination of packet drop and
general network inaccessibility. In order to mitigate these
scenarios there is a need for a solution that is able to ensure
availability and robustness of the communication channel
between network switches and the SDN controller, as shown
in Figure 2. It is of critical importance that any deployed
solution maintains the functionality of forwarding legitimate
traffic while effectively and efficiently being able to discern
between malicious and benign traffic all while maintaining
an overall acceptable system operational performance.

1) SOFTWARE DEFINED NETWORKING

The increased deployment of software using Software-
Defined Networking (SDN) and Network Function Virtu-
alisation (NFV) in 5G networks are expected to facilitate
increased coordination and optimisation of heterogeneous
resources [2] to enable resource management within the
5G IoT environment. The core aspect of the SDN environ-
ment [41] is the decoupling of the control and data planes
thereby migrating all network and control intelligence to the
centralised logic network controller. Within this architecture
all forwarding devices become packet forwarding elements.
For south bound interfaces it is assumed OpenFlow is used.
As with standard IP topologies every protocol, device or layer
participating in a SDN can be utilised maliciously. In order
to mitigate attacks and defend systems Intrusion Detection
Systems need to be put in place. Figure 2 shows the proposed
location for system implementation within the SDN aviation
environment. SDN comprises two main segments: Control
Plane and Data Plane.

2) CONTROL PLANE

The control plane collects and maintains the data correspond-
ing to all the connected aircraft and ground nodes. It is used
for forwarding and routing decisions dependant on aircraft
status. Implementation of SDN requires control of the net-
work to be transferred from an individual access network
to the core network. This plane also maintains information
pertaining to the current state of the network topology, node
and aircraft location, network connectivity and Quality of
Service (QoS) preferences.

3) DATA PLANE

The Data plane comprises all data transmitting network
devices for the various end user domains as shown in Figure 3.
The lack of a uniform connectivity infrastructure further
divides the data domain into the IP Application Data Domain
and the Legacy Application Data Plane. The interoperability
required by the data plane to manage the IP and legacy
technology introduces several challenges into the system.

B. CYBER SECURITY WITHIN AVIATION
The increased economic, social and environmental factors
that come with smart airport concepts leads to increased
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TABLE 1. Prevalent threats to future aviation connectivity [40].

T. DENIAL System resources may become ex-
hausted due to system error or
denial-of-service (DoS) attack.

T. DENIAL.INJECT | An attacker injects malformed
messages into a communications
segment of the system in order to
reduce the availability of the sys-
tem.

An individual other than an au-
thorized user may gain access via
technical or non-technical attack
for malicious purposes.

An attacker delays/ deletes/ injects/
modifies/ re-directs/ re-orders /re-
plays or otherwise alters messages
on a communications segment of
the system to attack integrity

T. ENTRY. EAVES- | An attacker eavesdrops on mes-
DROP sages on a communications seg-
ment of the network in order to
reduce confidentiality.

T. ENTRY. IMPER- | An attacker impersonates a user
SONATE of services to reduce the confiden-
tiality or integrity of the network,
or simply to gain free use of the
system.

T. ENTRY

T. ENTRY. ALTER

system vulnerability due to the exponential increase in poten-
tially unsecured connected devices [42], [43], and [44].
In addition, the deployment of IoT-enabled technologies such
as EFBs and field loadable data has generated a highly
integrated framework and environment of information and
communication systems. The combination of multiple sys-
tems and architectures allows information to be shared
quickly and dynamically, agnostic of system demand. How-
ever, the introduction of this combined infrastructures on
top of an already diverse architecture increases susceptibility
to cyber-attacks. Increased data migration, processing and
links between devices and systems also bring susceptibility
to the airport operators, policy makers, vendors, airlines and
contracted entities providing airport services. A breakdown of
common cyber attacks against network infrastructure is given
in Table 1.

The deployment of 5G systems within the aviation ecosys-
tem, coupled with the development of the connected aircraft
and digital cockpit has expanded the threat landscape beyond
these traditional attack vectors.

Figure 5 shows the burgeoning threat taxonomy for smart
airports, including human error, system failures and mali-
cious actions. Despite the awareness of the increasing number
of cyber threats against it, both literature and events show that
cyber security within aviation has not yet reached maturity:
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¢ 2019: The US Department of Homeland Security (DHS)
successfully managed to hack a parked Boeing 757 with-
out physical access to the network or having placed a
saboteur on the aircraft [45].

o 2018: Malicious code was uploaded to British Airways
in order to steal personal data relating to 429,612 cus-
tomers and members of staff from its servers.

o 2015: Polish airline providers at Warsaw Chopin airport
were hit with a DoS attack on a critical network resulting
in 22 flights being cancelled or delayed.

o 2015: Elements of Sweden’s ATC operational capacity
were blocked for up-to five days following a successful
attack by the cyber espionage group ‘“Fancy Bear”.

The most commonly occurring cyber attack nowadays is
the Distributed Denial of Service(DDoS). A DDoS attack is
a distributed yet coordinated attack on service availability
predominantly deployed against host servers (application,
storage, database or Domain Name Servers (DNS)) or net-
work resources. To ensure anonymity of the actor they are
mostly deployed using compromised 3rd party systems (bot-
nets) [46], [47], and [48]. The system of systems topology
favoured by aviation introduces a host of new vulnerabilities
in to the system, these vulnerabilities are further exacerbated
by the proposed implementation of 5G technology.

