
Received 21 May 2023, accepted 6 June 2023, date of publication 17 July 2023, date of current version 27 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296091

Optimal Allocation of Curtailment Levels of PV
Power Output in Different Regions in
Consideration of Reduction of
Aggregated Fluctuations
NOHA HARAG , CHIYORI T. URABE , (Member, IEEE), AND TAKEYOSHI KATO, (Member, IEEE)
Electrical Engineering Department, Nagoya University, Nagoya 466-0801, Japan

Corresponding author: Noha Harag (harag.noha.mamdouh.ali.hassan.w3@s.mail.nagoya-u.ac.jp)

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japanthrough providing MEXT
scholarship funding.

ABSTRACT Due to the high penetration of photovoltaic power generation system (PV) anticipated in the
future, the curtailment of PV power output becomes crucial, not only to maintain supply-demand balance
but also to preserve an adequate capacity for the frequency control. When the curtailment level (CL) of the
aggregated PV power output is determined in a day-ahead unit commitment (UC) scheduling, different CL
should be applied to different regions with distinctive weather modes in the power system area so that the
fluctuations of aggregated PV power output areminimized. The objective of this study is to optimally allocate
the CL to each region based on the short-term forecasting of the weather modes so that the hourly maximum
fluctuation of the aggregated PV power output (MFagg) is minimized as long as the aggregated average
power output (Avgagg) becomes the same as the scheduled value in UC. Based on the past observations
of PV power output, the proposed method employs relations between the regions’ MF and CL (MF-CL
patterns), and relations between the regions’ Avg and CL (Avg-CL patterns) for several typical weather
modes. Thus, a specific MF-CL pattern and Avg-CL pattern are determined for each region based on the
short-term forecasting of the weather mode, and the CL optimization is proceeded by using these patterns.
The proposed methods are tested by using the time-series of PV power output at 61 observation points
in the central region of Japan for one year. As a result, it is demonstrated that merely acknowledging the
weather mode of each region enabled the proposed methods to reduce MFagg significantly and these results
are practically similar to the method where perfect short-term forecasting of PV power output was utilized
in the entire year.

INDEX TERMS Optimization, photovoltaic power, power curtailment, power fluctuations.

I. INTRODUCTION
Electric power systems are becoming increasingly vulner-
able to system frequency fluctuations as renewable power
generation gradually replaces conventional synchronous gen-
eration. A photovoltaic power generation system (PV) is
one of the most promising renewable power generation due
to its environment friendliness and abundance [1], [2], [3].
However, due to the nature of climate-driven PV power
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output fluctuations, it has been found that fluctuations of
the high penetration PV power output not only induce sig-
nificant voltage rise but also larger variation in frequency
than ever. Therefore, the requirement for primary and sec-
ondary frequency regulation arising from significant real
power imbalance on the grid side is increasing [4], [5].

The significant growth of PV capacity will lead electric
power utilities to reinforce various ancillary services, such
as frequency control. Several measures have been taken to
mitigate this intermittent behavior associated with high PV
penetration in order to maintain the supply-demand balance.
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These measures include proactive curtailment of PV power
output, battery energy storage, and demand response along
with leveraging spatial diversity by distributing PV across a
large geographical area. While the implementation costs of
energy storage systems are undoubtedly high [6], [7], [8], cur-
tailment remains a cost-effective and conventional technique,
involving the deliberate reduction in power output to balance
power supply and demand [9], [10], [11], [12], [13].

PV power curtailment can serve as an important tool for
operational planning, enabling power system operators to
manage the variability of PV power generation. For instance,
if the power output of PV and other generation resources
exceeds the amount required to meet demand, the system
operator may need to curtail the output of some PVs in
consideration to the flexibility requirement [14]. In Japan, PV
power output curtailment has been already implemented for
few years in the Kyushu region, which has a high concentra-
tion of PV installations. Currently, power curtailment actions
are expanding to other regions with high electricity demand
such as the central region. Japan’s current PV capacity is
approximately 70 GWwhile the target capacity is anticipated
to be 300 GW in 2050. Therefore, the entire electric power
companies of Japan will consider PV power output curtail-
ment in the coming years [15].

The curtailment will be implemented by using a smart
inverter based on the request of the system operator. Since,
the curtailment can preserve a control margin of PV power
output, a smart inverter can use this margin further to provide
the frequency control. This means that a smart inverter can
have the ability of further suppressing or eliminating the
frequency fluctuations. The effectiveness of smart inverters
in suppressing the frequency fluctuations is demonstrated
through advanced control strategies that significantly reduce
the variability and uncertainty of PV power output, ultimately
improving grid stability [16].

However, severe curtailment of PV power output should
be reduced as much as possible because it is a significant
waste of clean energy. One of the reason for curtailment is
to preserve the required capacity for frequency regulation.
Therefore, it is essential to determine the curtailment level
(CL) of each PV power output to minimize fluctuations in
the aggregated PV power output which is a major cause of
frequency fluctuations. By reducing the required capacity, the
need for curtailment can be reduced, thereby mitigating the
waste of PV power output.

