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ABSTRACT The intensive care unit (ICU) typically admits patients who require urgent medical intervention.
Predicting ICU mortality is crucial for identifying those who are at higher risk. Traditional statistical
methods, such as logistic regression, have been widely used for ICU survival prediction. However, these
methods often have limitations in capturing complex nonlinear relationships between the clinical features.
A prediction model based on ensemble learning was proposed for the ICU mortality prediction problem:
MTX-stacking model. Firstly, the imbalanced data was processed based on the modified generative adver-
sarial networkmethod. This approach is more explanatory andmore effective than traditional data generation
methods. Secondly, XGBoost was optimized by tree-structured parzen estimator and stacking structure to
prevent overfitting. The proposed MTX-stacking model was evaluated using 131,051 patients from MIT’s
GOSSIS initiative. The results indicate that MTX-stacking outperforms the state-of-the-art approaches in
terms of area under the receiver operator characteristic (ROC) curve (91.2% and 90.9%). These findings
demonstrate the ability and efficiency of the MTX-stacking model to predict ICU mortality.

INDEX TERMS ICU survival prediction, ensemble learning, generative adversarial nets, Bayesian opti-
mization.

I. INTRODUCTION
During the ongoing COVID-19 pandemic, the rapid
assessment of patients’ overall health status assumes
paramount importance, as healthcare providers worldwide
grapple with the management of overwhelmed hospitals
inundated with critically ill individuals. Amongst these
patients, those with the most severe conditions requiring
life-sustaining therapies or close monitoring are admitted
to the intensive care unit (ICU). The ICU serves as a piv-
otal component in enhancing emergency care effectiveness
and further reducing mortality rates, given its concentration
of state-of-the-art monitoring technologies and emergency
facilities [1].
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Regrettably, the availability of verified medical histories
for admitted patients in the ICU is often inadequate. Uncon-
scious or unresponsive patients are unable to provide infor-
mation regarding chronic conditions such as heart disease or
diabetes. Moreover, medical records may take considerable
time to be transferred, particularly for patients originating
from different healthcare providers or systems. Early iden-
tification of individuals at high risk of mortality enables
clinicians to make informed decisions regarding patient care.
For instance, patients identified as high-risk can benefit from
more aggressive interventions like mechanical ventilation
or renal replacement therapy. Conversely, patients deemed
low-risk can receive appropriate treatment without undergo-
ing unnecessary tests or procedures.

Considering the substantial mortality rate observed in
ICU patients, various prognostic scoring systems have been
developed to accurately predict individual mortality [2], [3].
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Traditional scoring systems such as the Assessment and
Chronic Health Evaluation (APACHE) II and III, Simpli-
fied Acute Physiology Score (SAPS) II and III, Mortality
Probability Model (MPM) II and III, and Sequential Organ
Failure Assessment (SOFA) have exhibited moderate effi-
cacy in predicting individual patient mortality. However, the
limited accuracy of these scoring systems hinders their uni-
versal applicability to all ICU patients, as documented in
the literature [4]. Consequently, there has been an increasing
utilization of machine learning (ML) techniques, particularly
in the realm of ICU mortality prediction [5]. The purpose of
this study was to propose an accurate and medically intuitive
ICU mortality prediction model based on GAN and stacking
structure. The presence of class imbalance in the dataset,
coupled with the limitations of previous methods for handling
class imbalance that lack interpretability. Therefore, GAN is
selected to address the issue of class imbalance and theoret-
ical evidence is provided to support this choice. Ensemble
learning can improve the performance of classifiers to some
extent. Therefore, after applyingGAN for data preprocessing,
this paper selects the Bayesian optimization-based XGBoost
classifier as the first-layer model and combines it using
the stacking framework to obtain the final MTX-stacking
model. We compared MTX-stacking model with conven-
tional scoring systems and ML algorithms. Furthermore,
we also explained the purposed model using SHAP.

II. RELATED WORK
Predicting ICU mortality involves using clinical data and
other relevant factors to estimate the likelihood that a patient
admitted to the intensive care unit (ICU) will die while in the
ICU. This information is important for physicians and other
healthcare providers to help guide treatment decisions and
provide appropriate care to the patient.