C. SECURITY ISSUES IN 5G NETWORKS

Due to the dynamic nature of 5G wireless networks, com-
munication is susceptible to a variety of attacks with targets
ranging from data privacy to network integrity. Finding an
widely acceptable security solution to protect 5G networks
is particularly difficult due to the aviation requirement for
scalable networks; derived from instant arrival or departure
of users from the Area Of Operation (AOO). Unlike tradi-
tional wired network topologies that operate dedicated routers
and switches, 5G increased service coverage derives from
massive [oT and Peer-to-Peer side linking. These techniques,
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coupled with the requirement for dynamic network adjust-
ment open the wireless channel to both legitimate network
users and malicious actors. Furthermore, the dynamic and
distributed topology of SDN-Edge-IoT Ecosystem Archi-
tecture results in a reduced centralised authority for cyber
security analysis and decision making. Network nodes are
able to access or leave the network as required. The roaming
nature of these nodes makes them vulnerable to network
capture. This is particularly prevalent in Common-Off-The-
Shelf (COTS) devices that lack dedicated inbuilt detection
and mitigation protocol thereby posing the weakest link and
focal point for a cascading cyber attack through the network.
Derived from literature evaluation, Figure 6 shows the pri-
mary attack vectors deployed against IoT and cyber physical
systems to block, steal, manipulate or delete data.

Data
Leakage

Timing Resource

e
Sensor @
Spoof

Blocking

Man-in-

the-
Middle
Altering

FIGURE 6. Potential 1oT cyber physical system attack vectors.

The reliance on distributed mobile nodes to form the core
network infrastructure exposes IoT communications topolo-
gies to a variety of attacks - specifically regarding network
availability. Attacks against system availability primarily
consist of Denial of Service (DoS) attacks. A DoS Attack
generates a network state wherein it cannot accomplish its
expected functions due to disrupted network services such as
routing, for its authentic users.

D(D)oS attacks primarily occur at the Transport Layer of
the TCP/IP Stack [49]. The transport layer is responsible
for controlling the flow of data within the communication
stack [50]. The main vulnerabilities found within the trans-
port layer are related to intentional corruption or degradation
of traffic packets; or exploiting protocol flaw to generate
D(D)oS attacks against the network.

There are three commonly occurring protocol driven attack
vectors used against the transport layer [51] and [52]:

o Transmission Control Protocol Synchronisation
(TCP SYN) Flood Attacks: A SYN attack occurs when
an attacker - operating through a spoofed IP address -
transmits multiples of Synchronisation (SYN) packets
to a server. The SYN and ACK from the server are
sent to the fake IP address and the link remains in a
semi open state until ACK packets are received from the
target IP address. The target device, is unable respond
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as its address has been hijacked by the malicious actors.
This process enables malicious parties to bombard the
server with a constant stream of SYN packets resulting
the system backlog queue containing the one way open
connection entries to exceed its finite size - dropping
new connections.

o User Datagram Protocol (UDP) Flood Attacks: In
this instance the attacker overwhelms random ports on
the targeted host with IP packets containing UDP data-
grams. Utilising UDP characteristics such as the lack of
a three-way handshake structure, as with TCP, a high
volume of “best effort” traffic can be sent over the
network. This coupled with the lack of built-in data surge
protection makes UDP attacks both highly effective and
able to be enacted with limited resources.

« ICMP Flood Attack: This attack type occurs when an
attacker attempts to overwhelm a targeted device with
ICMP echo-request packets. The high rate of traffic
results in a block causing the target IP to become inac-
cessible to normal traffic.

It is common for a DrDoS attack to be used as part of a
wider stratagem. In addition to attacking system availability
these methods can be used to subvert systems and deploy
malware to generate a botnet. In turn these botnets can be
used to launch DDoS attacks of a much higher magnitude,
coalescing vast reserves of distributed compute power to
be deployed as required- as in the case of the storm worm
botnet [53]. The placement of the Intrusion Detection system
is an important consideration. In most instances they are
deployed behind the firewall at the edge network to facilitate
high levels of visibility. However, this heightened awareness
comes at the expense of host — to — host traffic analysis.
Reference [54] highlights the four main deployment options
for DrDoS detection systems are given in Figure 7. However,
D(D)oS attacks have become more difficult to detect due
to the fusion of multiple attack vectors. The utilisation of

Detection approach DRDoS

Wide net
detection

Individual
Protection

Detection at
victim

Analysis from
mutliple routers

Detection at 3rd
parties/reflectors

Detection at

singular router

FIGURE 7. DrDoS detection techniques based on deployment area.
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multiple protocols to ensure attack success is now common-
place. In order to combat this diverse attack methodology,
more robust, wide-net defence techniques are required. Tra-
ditional signature driven Intrusion Detection Systems (IDS)
are not able to detect the novel zero-day nature of modern
attack strategies while existing statistically driven systems
are limited by the requirement to define operational limits.
Lately, Machine Learning structures are being explored in
order to compensate for limitations of existing solutions in
order to ensure both, the integrity of services rendered by
the airport and the safety of personnel within the aviation
environment.

IV. PROPOSED METHOD

In this paper we propose a novel lightweight Multi-Channel
CNN-GRU approach to DrDoS detection by evaluating the
spacio-temporal domains. An initial parallel architecture has
been deployed to enable the analysis of N time series image
features in tandem. As prior work has focused on either
purely in the spatial or temporal domains to the best of our
knowledge no previous work has been done wherein the
detection method operates within the combined domain using
time series imaging. The proposed method for lightweight
detection and classification of D(D)oS events within 5G
heterogeneous networks comprises a four stage process:
Data Collection, Feature Extraction, Gramian Angular Field
(GAF) Conversion and CNN Analysis. Utilising GAFs pro-
vides a method to preserve temporal dependency within the
model. As time increases the position moves from top-left to
bottom-right. The GAFs comprise temporal correlations gen-
erated by representing the relative correlation by difference of
directions with respect a given time interval. Convolutional
Neural Networks are then used to extract and analyse spatial
features and the pooling layers are used for dimensionality
reduction. Finally a Gated Recurrent Unit (GRU) is used to
classify the output feature vector which is then evaluated
using a ensemble based late fusion method to determine the
final output.