In a day-ahead unit commitment (UC) scheduling of
required generation resources based on a day-ahead forecast
of electricity demand and various renewable power genera-
tion, the CL of the aggregated PV power output is determined
[17], [18], [19]. The curtailed PV power output helps main-
tain the supply-demand balance of the power system and
provides adequate capacity for the frequency control [20],
[21]. In the current UC scheduling, the CL of the aggre-
gated PV power output is determined without considering
the distinct fluctuating behavior of each region within the
power system service area. However, different CL among

each region should be applied to reduce the fluctuations in
the aggregated PV power output. This will contribute tomain-
taining the frequency variations within the acceptable ranges
determined by the grid codes, reducing the requirement of
frequency regulation. Therefore, the main objective of this
study is to propose an optimal allocation of CL among each
region. In achieving this, accurate forecasting of power out-
put fluctuation characteristics, as well as the average power
output, is essential.

Numerous studies have been conducted on day-ahead fore-
casting PV power output from various perspectives, including
statistical, mathematical, physical, machine learning, and
hybrid forecasting models [22], [23], [24], [25], [26], [27]. As
PV penetration increases, the short-term forecasting becomes
crucial to ensure the attainment of the required PV power
output for each hour on the operation day. Highly accu-
rate short-term forecasting enables further adjustment of CL
compared to the pre-determined CL by the UC scheduling.
Currently, forecasting the average value of PV power out-
put in short-term, ranging from few minutes to few hours,
is feasible and different methods are discussed in [28]. These
methods can be broadly divided into physical and data-driven
approaches. In [29], a data-driven using neural network mod-
els and deep learning technology was employed to predict the
short-term average value of PV power output with a high level
of accuracy. On the other hand, the forecasting of short-term
fluctuations of PV power output still remains challenging,
with a considerable amount of error evenwhen usingmachine
learning algorithms and other advanced modeling techniques
[30], [31], [32], [33], [34]. Therefore, this study tackles this
issue through a more straightforward novel approach assum-
ing that the fluctuation characteristics can be predicted in
the short-term forecasting and be expressed in several typical
patterns.

The main contributions of this study is firstly the forma-
tion of statistical relations of average value and maximum
fluctuation against different CL, respectively. These relations
are used to distinguish each region PV power output behav-
ior in short-term. Secondly, using these relations, this study
proposes an optimization of different CL to be allocated
to each region. In this approach, the optimal CL in each
region will minimize the fluctuation of aggregated PV power
output without precisely forecasting the time-series of PV
power output. As a result, the proposedmethod can contribute
to the reduction of the control burden needed to eliminate
the frequency fluctuations, thereby reducing the required
resources for frequency control or secondary control in the
power system.

This paper is divided into the following sections. Section II
describes the irradiance data used in this study. Section III
discusses the concept of five different methods of CL adjust-
ment together with three methods for comparison. Section IV
demonstrates an example used to show the procedure of
data preparation and calculation process for the proposed
methods of CL adjustment. Using the example of Section IV,
Section V represents the application of all the adjustment
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FIGURE 1. Location of multi observation points of PV power output in
Chubu region, Japan.

methods on the day of operation. Finally, Section VI is ded-
icated to the results and discussion of the application of all
methods over an entire year data.

II. DATA UNDER INVESTIGATION
Although the numbers of PVs are installed in each region of
the power system service area, the availability of time-series
data for PV power output or irradiance at a fine tempo-
ral resolution is limited to specific sites in each region.
To estimate the aggregated power output data observed at
these limited locations, a low-pass filter (LPF) model can
be utilized [35]. The LPF model incorporates a smoothing
effect that considers the geographical size of each repre-
sentative region, resulting in reduced fluctuations in the
aggregated power output compared to those at individual
points.

In this study, the aggregated PV power output is cal-
culated using the irradiance data observed at 61 points
shown in Fig. 1. The 61 observation points are evenly
distributed in the central region of Japan which is called
Chubu region according to the population distribution,
except for Nagoya City that is enlarged in Fig. 1. The
distance between each pair of the neighboring observa-
tion points varies between 4.2 km and 138 km, and the
average distance is 22 km. The 61 representative regions
of each observation point is determined using Voronoi
decomposition [35].

The irradiance data used in this study are observed from
September 2010 to August 2011, which equals to 363 days.
These data have a fine temporal resolution of one minute
for an entire year. As these data are obtained from 61 points
in one specific region in Japan, it is considered to be an
advantageous point of this study.

The aggregated time-series data of curtailed PV power
output for a certain period, is denoted as PCLagg(t), is expressed

as the weighted sum of PV power output of each region after
applying curtailment, as shown in (1).

PCLagg(t) =

61∑
i=1

ωiPCLi (t) =

61∑
i=1

ωi
Ii(t)
Imax

CLi (1)

where, PCLi (t) is the time series curtailed PV power output
for individual region i, ωi is the weighted factor based
on each region’s installed capacity, Ii(t) is the time series
irradiance of each region, Imax is the maximum irradiance,
thus 1000 W/m2, and CLi is the curtailment level applied for
each region. Because ωi is determined in consideration to the
aggregated capacity of PV in the power system service area,
PCLagg and P

CL
i are expressed in per unit (p.u.).