Recently, common ICU mortality prediction methods are
mainly divided into three categories: statistical methods,
machine learning methods and ensemble methods.

As for statistical learning methods, early prediction meth-
ods used logistic regression: Chen et al. [6] used multi-
ple logistic regression to predict mortality of 134 patients
with sepsis. Thao et al. [7] employed univariate logistic
regression and multivariate analysis to predict mortality of
123 patients with septic shock. Ros et al. [8] used step-
wise logistic regression to predict ICU mortality. Also,
many prognostic scoring systems are frequently used to pre-
dict mortality using well-known generalized linear model
approaches. Three of these scoring methods are widely used,
namely the Acute Physiology and Chronic Health Evaluation
(APACHE) scoring system [9], the Simplified Acute Physiol-
ogy Score (SAPS) [3], and the Probabilistic Mortality Model
(MPM) [10]. For the most recent versions of these systems,
the worst physiological value for the first 24 hours after
the patient’s admission to the ICU is used to build logistic
regression (LR) models, while other data are not used, which
results in a loss of information. In addition, linear models are
inaccurate in predicting patient status.

As technology is considerably researched and developed,
and the amount of clinical data on ICU increases, ever-
increasing researchers tend to use machine learning meth-
ods to predict mortality. Machine learning methods belong
to nonlinear modeling approaches: artificial neural net-
works [11], [12], support vector machines [13], [14], decision
trees [15], naive Bayesian models [16], [17]. Aczon et al.
[18] and Alves et al. [19] employed RNN and CNN-LSTM
respectively to predict ICU mortality. More complex models
such as incremental information networks [20] have been
explored in the last decades to characterize patients. All these
approaches attempt to calculate risk scores for patients using
global predictive models extracted from all available training
data, however, the behavior of various patients is highly
individualized. In the last decades, different patient-specific
models have been developed for decision support [21] or
adaptive monitoring in critical care [22], [23]. Recently, per-
sonalized models in the context of medical applications have
been investigated, where KASABOV [24] proposed a person-
alized modeling approach using evolutionary optimization
techniques, which was used in some particular fields, such
as the design of customized drugs. Furthermore, just-in-time
learning (JITL) and principal component analysis (PCA),
referred to as learned PCA (L-PCA) [25], were combined
to build an online personality model to monitor the patient’s
status, where JITL collects the most relevant samples for
adaptive modeling of complex physiological processes and
PCA was used for personalized modeling. Recently, another
novel personalized modeling approach was proposed, named
JITL-ELM, which integrates JITL and extreme learning
machine (ELM). JITL borrows the diagnostic idea of ‘‘sim-
ilar symptoms characterizing similar outcomes’’ to build
patient-specific models by finding the most relevant sam-
ples, aiming to improve accuracy. However, these machine
learningmethods have some drawbacks. One of the disadvan-
tages is that their prediction accuracy can be unstable, which
means that the model’s performance may fluctuate in differ-
ent scenarios. Additionally, they can be difficult to interpret,
making it challenging to understand how the model makes
decisions.

The last category is ensemble methods. Final classifica-
tion is achieved by building and combining multiple learn-
ers. Liu et al. [26] employed XGBoost for icu mortality
prediction. Ye et al. [27] employed GBDT to predict icu
survival rate. Guo et al. [28] proposed a dynamic ensemble
learning algorithm based on K−means to predict mortality.
An improved patient-specific stacking ensemble model [29]
was proposed by combining KNN, MLP, DT and LR to
predict mortality for MIMIC III dataset. A stacked ensemble
model [30] was proposed by combining logistic regression,
random forest, XGBoost and so on. The above ensemble
learning methods have some drawbacks: firstly, the models
are too complex and involve multiple machine learning meth-
ods, requiring training of multiple base models. Secondly,
the final model is difficult to interpret and cannot avoid the
‘‘black box’’ phenomenon.
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In general, the purpose of this study is to compensate for
the shortcomings of the above three types of models: lack
of information, low accuracy, poor model stability, and poor
explanatory performance.