A. EXPERIMENTAL ENVIRONMENT

A deployed 5G IoT based system within the aviation domain
will comprise multiple key technologies and components
to interface together as to enable connectivity and data
exchanges. The aviation environment operates as a hetero-
geneous ecosystem and as such, a multitude of applications
can be migrated over from legacy systems to an homogenous
5G architecture; including but not limited to: Asset Tracking,
Energy management, Passenger Services and Maintenance.
Our simulation is designed to evaluate and test a novel cyber
security method using GAF-CNN-GRU methods for intruder
detection. There are multiple potential deployment scenarios
for such a system as:

o The IoT Device Layer: Here the IDS method is deployed
within the IoT devices themselves. This level of granu-
larity allows for the detection of anomalous behaviour
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at the device level in real time. However, the detriment
of this deployment structure is it results in a limited
visibility of the wider network and as such lacks system
context. Furthermore, resource limitations of many IoT
style devices results in a limited deployment pool.

o The IoT Gateway Layer: This would allow a more cen-
tralised monitoring structure based on the aggregated
data from multiple IoT devices with minimal latency and
bandwidth constraints based on local data processing.
Despite these benefits however the processing and mem-
ory capacity of gateways may become a limiting factor
combined with the generation of a single point of failure
as a gateway malfunction may result in compromising
the entire IDS structure.

o The Edge Layer: This method provides low latency as
with the IoT device layer allowing processing of data
closer to the source, thereby enabling real time anal-
ysis and response. Furthermore, operation at the edge
layer allows a greater degree of discrimination on traffic
forwarding as only relevant information will be trans-
mitted to the core network reducing the overall system
bandwidth requirement. However, as with the IoT device
layer, the edge layer boasts limited resources and a
narrow view of the broader network.

o Core Network Layer: Deployment of IDS inside the
core network would facilitate network wide network
wide visibility allowing analysis of devices, gateways
and network functions all combined within an integrated
security infrastructure; however, this is done at the cost
of increased latency reducing the effectiveness of real
time analytics.

Our method is based on the Edge Computing Layer of the 5G
architecture as we believe it will interface best with a Moving
Target Defence (MTD) proactive security mechanism that we
shall explore in a future paper. The Edge Computing Layer
is beneficial due to the proximity to data sources and the
real-time response rate. To avoid the issues of resource con-
striction to methods have been applied; Lightweight Anomaly
Detection Algorithm, based on the MobileNet architecture
and a GRU designed for lightweight application combined
with a extensive pre-processing and feature analysis which
has resulted in a reduced computational load whilst not effect-
ing detection accuracy. The simulation has been developed
using MATLAB combined with the Canadian Institute for
Cyber Security 2019 DDoS dataset [23]. Figure 8 shows
attacks contained within the dataset demonstrates a range of
protocols used and subsequent attack vectors. Attacks based
off TCP protocols include MSSQL, SSDP. Whereas UDP
attack vectors include CharGen, NTP and TFTP. In addition,
there are certain attacks that can be carried out using either
TCP or UDP like DNS, LDAP, NETBIOS and SNMP as
would be expected within a heterogeneous aviation envi-
ronment. Subsequent subsections this paper explores the
feature selection and elimination process. Retained features
are converted in to Gramian Angular Field Representa-
tions and stored in a MATLAB image data-store as this
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FIGURE 8. CIC 2019 Dataset Taxonomy [23].

allows for ease of integration with machine learning work-
flows in MATLAB. The Gramian fields contained within
the data-store were then split into train, test, validate sets
with a ratio of 0.7:0.2:0.1 respectively. The Machine learning
model was the generated using the machine learning toolbox
in MATLAB where the data-store inputs were then used
as inputs into the parallel CNN-GRU architecture, looking
at edge deployment structures allows us to circumvent the
additional data aggregation steps that would be needed for
gateway deployment.

B. DATASETS

There are several established datasets that specialize in
D(D)oS attacks such as ‘DDoS Attack 2007°, ‘Anonymized
Internet Traces’ produced by CAIDA, ‘Smart-Defender’
from CCA and CIC-DD0S2009 from Canadian Institute for
Cyber Security (CIC). For this we have both the data-set
developed by [55] and the CIC 2019 D(D)oS dataset.

The dataset generated in [55] is a combination of both hard-
ware and software elements representing the performance of
areal cyber physical system rather than simply evaluating the
virtual components. Features collected in the dataset encom-
pass the full CPS domain evaluating the central processing
unit (CPU), volatile memory (RAM), non-volatile memory
(ROM), as well as the system bus, communication subsys-
tems, battery utilisation, and input/output units - specific
descriptions have been taken from [55] and presented below:

o CPU utilisation: The CPU utilisation percentage param-
eter represents the percentage of the total available CPU
computing power available at a given instance.

« Memory load: Usage percentage parameter indicates the
amount of active system virtual memory used.

o Task Count: The total number of current CPU software
processes.

o Thread count: Records all active threads at a given time
instance.