Considering that the curtailment will be applied when PV
power output is high usually in the period from 10:00 to
14:00, the proposed methods are tested for one hour from
12:00 to 13:00 for the entire days of the year. This particu-
lar hour provides a reasonable representation to the diverse
PV power output behaviors exhibited by the 61 regions for
every day across different seasons. For instance, in Japan, the
temporal resolution of irradiance forecasts is one hour. Even
within a one-hour time horizon, variability and uncertainty
of PV power output persist. For example, within this hour,
some days may show high average PV power output and low
fluctuations during the summer season, while other days may
exhibit low average PV power output and low fluctuations in
few days in winter. Spring and autumn days may display a
wide range of both low average PV power output and fluc-
tuations. Therefore, analyzing the performance of proposed
method using one-hour time window allows for meaningful
statistical analysis, even without using longer period for each
day. The following sections will demonstrate the different
methods of CL adjustment.

III. CL ADJUSTMENT METHODS
The unit commitment scheduling is conducted a day-ahead
to determine the supply requirements of different genera-
tion resources based on the forecasted demand for the next
day. In the current day-ahead UC scheduling, the CL of
the aggregated PV power output is determined regardless
of the distinctive fluctuating behavior of each region in the
power system service area. However, different CL among
each region should be applied to reduce the fluctuations in the
aggregated PV power output. Therefore, as explained below,
the proposed methods further adjust the CL in the real-time
operation of the day based on the short-term forecasting of
PV power output in each region.

A. PROPOSED CL ADJUSTMENT METHODS
1) SHORT-TERM ADJUSTMENT OF CL BASED ON
SHORT-TERM FORECASTING OF HOURLY AVERAGE
OUTPUT (METHOD-1)
Themain purpose of CL adjustment inMethod-1 is to achieve
the hourly average value of resultantPCLagg, which is referred to
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FIGURE 2. Concept of hourly average and maximum fluctuation of PV
power output as a function of CL.

as AvgCLagg, equal to the predetermined average by the system
operator (Avgpre) in the short-term. Although Method-1 is
not intended to reduce the fluctuations of the aggregated PV
power output, Method-2, which is the main proposal in this
study, is developed based on Method-1. Therefore, Method-1
is explained as a part of proposed method. AvgCLagg is simply
defined in (2) where T is 60 minutes.

AvgCLagg =
1
T

59∑
t=0

PCLagg(t) (2)

Considering the fluctuations within one hour, the AvgCLagg is
not a simple linear function of CL. Therefore, in the proposed
Method-1, when short-term (i.e. few hours ahead) forecasting
of PV power output in each region takes place, the adjusted
CL is allocated to each region distinctively based on the
relation between CL and the corresponding hourly average
curtailed PV power output for each region (AvgCLi ) where
AvgCLi is simply defined in (3). The relations between AvgCLi
and CL are called Avg-CL patterns and the concept of these
patterns is shown in Fig. 2(a).

AvgCLi =
1
T

59∑
t=0

PCLi (t) (3)

The Avg-CL patterns are prepared based on the anal-
ysis of the observed PV power output in the past. The
three patterns of Avg-CL can be expressed to range from
high Avg to low Avg modes. Thus, instead of exact AvgCLi
forecasting, the prediction of the mode to which the value
can be categorized is enough for the proposed method.
By predicting Avg mode, CL is adjusted and the AvgCLagg
can be more accurate compared to the Avgpre determined a
day-ahead.

It is noted that Method-1 indirectly gives an insight into the
characteristics of PV power output fluctuations. For instance,
the medium Avg mode reflects the case when fluctuations
are high at either low or high PV power output. Therefore,
to precisely adjust CL, more information about the fluctua-
tions becomes crucial and hence the next method is proposed.
Fig. 3 includes the CL adjustment procedures of Method-1
in blue. They are composed of two main steps: preparation
of Avg-CL patterns in Section IV, and the utilization of

these patterns to apply CL adjustment methods on the day
of operation in Section V.

2) SHORT-TERM ADJUSTMENT OF CL BASED ON
SHORT-TERM FORECASTING OF HOURLY AVERAGE
OUTPUT AND FLUCTUATIONS (METHOD-2)
The main purpose of CL adjustment in Method-2 is to mini-
mize the maximum fluctuations of the aggregated PV power
output (MFCLagg) as long as the predetermined Avgpre is met.
CL adjustment in this method undergoes a more advanced
approach than Method-1 by considering the PV power output
fluctuations directly. Despite the fact that the forecasting of
actual fluctuations is challenging, the forecasting of typical
fluctuation patterns can be available.

The relations between hourly maximum fluctuations of
PV power output for each region MFCLi and CL are called
MF-CL patterns and the concept of these patterns is shown
in Fig. 2(b). They are also prepared for typical four PV
power output characteristics based on the analysis of the
observed PV power output in the past. The four patterns
of MF-CL can be expressed to range from high MF to no
MF (i.e. uniform output) modes. Thus, instead of forecasting
the exact MFCLi and AvgCLi , the prediction of the modes
to which these values can be categorized are needed. By
predicting the PV power output behavior (i.e Avg and MF
modes), CL is adjusted and the resultant AvgCLagg can even
be closer to the Avgpre. The short-term forecasting of Avg
modes and MF modes are addressing a simple categoriza-
tion of the regions from high Avg to low Avg modes and
high MF to no MF. The entire Fig. 3 shows the two main
steps of preparation of Avg-CL and MF-CL in Section IV,
and the utilization of both Avg-CL and MF-CL patterns to
apply the CL adjustment methods on the day of operation in
Section V.