III. MODIFIED-GAN METHOD FOR PROCESSING DATA
IMBALANCE
To improve the performance of a predictive model for ICU
patients, it is necessary to prepare a new strategy. In this
research, MTX-stacking model is proposed based on modi-
fied GAN, XGBoost and stacking structure. MTX-stacking
model uses only XGBoost as the base model and then
employs logistic regression as the final output. This has
two advantages. On the one hand, it avoids over-fitting
and improves the model’s stability. On the other hand,
it is time-efficient and reduces the time required to train
machine learning-based models. Furthermore, the model’s
feature importance is determined using statistical methods,
providing some explanation for the model. The flowchart of
MTX-stacking is shown in Figure 1.

FIGURE 1. The structure of MTX-stacking model.

The traditional method for processing data imbalance
changes the number of samples by oversampling or under-
sampling. Repeated sampling can easily lead to overfitting;
artificially generated sample often changes the distribution
of data. The classical SMOTE [31] algorithm randomly syn-
thesizes a new sample from the connection between the
sample from minority class and its adjacent samples. In high-
dimensional data, the spatial distance between samples grows
exponentially, resulting in a pronounced deviation of the sam-
ples generated by the SMOTE algorithm from the distribution
of real samples.

To address the problems of SMOTE, this research will
use GAN [32] as a tool to deal with data imbalance. GAN
is often used for image generation and have great effect.
GAN is modified to process data imbalance as below: firstly,
generate data for only the minority class, thus achieving data
balance. Secondly, after generating data, a classifier layer is
constructed to classify categorical variables.

A. DESCRIPTION OF ORIGINAL GAN
In contrast to the SMOTE algorithm, which functions as a
generativemodel by generating new samples based on the dis-
tance between samples from the minority class, GAN adopts
a different approach by learning the distribution of samples
through noise. This innovative methodology overcomes the
challenges of class overlap and high-dimensionality that are
prevalent in the SMOTE algorithm, allowing for the more
effective generation of new samples. GAN was first intro-
duced by Ian J. Goodfellow in 2014. The structure of GAN
is divided into two parts: a generation network G and a

FIGURE 2. The structure of original generative adversarial net.

discriminative network D. The whole process of GAN can
be shown in Figure 2.

B. MODIFIED-GAN
GAN was used to generate data (mainly picture data) of
different categories. In order to solve the problem of data
imbalance, GAN was modified as below: assuming that the
number of majority class’s samples is n1, the number of
minority class’s samples is n2, the minority class’s data is x.
It is necessary to generate n1−n2 minority class’s samples to
make the data balance. Assuming that the number of features
is p, the shape of ‘‘generative data’’ is (n1 − n2) ∗ p.
So firstly, assuming the initial distribution of the ‘‘noise’’

z is pz. The aim is to use G to transfer z to a dataset G(z)
with the shape of (n1 − n2) ∗ p. There is a question: how to
measure the distance between generative data and real data?
Discriminative network D will be introduced. It’s aim is to
discriminate whether the data is real (1) or generated (0).
Given G:
• D wants to give x (x is taken from the real sam-
ple) the label of ‘‘1’’, which is equal to maximize
Ex∼Pdata(x)[logD(x)].

• D also wants to give the generative data a label of ‘‘0’’,
which helps G to generate better ‘‘real’’ data, which is
equal to maximize Ez∼Pz [log (1− D(G(z)))].

So all in all, the discriminative nerwork D′s aim is to
maximize:

V (D,G) = Ex∼pdata(x)[logD(x)]+ Ez∼Pz [log (1− D(G(z)))].
(1)

The ideal state of the data augmentation method is to
extract all samples from samples of the minority class, learn
the overall distribution of these samples, and subsequently
sample this learned distribution to generate a comprehensive
set of ‘‘generative samples’’. However, such an approach is
difficult to implement in practice, as it is not only time-
consuming, but also difficult to learn the distribution of
most samples. Therefore, Modified-GAN starts from noise
to ‘‘simulate’’ the distribution of samples from the minority
class and learns the distribution of real data through iterations.
The final goal of GAN method was proved in [32]: use noise
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FIGURE 3. Flowchart of ICU patients-based GAN.

to learn the distribution of the real data and generate samples
of the minority class.