« CPU temperature

« Power consumption

o Received (RX) and Transmitted (TX)

The unique quality of this dataset is that the parameters
comprise both hardware and software elements of the Cyber
Physical System (CPS) which adjust instantly with variable
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operational circumstances; resulting in a dynamic visualisa-
tion of the system’s health which can be analysed via analysis
of these parametric changes. In addition to this, in order to
provide an accurate and reliable comparison to current state
of the art literature this method has also been evaluated using
the Canadian Institute for Cyber Security (CIC) 2019 D(D)oS
dataset which utilises network flow statistics primarily from
the transport and application layers. The dataset generated
in [55] has 8 constituent features, all of which have been
used as inputs for the GAF-mfCNN architecture. Compared
to this the CIC dataset comprises 79 usable features. In order
to reduce this number and thereby the computational load; the
CIC dataset features have been ranked and evaluated using the
principles of Information Entropy with three middle ranking
features being selected as the input feature vectors.

C. FEATURE SELECTION

At the highest level of abstraction a machine learning classi-
fier maps a series of input data points - features - against a
target variable. This process is used so that the model learns
a mapping between the input and target variables to facilitate
the accurate prediction of the target variable. The goals of
feature refinement are:

« Improve models predictive accuracy

o Reduce the computational requirements of prediction

« Increase the interpretability of our model

In many instances the raw data may not provide optimal infor-
mation to train an ideal model, therefore it may be necessary
to remove features that:

o Are highly correlated with extant features within the
dataset thereby providing the same information to the
model.

« Highly uncorrelated with the output such that they pro-
vide little or no information regarding predictive output.

o Provide no variable information into the predictive
model IE. sequence that comprises fully the same value.

Before we evaluated our model on the CIC 2019 dataset,
we had to determine which features to use as inputs for the
multi-channel CNN. When dealing with anomaly detection
and classification, information entropy is a metric we use for
determining high value input features. For a given feature, X,
that can exist in M discrete states information entropy is given
in Equation 1:

M
1
HX) == pilogy — 1
X) ,-:1p ngp(z) (D

The 78 features of the CIC 2019 dataset were evaluated
and their information entropy scores calculated and ranked
in ascending order. A random variable with high entropy is
assumed to be a uniform random variable across the classes.
Contrary to this, a variable with low entropy is considered to
be less uniform implying it is associated with only a reduced
set of possible outcomes. For evaluating the CIC dataset three
medium entropy variables have been selected as inputs to the
classification structure: ’Idle Min’, ’Active Mean’ and Packet
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FIGURE 9. CIC 2019 reduced feature subset selected by evaluating
correlation to the target variable.

Length Std. The outputs for this method of feature selection
are given in Figures 29 and 30. These initial results have been
developed using a random subset of features based off the
Information Entropy scores. However, in order to refine our
model we shall evaluate the CIC dataset features to determine
which contribute most to the predictive model.

Following this we refine our feature selection using var-
ious feature selection mechanisms. Figures 15 and 16 are
representations of the correlation matrix between dataset
variables indicating the depth of association. The value
of the correlation coefficient varies between +1 and —1.
A value of £ 1 indicates a perfect positive/negative associa-
tion between variables. However as the correlation coefficient
tends towards 0, the relationship between the two variables is
weaker. Figure 15 shows the averaged correlation coefficients
derived from Figure 16. To reduce the pool of potential fea-
tures we remove any feature with a correlation coefficient in
the range of £ 0.5. Figure 9 shows the reduced feature subset.

Figure 10 shows the intra-feature correlations of the
reduced feature subset.

It is desirable to maximise the information being input into
the classifier, as such it is important to select features which
maximises the correlation to the output variable as shown in
Figure 9 whist also minimising the intra-feature correlation.

Figures 11 and 12 show the depth of correlation between
features for positive and negative correlations respectively.
Features that are linked by vectors with a high intensity of
colour correspond to a high correlation, conversely loosely
correlated features are shown by a low colour intensity.
In order to maximise information input we remove features
that have a correlation outside the range of +0.5.

Evaluating Figures 13 and 14 reduces our final input fea-
tures by 50% to:

o Max Packet Length
« Protocol

o Inbound

« URG Flag Count
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FIGURE 10. Intra-dataset correlation of the features held in the subset.
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FIGURE 11. Graphical representation of weighted positive feature
correlations.

« Down/Up Ratio

o Fwd Packet Length Max
However, Figures 13 and 14 indicate a relatively high
intra-feature correlation between several remaining attributes.
Recursive Feature Elimination (RFE) is used to reduce our
subset to the final three features for network input. RFE
involves an iterative procedure where the goal is to identify
the most relevant features. In this particular case, it was
decided to retain only three features. By employing Cross
Validation with RFE, various combinations of features were
assessed, ultimately determining the ideal set of three features
for input into the classifier [56], [57], [58].

D. FEATURE REPRESENTATION
In this work we are not only interested in determining when
an attack is currently in progress but also identifying the
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FIGURE 12. Graphical representation of weighted negative feature
correlations.
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FIGURE 13. Positive intra-feature correlation set with 0.5 cut off.

trigger point of the attack, where the network state transitions
from benign to the attack class. Figure 17 is a graphical
representation of the binary state change over time as our
network moves from benign status to attack classification.

This has been achieved by splicing together benign traf-
fic packets and Attack traffic patterns at random intervals.
Figure 18 provides a scaled down representation of the LDAP
class pre-spliced GAF input sequence for a given variable.

For each i ’I,>ut sequence a random number between
0- Seq”enceLengt is selected. The randomly selected number
of STI is then cut out and benign network traffic spliced in.
A high level overview of the process is given in Figure 19

The objective of this is to simulate and thereby train the
model to identify the network state change from benign to
attack.
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FIGURE 14. Negative intra-feature correlation set with 0.5 cut off.

The data collected is a continuous time series and as such
has been segmented by a sliding window representing the
Area of Interest (AOI) at a given instant in time. Visual
representations of the time series data are given in Figures
20 and 22; for both figures the X-axis is the sequence index
ranging from 1 - 30, and the Y-axis is the normalised feature
value.