B. COMPARATIVE CL SETTING METHODS
1) NO CURTAILMENT (METHOD-0)
Method-0 represents the case when no curtailment is
enforced. This is when the entire PV power output is used
to balance out the demand along with other generation
resources. Whereas frequency regulation can be achieved
effectively by mechanisms such as battery energy storage
and demand response, without any requirement for PV power
curtailment.

2) SAME CL FOR ALL REGIONS (METHOD-3)
When the curtailment of PV power output is requested by
the current UC scheduling a day-ahead, it merely applies
the same CL to all the regions in the power system regard-
less of each region’s behavior of PV power output for each
hour on the next day, and no adjustment of CL is applied.
Consequently, this might lead to unsatisfying the Avgpre
scheduled by the UC to meet the demand especially when
the PV power output is fluctuating. This method can be
efficient in situations where the PV power output is uniform
only.
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FIGURE 3. High level schematic of the procedures of the preparation of data and usage of the data on the operation day for the proposed methods
of CL adjustment.

3) SHORT-TERM ADJUSTMENT OF CL BASED ON PERFECT
FORECASTING OF AVERAGE AND FLUCTUATIONS
(METHOD-4)
In Method-2, short-term forecasting of Avg modes and MF
modes are addressing a simple categorization of the weather
mode of each region. In Method-4, it is assumed that the
perfect short-term forecasting of the time-series of PV power
output in each region is available. This kind of zero-error
forecasting is challenging and nearly impossible. Therefore,
Method-4 is assumed to be an ideal situation and merely used
for comparison with the proposed methods.

IV. DATA PREPARATION FOR THE REPRESENTATIVE
AVG-CL PATTERNS AND MF-CL PATTERNS
The data preparation procedure of the proposed methods is
applied to the 61 regions for every hour in each month. As
an example, this section shows the data preparation of the
representative patterns for one hour (from 12:00 to 13:00)
in September. In each step, an example of four regions was
used to demonstrate the concept and calculation output in
each method. Fig. 4(a) shows the raw PV power output
time-series data of the four regions on 1st September and their
AvgCLagg. The different PV power output behaviors of the four
regions for corresponding weather modes are identified as the
following:

• Region (R) 1 has a high Avg and moderate MF.
• R11 has a high Avg and no MF, i.e. uniform PV power
output.

• R29 has a moderate Avg and low MF.
• R51 has a low Avg and high MF.

A. METHOD-1
Step 1:Application of LPF to past measured PV power output
time-series data.

As described in Section II, each of the 61 points represents
the spatial average PV power output in each of the 61 regions.

FIGURE 4. PV power output of the 4 regions on the 1st September.

In Fig. 4(b) the filtered PV power output data of the four
regions on 1st September and their AvgCLagg are also shown.
The filter gain of the LPF depends on the area of each region,
i.e. the smaller the area, the smaller the filter gain applied
and hence less reduction of fluctuations is witnessed. As R51
is a region with small area, the raw data and LPF data in
Fig. 4(a) and Fig. 4(b) are almost similar.
Step 2: Application of different CL.
For the 61 regions, different CL are applied on

their observed time-series PV power output data rang-
ing from 0 to 1.0 p.u. with an increment of 0.01 p.u.
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FIGURE 5. Different CL applied on R51 data on 1st September.

No curtailment is applied at 1.0 p.u. level, and 100% of cur-
tailment is applied at 0 p.u. level. Fig. 5 shows an example of
this step using the time-series data of R51 with an increment
of 0.1 p.u. only.
Step 3: Computation of AvgCLi for each region.
The AvgCLi will be computed at each CL for every hour

of interest at every day of the month. The actual Avg-CL
patterns for 61 regions at one hour (here, from 12:00 to 13:00)
for the entire days of September are plotted in Fig. 6(a). The
actual Avg-CL patterns of the four regions on 1st September
are shown separately in Fig. 6(b).
Step 4: Formation of the representative patterns of Avg-CL.
The Avg-CL patterns of the 61 regions for 30 days for

one hour are stacked. Fig. 6(a) shows the Avg-CL patterns
(1,830 patterns) of the 30 days of September for one hour
(from 12:00 to 13:00). The maximum and minimum Avg-CL
patterns are detected, then, all the patterns that lie within them
are divided into three equal parts horizontally. These parts
represent three modes; mode 1, mode 2 and mode 3 indicate
low Avg, moderate Avg, and high Avg, respectively. The
patterns that lie in each mode are averaged to get a single
representative Avg-CL pattern for each mode, as shown in
Fig. 6(c). Fig. 6(c) is shown as a dotted line as it reflects a
prepared table of representative values of Avg against each
increment of CL.

Since predicting the actual pattern of Avg-CL for the next
hours can be challenging, then by just acknowledging the
behavior of PV power output for the next hour, the Avg-
CL representative patterns of Fig. 6(c) can be used instead
of the actual patterns in Fig. 6(a). After that, optimization
will be operated using these Avg-CL representative pat-
terns. As shown in Fig. 6(c), it is difficult to express the
relation between Avg and CL by using a simple function.
Therefore, as described below, the optimization problem is
formulated with a mixed-integer linear programming (MILP)
by preparing a look-up table regarding the relation between
Avg and CL. Therefore, in Fig. 6(c), plots showing the rela-
tion between Avg and CL are used instead of lines used in
Figs. 6(a) and 6(b)

B. METHOD-2
Step 1:Application of LPF to past measured PV power output
time-series data.

FIGURE 6. Avg-CL patterns.

The procedure in this step is the same as that in Method-1
described above.
Step 2: Application of different CL.
The procedure in this step is the same as that in Method-1

described above.
Step 3: Application of high-pass filter (HPF) on every

curtailed PV power output data.
HPF function with a cut-off frequency of 32 minutes is

applied to the time-series data calculated in steps 1 and 2.
This is implemented to highlight the fluctuations and hence,
maximumfluctuation of theHPF data will be calculated in the
next step. Fig. 7 shows an example of the HPF data applied
on the curtailed data of R51 on 1st September.
Step 4: Computation ofMFCLi using the HPF data of each

region based on a few parameters.
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FIGURE 7. Application of HPF to different curtailed PV power data of R51
on 1st September.

The MF is the difference between the maximum and
minimum points of fluctuations calculated in 20-minute-
moving-window, and this parameter represents the short-
cycle fluctuation in the time-series data. It varies with days
and is independent of the season, because the movement of
clouds is the reason for the short-cycle fluctuations.

To consider whether a region’s PV power output behavior
is fluctuating or not, this study sets some parameters to dis-
tinguish the fluctuating behavior such as threshold, count and
range. Firstly, the threshold is an initially assumed value of
PV power output. When the fluctuations cross this value for
a number of times (count) shown in Fig. 7, they get recorded.
In addition, the range is the sum of the heights of crossing
fluctuations shown by the red arrows in Fig. 7. Crossings can
be frequent as it can be very short in terms of power changes,
then the sum of the heights of crossings becomes a crucial
parameter and it gets recorded instead. The total number
of times the threshold is passed and the sum of heights of
these crossings contain essential information to capture the
fluctuations.

When the PV power output changes comply with the
pre-set number of count and range, it is characterized as
fluctuating. Consequently, MFCLi is calculated and plot-
ted against each corresponding CL. When the threshold is
0.1 p.u., count is 3, and range is 0.1 p.u., the MFCLi for the
61 regions at every CL is plotted in Fig. 8(a). The actual MF-
CL patterns of the four regions on 1st September are shown
separately in Fig. 8(b).
Step 5: Formation of representative patterns of MF-CL.
The MF-CL patterns of the 61 regions for 30 days for

one hour are stacked. Fig. 8(a) shows the MF-CL patterns
(1,830 patterns) of the 30 days of September for one hour
(from 12:00 to 13:00). The maximum and minimum start
of MF-CL patterns are detected, then, all the patterns that
lie within them are divided into three equal parts vertically.
These parts represent three modes; mode 1, mode 2, and
mode 3 indicate low fluctuations, moderate fluctuations, and
high fluctuations, respectively. While, mode 0 is representing
regions with no fluctuations (uniform output). We average
the patterns that lie in each mode to get a single represen-
tative MF-CL pattern for each mode as shown in Fig. 8(c).

FIGURE 8. MF-CL patterns.

Fig. 8(c) is shown as a dotted line as it reflects a prepared
table of representative values of MF against each increment
of CL.

Since predicting the actual pattern of fluctuation for the
next hours can be challenging, then by just acknowledging
the characteristics of fluctuations for the next hour, the MF-
CL representative pattern of Fig. 8(c) can be used instead of
the actual pattern in Fig. 8(a). After that, optimization will be
operated using these representative patterns. As mentioned
below, the proposed optimization method is formulated with
MILP in consideration of complicated relation between MF
and CL. In Fig. 8(c), therefore, plots are used instead of
lines as in Fig. 8(a) and (b) due to the same reason for
Fig. 6(c) so as to show the discrete relation between MF
and CL.
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V. APPLICATION OF CL ADJUSTMENT METHODS IN THE
ACTUAL OPERATION PERIOD
A. PROPOSED CL ADJUSTMENT METHODS
1) METHOD-1
The distinctive representative Avg-CL patterns for each
region are used for the actual operation period. Hence, the
CL will be optimized among each region so that AvgCLagg
equals to the predetermined average by the system operator.
For practical application, discrete values of CL are applied
as the values of AvgCLi and MFCLi corresponding to CL in
Figs. 6(c) and 8(c) are also discrete. The MILP problem is
expressed in (4) to (8) where the objective is to minimize
the gap between the Avgpre and resultant AvgCLagg per hour.
Although any kinds of solver for MILP problem can be
used, in this study, the optimization process is operated by
MATLAB Intlinprog function.

min
∣∣∣Avgpre − AvgCLagg

∣∣∣ (4)

It is formulated into linear optimization equations:

min Avgpre − AvgCLagg (5a)

min AvgCLagg − Avgpre (5b)

i.e. Avgpre = constant (6)

AvgCLagg =

61∑
i=1

100∑
k=0

nki ωiAvg
k
i (7)

Subject to
100∑
k=0

nki = 1, nki ∈ {0, 1} (8)

In the proposed method, one of the Avg-CL pattern is
selected based on the short-term forecasting of weather mode
for each region i. Therefore, Avgki (k = 0 – 100) in (7) cor-
responds to individual plots of the selected Avg-CL pattern.
The number of possible CL applied is referred to as k and
there are 101 candidates ranging from 0 to 1.0 p.u. with an
increment of 0.01 p.u. By using the constraint in (8), one of
the k values is selected and hence Avgki is selected among the
101 candidates. In (7) and (8), n is a decision variable. The
lower bound of n is 0 meaning that one of the possible CL is
not selected and the upper bound is 1 meaning that one the
possible CL is selected. At every iteration for each region,
only one CL is chosen to be 1 leaving the other possible CL
with 0. Hence, the sum of the decisions will always be 1.