Figures 20 and 22 show the original data obtained by the
time window is collected as a series of unique uni-variate
sequences over time. As such it must be converted to a format
equivalent to a two-dimensional image for CNN evaluation.

To accomplish this a Gramian Angular Field for the time
series has been generated.

1) GRAMIAN ANGULAR FIELD
A Gramian angular field is an image representation of a time
series, derived from the temporal correlation between each
pair of values that comprised an arbitrary time sequence ‘X’
of length N. The first step in the process is to normalise the
data to the range of [—1, 1] as given in Equations 2 and 3.

i (x; — max(X)) + (x; — min(X))

# = . @

max(X) — min(X)

i x; — min(X)

0= max(X) — min(X) )

Following data normalisation each of the uni-variate time
sequences are transformed from Cartesian coordinates to
Polar coordinates by the process shown in Equation 4

¢; = arccos(X;), —1<¥<l,%eX

i . 4
ri = —, ieN

N

Equation 4 introduces the re-scaled time series, achieved by
taking the inverse cosine of the normalised observation X
and assigns it as the Polar coordinate angle ¢;; time instance
]i\', is assigned as the radius. The conversion from Cartesian
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to polar coordinates is used as unlike Cartesian coordinates,
Polar coordinates preserve temporal relations. The angular
variation of the cosine function corresponding to the nor-
malised data greater than zero is assigned a value in the range
of [0,7/2], whereas the angle corresponding to normalised
values greater than -1 is assigned the range of [0,7]. A full
description of the GADF conversion can be found in [59] with
the key elements described below.

GADF = cos(¢i — ¢;) (5)

GADF=\/I—}~(2/-}~(—}~(’~\/I—}~(2 (6)

In Equation 6 ’I’ corresponds to a unit row vector. After
the polar transformation given in Equation 4 by calculat-
ing the difference between sampling points as the sequence
progresses as a function of sine, the time correlation and
dependencies between indices are identified as a function
of angular change [60]. Gramian Angular Difference Fields
(GADF) matrices are then defined in Equation 7:

sin(¢r — ¢1) -+ - sin(p1 — @)

sin(¢ — ¢1) -+ - sin(¢p2 — @)
GADF = ) @)

sin(¢, — @1) - - - sin(Ppy — Pn)

The application of Gramian Angular Fields (GAF) Converts
uni-variate time series into a two-dimensional image. The
Mapping form 1-D to 2-D is in Figure 21. Figure 23 shows
the output of GAF being applied to the uni-variate time series
given in Figure 22. The success of Deep Neural Networks
(DNNs) such as CNNis is largely attributed to classification
and data generation on homogeneous data such as image,
audio, and text. However it still struggles on tabular data
[61]. This work proposes to utilise the GAF implementation
algorithm [62] to transform the network packet data into
images by assigning the angular difference in the time series
to a given pixel position. The core advantages of the GAF
methodology are:

o Gramian Fields are a technique to maintain temporal
dependency, as while time increments over the sequence
the position within the Gramian Matrix moves from
top-left to bottom-right.

o GAFs contain frame localised temporal correlations as
the matrices represent the relative correction by differ-
ence of angular direction over a given time interval.

o No prior knowledge is required about the features

o Each pixel represents a unique feature requiring less
memory and results in reduced training time.

« Constant neighbourhood structure.

o Thee original time series is reconstructable from the
central diagonal that contains the original angular data.

The output of the GAF generation is an N channel image
where N is the number of distinct time series. A represen-
tation of the GAF output structure is shown in Figure 24 Due
to the varying statistical properties of the input time series
multi-channel feature extraction is required to achieve useful
and reliable feature extraction.
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FIGURE 15. Network feature correlation with target variable.

E. MULTI-CHANNEL FEATURE EXTRACTION

In the previous section it is described how we generate time
series mappings for each input sequence. Each of these maps
corresponds to a respective input channel in order to learn the
high level visual features that correlate to temporal dependen-
cies. Due to the different statistical properties of the various
feature input vectors it is difficult for a 1-channel model to
directly encode the multi-channel features via simple late
fusion based on the modal class. As such we propose a fusion
based multi-channel convolutional neural network (mfCNN)
as shown in Figure 25. An ensemble late fusion method has
been adopted to combine the output feature maps from all
CNN:E.

F. CNN-GRU HYBRID MODEL

Deep Neural Networks are capable of extracting features
automatically. utilising this feature extractor methodology
is critical in building an end-to-end model. The following
section explores the integration of the GRU and MobileNet
architectures. MobileNet is used in extraction and classifica-
tion network features. GRU is used to enhance the perfor-
mance of the model by maintaining the state information of
the features that it comes across in the previous generation
of the image classification. The full classifier architecture is
given in Figure 25.

1) CONVOLUTIONAL NEURAL NETWORK MODEL

The Convolutional Neural Network (CNN) is now common-
place, having become an efficient and effective method for
pattern recognition and image analysis [63]. The generic
CNN architecture comprises a convolutional layer and pool-
ing layer for feature extraction a fully connected layer
and a softmax activation function. The convolution process
that enables feature extraction is characterised by sparse
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interaction and parameter sharing. Sparse interactions reduce
the size of the convolution kernel compared to the initial input
size. Furthermore, sharing of parameters makes sure that only
one parameter set needs to be learned, thereby reducing the
storage requirements of the model significantly and generates
a translational equivalent feature [64]. Similarly, Pooling is
used to ensure that when translation varies due to changing
input, the overall input representation remains predominantly
unchanged. The deep convolutional neural network (DCNN)
model is primarily used as a pattern classifier, which at the
user level avoids the need for both artificial feature engi-
neering and the non-optimal utilisation of features. Optimal
feature selection results in improvements across both accu-
racy and generality of a classifier.