For the four regions, R1, R11, R29 and R51, the short-term
forecast of Avg-CL patterns from 12:00 to 13:00 on 1st

September provides information that R1 and R11 have a
high Avg, R29 has a moderate Avg and R51 has a low Avg.
Hence, they are given the corresponding representative Avg-
CL patterns that were prepared previously in Fig. 6(c).
As a result of the optimization assuming Avgpre value of

0.5 p.u., Fig. 9(a) shows CL allocated on the four regions
where R1 and R11 of the high Avg had the highest CL while
R29 and R51 of lower Avg had lower CL. The resultant
AvgCLagg is 0.54 p.u. and it is close to the Avgpre.

FIGURE 9. Application of the proposed CL adjustment methods.

2) METHOD-2
Both the distinctive patterns of MF-CL and Avg-CL for each
region are used for the actual operation period, and the CL
is optimized among each region. The optimization objective
is to minimize the MFCLagg based on the different candidates
of allocated CL as long as the Avgpre is achieved. A buffer
of 0.01 p.u. is added to the Avgpre as CL are applied at an
increment of 0.01 p.u. In this step, the optimization problem
is also a MILP problem and it is shown in (9) to (11) to
minimize the MFCLagg. MF

CL
agg is expressed as the root mean

square (RMS) of MF of each region per hour. The RMS
value is used in this optimization as the MFCLi values are
not dependent or coherent. AvgCLagg and Avgpre are expressed
previously in (6) and (7).

min MFCLagg =

√√√√ 61∑
i=1

100∑
k=0

(nki ωiMF
k
i )

2 (9)

Subject to: AvgCLagg = Avgpre ± 0.01 (10)

100∑
k=0

nki = 1, nki ∈ {0, 1} (11)

In the same manner with Avg-CL pattern, one of the MF-
CL pattern is selected based on the short-term forecasting of
weather mode for each region i. Then, MFki (k = 0 – 100)
in (9) corresponds to individual plots of the selected MF-CL
pattern. By using the constraint in (11), one of the k value
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FIGURE 10. Application of the comparative methods.

is selected and hence MFki is optimally selected among the
101 candidates.

For the four regions, R1, R11, R29, and R51, the short-term
forecast of fluctuations from 12:00 to 13:00 on 1st September
provides information that R5 has high MF, R1 has moderate
MF, R29 has low MF and R11 has no MF. Hence, they are
given the corresponding representative MF-CL patterns that
were prepared previously and their patterns are shown in
Fig. 8(c).

As a result of the optimization in the case where Avgpre
is equal to 0.5 p.u., CL allocated on the four regions are as
shown in Fig. 9(b); where R11 of the no MF had the highest
CL; R51 of highest MF had a lower CL. The resultant AvgCLagg
is 0.53 p.u. and it is close to the Avgpre.

B. COMPARATIVE CL SETTING METHODS
1) METHOD-3
This method allocates the same CL to each region for the
actual operation period. For the four regions, R1, R11, R29,
and R51, from 12:00 to 13:00 on 1st September, when the
Avgpre is 0.5 p.u., the result is as shown in Fig. 10(a). The
same CL led to a resultant AvgCLagg of 0.41 p.u. lower than
Avgpre, this is because, except for R11, the available output
is below 0.5 p.u.

2) METHOD-4
The CL allocation is carried out perfectly using the actual
patterns of MF-CL and Avg-CL for the actual operation

FIGURE 11. MF CL
agg- AvgCL

agg of all the CL adjustment methods.

period. For the four regions, R1, R11, R29, R51, from 12:00
to 13:00 on 1st September, the actual patterns of Avg-CL
and MF-CL as shown in Fig. 6(b) and Fig. 8(b) are used for
optimization. The result is shown in Fig. 10(b). The resultant
AvgCLagg is 0.51 p.u. and it is extremely close to the Avgpre.

C. COMPARISON OF ALL METHODS FOR THE SAMPLE
DAY
When all the methods were applied on the four regions, the
resultant AvgCLagg and MFCLagg of each method are plotted in
Fig. 11. This gives a general overview on the differences
between each method prior to the demonstration of the results
of the 61 regions. The summary of the results when the target
Avgpre is 0.5 p.u. is as follows:

• Method-0 has the highest deviation from AvgCLagg and the
highest MFCLagg. That is when no curtailment is applied
at high PV power output, the resultant AvgCLagg deviated
from the target Avgpre and fluctuations were not sup-
pressed.

• Method-1 has a very low deviation from AvgCLagg and
lower MFCLagg than Method-0. This proposed method
focused mainly on reducing the gap between the resul-
tant AvgCLagg and Avgpre along with that fluctuations were
reduced.

• Method-2 has a sufficiently low deviation from AvgCLagg
and very low MFCLagg that is very close to the ideal
Method-4. This proposed method focused on reducing
the fluctuations as well as the gap between the resultant
AvgCLagg and Avgpre.