A key layer to ensuring a successful classification is
the feature extraction functions which is found within the
convolutional layer. The process performs the convolution
operation on the current set of data via multiple convolu-
tional kernels. The outputs of this are then passed to the next
layer via the bias calculation, activation function and finally
pooling operations. The whole process is condensed in to in
Equation 8.

! -1
Xy =[ Ziem;;

In Equation 8 *x is the symbol representation of the convo-
lutional operation. x[_1 is the input to the current layer and
x the output for the current 1-th layer. The other parameters

x k}j + b}) (8)

1n the function are f,M;, kl and bl which correspond to the
kernel element, current feature map element, weight value
and bias accordingly.

2) LIGHT-WEIGHT CONVOLUTIONAL MODEL
For this we have used a modified structure based on
the MobileNet [65] architecture. MobileNet utilises the
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FIGURE 16. Correlation plot between features and target variable for ‘Benign’ and MSSQL attack classes in the CIC 2019 DDoS dataset.

principles of Depthwise Separable Convolutions, Batch Nor-
malization (BN) and Rectified Linear Unit (ReLU) thereby
significantly reducing the number of parameters when com-
pared to other commonplace CNN architectures. Table 2
provides comparison of MobileNet with two other common-
place CNN architectures. During the exploratory phase of
this work it became apparent that the original MobileNet
has a tendency to over-fit. As such we have applied slight
modifications to the architecture to reduce the over-fitting
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and increase the generality of the model by removing sev-
eral layers to reduce model complexity and the addition of
several dropout layers. Generally, The largest aspect of a
trained machine learning algorithm is the model parameters.
Parameters represent the weights and biases that once learnt,
define the model’s behaviour. The size of the parameters is
dependant on the number of layers, units, and connections
in the model. As stated we removed repeated layers 10-13
as each layer has the same output shape. The removal of
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FIGURE 20. Combined Feature Variation over windowed time.

layers in a DNN structure promotes 2 core advantages to this
work:

« Model Efficiency: Removing redundant layers reduces
the complexity and computational requirements of the
network. It can lead to faster training and inference times
since there are fewer operations to perform.

o Parameter Reduction: Each layer in a DNN adds param-
eters to the model. By removing redundant layers, you
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FIGURE 21. One-dimensional time series converted to two-dimensional
images in polar coordinate system.

TABLE 2. Comparison of MobileNet to other common CNN architectures.

Model ImageNet | Million Million
Accuracy | Mult- Parameters
Adds
MobileNet | 70.6% 4866 29.3
GoogleNet | 69.8% 1550 6.8
VGG 16 71.5% 15300 138

reduce the number of parameters, which can help mit-
igate over-fitting, reduce memory requirements, and
make the model more manageable.

However, layer removal can also result in the reduction in a
networks capacity to generalise. In order to mitigate the pos-
sible drop-off in generalization owing to the removal of layers
we deploy a set of dropout layers distributed though-out the
topology; as dropout layers act as a regularization technique
to prevent over-fitting and improve the generalization ability
of neural networks.

Overall, we have retained the same initial structure for
convolution and feature extraction we have simplified the
end result by replacing the standard layers with a standard
fully connected layer which employs a softmax activation
function; and a dropout layer set to 0.6. This modification
has a further effect of reducing the model parameters thereby
reducing both the size and computational requirements of the
model.

3) COMPUTATIONAL COMPLEXITY
Separable Convolution is divisible in to two components:

o Depth-wise Convolution.
« Point-wise Convolution.

When applying depth-wise convolution each channel is
utilised by one convolutional kernel; resulting in the output
feature map having the same number of input channels as
the original input layer. Following the implementation of
depth-wise convolution the resultant output has the same
feature map dimensions as the input. The resultant feature
maps are combined with using point-wise convolution.
Point-wise convolution operates much the same way as the
traditional CNN convolution except it uses a 1 x 1 kernel to
iterate over every instance within the feature map. The depth
of the kernel directly corresponds to the number of channels
in the previous layer (M) resulting in a kernel size of 1 x IXM.
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FIGURE 22. Individual feature variation over windowed time.

4) GATED RECURRENT UNIT (GRU)

Convolutional Networks are widely used for extracting the
local features of input matrices and therefore are able to
isolate and analyse temporal dependencies within the instan-
taneous subset of a data stream. However, convolutional
layers do not account for the dependencies that evolve over
a multi-frame sequence. The time series variation of network
traffic data has temporal dependencies that extend beyond the
borders of a single frame. In order to segregate and evaluate
this temporal evolution we intend to combine convolutional
analysis with the use of Recurrent Neural Network (RNN)
architecture; as its ability to capture temporal context makes
it suitable for sequence data. Unfortunately, traditional tanh
RNN cells are prone to the vanishing gradient issue and
therefore lack the ability to evaluate long-term dependencies
which is required for reliable long-term traffic analysis. Long
Short Term Memory (LSTM) and Gated Recurrent Units
(GRU) networks are two variants based on the recurrent
structure able to capture long-term dependencies. The basic
RNN captures temporal relationships by evaluating the hid-
den states - the equation for which is given in Equation 9.

hy = g(Wy, + Uhi—1 + b) ©))
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where x; is a multi-dimensional (N-Dimensional) input
sequence for time ’#’. h; is the m-dimensional hidden state
and ’g’ the activation function. "W’ and U’ are m X n and m
X m matrices respectively. Finally, b is a bias given as an n
x 1 vector. The GRU architecture reduces the gating signal
from the LSTM model, operating only two gates; update (z;)
and reset (r;). The mathematical model breakdown is given
in Equations 10 and 11:

hh=(0-2)Oh_1+2z0h (10)
he = g(Wix; + Un(re © hy—1) + by) (11)

where the two gates are defined as:

5 =0 (Wexy + Uzhy—1 + b2) 12)
re =0 Wrx; + Urhi—1 + by) (13)

Figure 26 provides the GRU architecture comprising the
update and reset gate. The function of the update gate is to
decide how much the activation function or cell content is
adjusted. As with the LSTM, the reset gate facilitates the
removal of previous states from the cell memory. Finally,
the hidden layer is calculated via ’H;’. The proposed model,
combines both CNN and GRU architectures exploiting the
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FIGURE 23. One-dimensional time series converted to two-dimensional images through application of GADF.
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FIGURE 24. GAF output represented in 3-dimensional state space.

strengths of both. Convolutional methods are used for the
extraction of local features while GRU captures the long-term

VOLUME 11, 2023

dependencies in the time-series data. This combined hybrid
topology, enables the capture of diverse information across a
range of network features.

5) LATE FUSION
Multi-modal fusion is the process by which information from
multiple sources is joined in order to generate a classification.
For this work we have focused on late level feature fusion.
Compared to feature level fusion which integrates low level
features decision level fusion utilises the decision output
from each CNN and combines them to obtain the final event
classification.

Despite omitting the low level feature interactions which
are key to early fusion, late fusion has an added level of
flexibility and simplicity in the decision making process.

V. RESULTS AND DISCUSSION

The objective of this work has been to develop a method
of prediction and classification for DDoS threats to avia-
tion operational networks. A multi-Channel CNN for feature
extraction coupled with a GRU for classification offer a
powerful solution to detect and classify cyber-threats within
these networks. We introduce four metrics, which will be used
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FIGURE 26. GRU architecture.

to assess the per-class classification performance: Accuracy,
Precision, Recall, and F1-score. Initial prototyping of this
work was done using MATLAB 2021B combining the Data-
store functionality with the Deep Learning Toolbox. Sub-
sequently, simulation and analysis was migrated to Python
due to ease of ML implementation and optimisation. Within
Python, the ‘ptys’ package was used for its time series anal-
ysis functionality and the TensorFlow software library for
CNN and GRU generation, deployment and optimisation. All
evaluation was carried out on a PC with an Intel(R) Core(TM)
i7-10750H CPU with up to 16GB RAM available. No GPU
acceleration as used in this work.

o Precision: The fraction of correctly predicted positives
among the total predicted positive observations

Precision(P) =
T, +F,
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FIGURE 27. Test and validation accuracy variation vs iterations.

o Recall: The fraction of correctly predicted positives
among all events in the class

Tp
RecallR) = ———— (15)
T, +Fy
o F-Score: Weighted average of precision and recall
2xPxR
F — Score(F1) = ——— (16)
P+R

A. EXPERIMENTAL RESULTS

The Accuracy and Loss graphs given in Figures 27 and 28.
Initial Evaluation with a learning rate of 0.001 attained a
validation accuracy of 89.08%.

The training accuracy and loss of the GAF-CNN-GRU
model on a random subset of features contained within the
CIC-2019 dataset is shown in Figures 27 and 28. It can be
seen that the loss value rapidly decreases over the first epoch
then remains predominantly consistent with a few spikes of
increasing loss around iteration 5750, after which the losses
converge close to -15.

When training on the random CIC subset, the model
achieved a training accuracy of 75% and a validation accuracy
of 89.08%. On the validation set Precision, Recall and F1
scores were 89.4%, 91.76% and 90.56% respectively.
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FIGURE 28. Test and validation loss variation vs iteration.
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FIGURE 29. Confusion matrix for CIC 2019 training set utilising a
randomised subset.
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FIGURE 30. Confusion matrix for CIC 2019 validation set using a
randomised subset.
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FIGURE 31. Confusion matrix for CIC 2019 validation set using the
optimised feature subset.

When evaluating the training confusion matrix given in
Figure 29 we see the highest proportion of mis-classifications
occurred between the Benign and LDAP classes; with 12% of
benign traffic sequences being mis-classified as LDAP and
18.1% of LDAP traffic being wrongly classified as Benign.

This mis-classification carries over to the validation
dataset. In Figure 30 we see miss-classification rates of 11.0%
and 20.2% for Benign and LDAP traffic sequences respec-
tively.
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Comparision of micro statistics for optimised GAF-CNN-GRU on CIC dataset

FIGURE 32. Micro statistics of accuracy, precision, recall and f1 Score
across CIC Dataset Classes.

Averaged comparative metrics for optimised GAF-CNN-GRU on CIC dataset
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FIGURE 33. Averaged statistics of accuracy, precision, recall and f1 Score
across optimised CIC Dataset Classes.
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FIGURE 34. Validation confusion matrix when applied to Cranfield Cyber
Security Dataset.

Using the random subset of CIC data as a baseline the
GAF-CNN-GRU model was re-run using an optimised fea-
ture subset. The model achieved an accuracy of 98.36%, the
confusion matrix for which is given in Figure 31.

Figure 31 shows the model is able to easily distinguish
between SYN, LDAP and UDP Lag. However, there are
minor errors in classification of the Benign and MSSQL
traffic classes.

The micro-data for each of the target classes is given in
Figure 32

Figures 32 and 33 show the Accuracy, Precision and F1
Scores for both individual classes and the average output of
the whole model. The method achieved 93.90%, 95.45% and
94.56% for Precision, Recall and F1-score respectively.
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FIGURE 35. Breakdown of true/false positives across classes.
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FIGURE 36. Breakdown of percentage accuracy for predicted classes.
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FIGURE 37. Performance of mf-CNNGAF and other models in multi-class
classification on the CIC dataset.