• Method-3 has a very high deviation from AvgCLagg and
very low MFCLagg. When severe curtailment suppressed
the fluctuations, the resultant AvgCLagg majorly deviated
from the target Avgpre.

• Method-4 is the closest to AvgCLagg and it has the lowest
MFCLagg. Due to the perfect short-term forecasting, the CL
was precisely allocated to reduce the fluctuations and
achieve the closest resultant AvgCLagg to Avgpre. Despite
the perfect forecast used in Method-4, a deviation is
witnessed between the resultant AvgCLagg and the Avgpre.
This is because CL applied in this method have an
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increment of 0.01 p.u. and the actual patterns of MF-CL
and Avg-CL are plotted based on this incremental value.
To achieve less deviation, less incremental value can be
utilized, however, the assumed value of 0.01 p.u. proved
to be effective in forming reasonable MF-CL and Avg-
CL patterns.

VI. CASE STUDY OF CL ADJUSTMENT USING 61 REGIONS
IN CENTRAL JAPAN
In the practical operation, requested Avgpre is set based on the
load forecasting for each hour of the next day. In this study,
we directly assume different levels of requested Avgpre that
indirectly reflects various levels of electricity demand that
has to be met by the Avgpre and other generation resources.
Thus, we test the effectiveness of the proposed methods at
different levels of Avgpre without necessarily deducing the
exact electricity demand levels.

In Japan, the four common weather seasons exist, and
September is considered to be in the autumn season. The
autumn season tends to have many semi-cloudy days,
i.e. fluctuating PV power output days. All the methods
are applied on all the regions of all days of September at
one hour from 12:00 to 13:00. In the proposed method,
Avg-CL and MF-CL patterns are prepared for each hour
in every month, accordingly for each hour under investi-
gation, the prepared Avg-CL and MF-CL patterns will be
used in the operation period. Therefore, for 12:00 to 13:00
in the entire days of September, the previously prepared
patterns in Figs. 6(c) and 8(c) will be used. The result-
ing MFCLagg and AvgCLagg for all the methods are plotted in
Fig. 12 at different Avgpre such as 0.7 p.u., 0.5 p.u., and
0.3 p.u.

It is noted that at some data points such as the 12th Sep
and 13th Sep, Method-1, Method-2 and Method-4 results are
similar to that of Method-0. That happens when the AvgCLagg
before CL application is lower than the Avgpre, meaning that
there is no adequate PV power output to reach the Avgpre
requested in advance. Accordingly, the methods used for
adjusting CL in short-term such as Method-1, Method-2 and
Method-4 will not be required in such cases, and their output
will be similar to Method-0. However, Method-3 where the
CL application determined a day-ahead can still apply. Hence,
Method-3 seems to be performing the best as it has the lowest
MF, however, due to its severe curtailment resultant AvgCLagg
becomes the furthest. Apart from these cases, Method-4 is
shown to perform that best on days where the short-term CL
adjustment is needed.

For the MFCLagg data in Fig. 12, Method-3 mostly has the
lowestMFCLagg due to the severe CL applied, while theMFCLagg
of Method-0 without CL is always the highest. The MFCLagg
of the proposed Method-2 is almost overlapping the ideal
Method-4 trends, which proves that Method-2 can replace
the usage of Method-4 which is based on challenging per-
fect forecasting. While, the proposed Method-1 is constantly

FIGURE 12. Comparison between all the methods from 12:00 to 13:00 for
the 30 days of September 2010.

lower than Method-0, the proposed Method-2 is closer to the
idealMethod-4. Since September days aremostly fluctuating,
Method-2 suppresses fluctuations along with maintaining the
requested Avgpre. Method-1 is less effective than Method-2 at
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FIGURE 13. Comparison between CL adjustment methods at Avgpre 0.7 p.u. from 12:00 to 13:00 in one year.

FIGURE 14. Comparison between CL adjustment methods at Avgpre 0.5 p.u. from 12:00 to 13:00 in one year.

FIGURE 15. Comparison between CL adjustment methods at Avgpre 0.3 p.u. from 12:00 to 13:00 in one year.

higher Avgpre however, the overallMFCLagg is decreased as the
Avgpre decreases from 0.7 p.u. to 0.3 p.u.

For the AvgCLagg data in Fig. 12, while the ideal Method-4
always has the closest resultant AvgCLagg to the Avgpre, the least
deviation in the other methods is found to be by the proposed
methods. The lowest AvgCLagg is Method-3 due to the severe CL
applied. As the Avgpre decreases from 0.7 p.u. to 0.3 p.u., the
resultant AvgCLagg of all methods except Method-0 are having
less deviation from the ideal Method-4.

The proposed methods are evaluated by the difference
between the AvgCLagg of the CL adjustment methods respec-
tively and the ideal Method-4 (1AvgCLagg). 1Avg

CL
agg is plotted

against the difference between the MF of the CL adjustment
methods respectively and the ideal Method-4 (1MFCLagg) in
Figs. 13, 14 and 15 forAvgpre of 0.7 p.u., 0.5 p.u., and 0.3 p.u.,
respectively. The data points in the figures show the relation-
ship between 1AvgCLagg and 1MFCLagg for the one hour from
12:00 to 13:00 in the entire year in all the regions. It is noted
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FIGURE 16. Ratio of the data points of the resultant 1MF CL
agg and

1AvgCL
agg within a certain threshold, respectively, to the total data points

at every Avgpre.

that more data points are found as the AvgCLagg decreases from
0.7 p.u. to 0.3 p.u. This is because the proposed methods are
not required when the reliable output before the curtailment
is lower than the Avgpre.