Finally, we evaluated the performance of the GAF-mfCNN
algorithm on the Cranfield CPS Dataset classification per-
formance in terms of TPR, Accuracy, FPR, Recall, Precision
and F-score. The total number of event sequences considered
is 1,534 of which our solution correctly classified 1,512
achieving an accuracy of 98.56%. The confusion matrix in
Figure 34 provides a class breakdown of predictions vs actual.

Further breakdowns given in Figures 35 and 36.

Precision, Recall and F1-scores of 97.84%, 91% and
94.3% have been achieved respectively on the Cranfield
Dataset. To compare this method to existing Machine Learn-
ing techniques explored in literature we compared the
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FIGURE 38. Accuracy comparison of mf~-CNNGAF and other models in
multi-class classification on the CIC dataset.
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FIGURE 39. Precision comparison of mf-CNNGAF and other models in
multi-class classification on the CIC dataset.

proposed method to the J48 Decision Tree, Naive Bayes, Sup-
port Vector Machine Recurrent Neural Network and Multi-
Layer Perception.

Figure 37 shows the results when various Machine Learn-
ing algorithms are applied to the testing set. Finally we
compare our methodology to three similar time series driven
approaches in literature.

o The 1D CNN LSTM proposed in [66] uses the 1D-CNN
for supervised learning on time-series data. This method
serialises Transmission Control Protocol/Internet Proto-
col (TCP/IP) packets in a predetermined time range as
an invasion Internet traffic model for the IDS.
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FIGURE 40. Recall of mf-CNNGAF compared to other models in
multi-class classification on the CIC dataset.
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FIGURE 41. F1-Score of mf-CNNGAF compared to other models in
multi-class classification on the CIC dataset.

Reference [67] created a network intrusion detector
capable of distinguishing between “bad” connections,
which are further categorised into the classifications
DoS, Probe, and R2L, and Benign connections by com-
bining LSTM and GRU for dimensionality reduction
and time series analysis.

Reference [68] utilises a pure LSTM to evaluate long
term temporal dependencies that connects consecutive
tasks to detect anomalous behaviour.

In addition we also compare our approach to CNN driven
methodologies evaluated on the CIC 2019 DDoS dataset.
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FIGURE 42. Accuracy of mf-CNNGAF compared to other CNN driven
models in multi-class classification on the CIC dataset.

Proposed

- T
g2
¢ £ I
e s
ao
s
L
€ 2
.
<3S
o
o
°
-2
2t I
=5
o
o
-
£
Z:
o o
=0
g I
=2
83.0% 85.0% 87.0% 89.0% 91.0% 93.0%
Precision

FIGURE 43. Precision of mf-CNNGAF compared to other CNN driven
models in multi-class classification on the CIC dataset.

Reference [69] uses a stacked ensemble of deep learning
approaches comprising; Convolutional Neural Network
(CNN), Long Short Term Memory (LSTM) network and
a Gated Recurrent Unit.

The methodology identifies high quality features and
then uses a CNN to extract the features which are fed in
to a BILSTM to detect DDoS attack events and predict
outcomes [70].

Figures 38 - 45 provide a comparison of our approach
to current state of the art methodologies. From the Figures
we see our approach either matches or exceeds the cur-

rent

state of the art in terms of Accuracy, Recall, F1-Score

and precision while operating on a severely reduced feature
selection.
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FIGURE 44. Recall of mf-CNNGAF compared to other CNN driven models
in multi-class classification on the CIC dataset.
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FIGURE 45. F1-Score of mf-CNNGAF compared to other CNN driven
models in multi-class classification on the CIC dataset.

VI. CONCLUSION

Cyber Network Traffic can be categorised as a dynamic non
linear system within which the recurrence of states can be
assumed to hold true due to the inherent periodicities of
cyber operation. We breakdown the full time series in to a
series of time series features comprising representations of
given time series characteristics. We use Gramian Angular
Fields to encode time series data in to images representing the
signal variation through phase space. Using this phase space
time series image representation a multi-channel Convolu-
tional Neural Network-based Gated Recurrent Unit algorithm
has been proposed for detection of cyber-attacks, including
D(D)oS, RCE and MITM attacks, in air-side aviation edge
networks. Conventional detection methods primarily utilise
either entropy analysis or apply Machine Learning techniques
to network tabular data. This work combines a lightweight
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CNN based on the MobileNet architecture to work a feature
extractor for a GRU combining the spatial analysis generated
from the convolutions architecture with the spacio-analytical
properties inherent to the GRU to attain a greater level of
accuracy with a reduced feature set. The objective of this
methodology was achieved via the mf-CNNGRU to evaluate
the dynamic shift in network feature states which occurs
when a system transitions from benign to attack traffic. This
accurate modelling of dynamic state transitions allows the
model to detect cyber-attacks in real time with a high degree
of accuracy. The input to the proposed algorithm is generated
by deploying a sliding window over a series of time series
values for a given continuous system variable - this sliding
window is utilised to accurately capture the dynamic state
evolution of the edge network in real time. Simulation results
demonstrated that the GAF multi-channel CNN GRU hybrid
detection algorithm can achieve performance gains over the
existing time series based anomaly detection methodologies.
Furthermore, when comparing to existing purely CNN driven
approaches we see our method has a negligible reduction in
performance metrics while using a feature set that has been
decreased by 96.59% reducing the computational overhead
for edge deployment. Generally, feature reduction facilitates a
reduced need for resources in order to complete computations
in conjunction with less storage capacity.
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