Generally, Method-1 has a slightly right-leaning horizontal
distribution. This means that Method-1 does not suppress
the MF as the ideal Method-4. Method-2 has a distribution
centered at the origin, which indicated a small deviation
between the proposed method-2 and the ideal Method-4 in
terms of both AvgCLagg and MFCLagg. Method-3 has longitudi-
nal distribution, which means that the application of equal
CL to all the regions majorly deviates the AvgCLagg from
Avgpre.

Therefore, Figs. 13, 14 and 15 indicate that Method-2 can
reduce the fluctuations and be close to the ideal Method-4.
While centralized data points of Method-1 represent the less
fluctuating days that do not necessarily need the operation of
Method-2. In Figs. 13, 14 and 15, as the Avgpre decreases
from 0.7 p.u. to 0.3 p.u., the data points of the proposed
methods, Method-1 and Method-2, become concentrated on
a horizontal ellipse centered around the origin because more
severe CL is applied. Hence, less MFCLagg is expected and the
requested Avgpre is easily reached.

Fig. 16 gives an overview on the resulting 1MFCLagg and
1AvgCLagg of each method respectively against the chang-
ing Avgpre using the entire data points of the year. Fig. 16
is also used a collective representation of Figs. 13, 14
and 15 including additional results at different Avgpre values.
Fig. 16(a) reflects the ratio of the data points that lie within

|1MFCLagg| of 0.01 p.u. and the total data points at a certain
Avgpre (MFCLagg ratio). Fig. 16(b) reflects the ratio of the data
points that lie within |1AvgCLagg| of 0.04 p.u. and the total data
points at a certain Avgpre (AvgCLagg ratio).
As the trends of the resulting MFCLagg and AvgCLagg ratios

of any method approach 1, it implies that this method is
close to ideal Method-4 output. The trends in Fig. 16(a) show
that Method-2 is the most efficient at reducing the MFCLagg
at any Avgpre. Method-3 shows its efficiency at reducing
MFCLagg as theAvgpre decreases, i.e. when severe CL is applied,
MFCLagg is reduced drastically. Method-1 is mostly deviated
from ideal Method-4 at every Avgpre as reduction of MFCLagg
is the least priority of this method and it works the best
in non-fluctuating days. The trends in Fig. 16(b) show that
Method-1 and Method-2 are the most effective in meeting
the target Avgpre at the medium and low Avgpre. In addition,
Method-3 has the most deviation from ideal Method-4, how-
ever, this deviation reduces as Avgpre decreases, making this
method more feasible at low Avgpre.

VII. CONCLUSION
This study proposes methods for the optimal short-term
allocation of CL among each region. The allocation of the
CL is based on the short-term forecasting of the fluctuation
mode of individual PV power output. The proposed method
can also reduce the fluctuations in aggregated PV power
output.

The proposed method employs two functions, i.e. the rela-
tionship between CL and MF, and between CL and Avg
prepared for typical fluctuation modes based on statistical
data of past solar irradiance observations. Accordingly, the
optimal CL is allocated to minimize the fluctuations in aggre-
gated PV power output by merely identifying the region’sMF
and average modes instead of precisely observing the short-
term time-series PV power output.

The proposed methods were tested using the time-series of
PV power output at 61 observation points in the central region
of Japan for one year. The main results are as follows:

• The proposed methods resulted in optimal CL allocation
that majorly reduced MFCLagg and targeted the requested
PV output by the operator Avgpre. This will reduce the
fluctuations of aggregated PV power output, which con-
tributes to the reduction of the requirement of frequency
regulation and required CL of aggregated PV power
output itself.

• The results of the proposed methods were found to
be almost as effective as the method using perfect
short-term forecasting of PV power output. This has
been shown through the calculation of the deviation of
the proposed methods from the ideal Method-4 and the
gaps are manifested to lie within |1MFCLagg| of 0.01 p.u
and |1AvgCLagg| of 0.04 p.u.

• The proposed methods becomes functional when there
are regionswith differentmodes of power output ranging
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from fluctuating to non-fluctuating, and high average
to low average regions meaning that different modes of
MF-CL and Avg-CL are utilized for optimizing the CL
allocation. However, for days with similar modes among
different regions, for instance in summer days with high
and uniform power output, the same CL application in
Method-3 can be sufficient.

Additional study can be conducted to use statistical data for
creating more classifications of MF-CL and Avg-CL patterns
to reflect more different PV power output behaviors, hence,
providing highly accurate CL allocation. Also, by enhancing
the short-term forecasting accuracy, more specific MF-CL
and Avg-CL patterns can be chosen among the various pat-
terns available.

Another issue which is the interconnection between PV
power curtailment and grid congestion can be a potential issue
that can investigated in future work. As congestion manage-
ment can impact PV power curtailment when transmission
capacity is limited. Curtailment of some PV systems will then
be required to avoid overloading transmission lines.
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