Assuming the parameter of G is θG, the parameter of D is
θD, the first generated data is called G0, the learning rate is
γ . D∗0 can be calculated. θG1 can be updated first by:

θG1 ← θG0 − γ
∂V (G0,D∗0)

∂θG0

, (2)

and then the best D∗1 will be found and update θG2 by:

θG2 ← θG1 − γ
∂V (G1,D∗1)

∂θG1

, (3)

the result of the nth update can be expressed as:

θGn ← θGn−1 − γ
∂V (Gn−1,D∗n−1)

∂θGn−1
. (4)

After multiple iterations, the generated data will become
more and more like real data. But there exists a problem to
be solved: how to deal with binary features?

In the data set used, there are some binary variables, such
as leukemia, solid_tumor_with_metastasis. If we just use
the model above, these variables will become unrealistic in
generated data. So the GAN is further modified as below: a
classifier layer is constructed to classify the predicted results
of these categorical variables after GAN. When the predicted
value is greater than 0.5, the output is 1; otherwise, the output
is 0. So the final structure of ICU patients-based GAN can be
shown in Figure 3:

In all, G is a generative model, similar to shady merchants
who make antique fakes and try to generate realistic antiques,
while D is a discriminative model that tries to separate real
antiques from fake ones.

Initially, G has poor generative effect and the generated
fakes are easily discriminated by D; then G improves the
generative effect based on the discriminative result of D, and
D discriminates again. After several cycles, G’s generation
effect will approach the real antique step by step, and D’s
discriminating ability becomes more and more stronger. Such

a dynamic game eventually makes G generate forgeries that
D can no longer distinguish from real antiques.
The subtlety of this method is to introduce the idea of

game theory into deep learning, where Modified-GAN uses
the generative network G and the discriminative network
D to improve each other. G aims to learn the distribution
of real data, and D tries to discriminate whether the input
data comes from real data or generators. In order to win the
game, the generative and discriminative networks continu-
ously optimize themselves, and the performance of G and D
is continuously improved in the process of the game, finally
reaching the Nash equilibrium, i.e., the generative network G
is able to generate samples that the discriminative network D
cannot distinguish between true and false, i.e., the generative
networkG has learned the distribution of real data at this time.

IV. PREDICTION OF ICU MORTALITY
A. XGBoost
Based on CART tree, extreme gradient boosting (XGBoost)
was proposed in 2006 [33]. XGBoost is an extension of
the gradient boosting algorithm and uses a more advanced
regularization technique called L1 and L2 regularization to
prevent overfitting. It also incorporates other features such as
handling missing values and built-in cross-validation, which
makes it a popular choice for competitions and industrial
applications. The general idea of XGBoost is to keep adding
trees, with each new tree being designed to fit the residuals
of the last prediction. The final score (prediction) for each
sample equals to the sum of the scores of this sample on each
CART tree.

XGBoost uses a number of hyperparameters that can be
tuned to optimize its performance, such as the learning rate,
the number of trees, the maximum depth of each tree and the
regularization parameters.

The whole process of XGBoost can be described in six
steps:
Step 1: XGBoost considers the regularization term to pre-

vent overfitting. The objective function consists of two parts:
the first part is the sum of loss functions for classification
errors, and the second part is regularization term, which helps
to restrict the number of leaves and leaf scores.

L(φ) =
∑
i

l(yi, ŷi)+
∑
k

�(fk )

=

∑
i

l(yi, ŷi)+ γT +
1
2
λ ∥w∥2 . (5)

Step 2: The newly created tree is utilized to match the
residual of the previous prediction. After generating t trees,
the prediction score of the i-th sample can be written as:

ŷi
(t)
= ŷi

(t−1)
+ ft (x). (6)

The objective function (t-th tree) can thus be rewritten as:

L(t) =
n∑
i=1

l(yi, ŷ(t−1) + ft (xi))+�(ft ). (7)
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Step 3:Now, since we need to convert the original objective
function to the Euclidean domain function to use the con-
ventional optimization technique, we have to perform Tylor
series expansion on loss function in equation 7:

L(t) ≃
n∑
i=1

[l(yi, ŷ(t−1))+ gift (xi)+
1
2
hif 2t (xi)]+�(ft ),

gi =
∂l(yi, ŷ(t−1))

∂ ŷ(t−1)
, hi =

∂2l(yi, ŷ(t−1))
∂2ŷ(t−1)

. (8)

Step 4: To make the objective function easier to under-
stand, the constant term was left out. The previous round’s
tree-building loss function has no bearing on our current tree-
building efforts. After removing the constant term, wewill get
the below equation.

obj(t) =
n∑
i=1

[gift (xi)+
1
2
hif 2t (xi)]+�(ft )

=

n∑
i=1

[giwq(xi)+
1
2
hiw2

q(xi)]+ γT +
1
2
λ

T∑
j=1

w2
j

=

T∑
j=1

[(
∑
i∈Ij

gi)wj +
1
2
(
∑
i∈Ij

hi + λ)w2
j ]+ γT

=

T∑
j=1

[Gjwj +
1
2
(Hj + λ)w2

j ]+ γT . (9)

Step 5: Take the derivative for the jth score of the tth tree:

∂obj(t)

∂wj
= 0

⇒ w∗j = −
Gj

Hj + λ

⇒ L̂∗ = −
1
2

T∑
j=1

G2
j

Hj + λ
+ γT . (10)

Step 6: Generate all decision trees after the 5 steps.

B. IMPROVED XGBoost BY TREE-STRUCTURED PARZEN
ESTIMATOR (TPE-XGBoost)
The optimal expression of the objective function is derived
above, that is, the optimal scores of the leaf nodes are known,
but the structure of the whole tree is unknown, how to build
this tree next?

Commonly used methods for hyperparameter selection
include:
• Grid Search [34]: Grid search is a popular method
for hyperparameter selection that involves defining a
grid of possible hyperparameter values and evaluating
the performance of the model for each combination of
hyperparameters. Grid search is simple to implement
and can be used with any model, but it can be computa-
tionally expensive when the number of hyperparameters
and their possible values are large.

TABLE 1. The main hyperparameters of XGBoost.

• Random Search [35]: Random search is a method that
randomly samples hyperparameters from their respec-
tive distributions, instead of exhaustively searching
through a predefined set of hyperparameters as in grid
search. Random search is computationally more effi-
cient than grid search and can sometimes lead to better
performance by exploring a larger portion of the hyper-
parameter space.

Although they are used frequently, the time consumed is
enormous and the accuracy is not guaranted. In this study,
Tree-structured Parzen estimator (TPE) was used to find the
optimal hyperparameter and the optimal XGBoost model was
constructed.

The following table lists the main hyperparameters of
XGBoost:

Assuming that the set of hyperparameters is m, the mini-
mization loss function L(m) is transformed into:

I (m) = max(L∗ − L(m), 0). (11)

And the expectation of I (m) can be calculated:

EI (m) =
∫ L∗

−∞

(L∗ − L)p(L|m)dL

=

∫ L∗

−∞

(L∗ − L)
p(m|L)p(L)

p(m)
dL, (12)
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where a threshold value of 0.15 is generally set (P(L < L∗) =
0.15) and cut into two pieces.

p(m|L) =

{
l(m) L < L∗,
g(m) c ≥ L∗.

(13)

Divide the historical data into two parts by L∗, taking the
part L < L∗ as an example.

Suppose there exist n values (m1,m2, . . . ,mn), then the
probability density is estimated as:

l̂(m) =
1
nh

n∑
i=1

K (
m− mi
h

), (14)

where:

K (
m− mi
h

) =
1
√
2π

exp(−
1
2
(
m− mi
h

)2), (15)

and

h = (
4σ̂ 5

3n
)
1
5 ≈ 1.06σ̂n−

1
5 . (16)

Then p(L) can be calculated using beyesian equation:

p(m) =
∫
R

p(m|L)p(L)dL

=

L∗∫
−∞

p(m|L)p(L)dL +

∞∫
L∗

p(m|L)p(L)dL

= νl(m)+ (1− ν)g(m). (17)

Substitute this into the expression for the expectation:

EI (m) =

νc∗ − l(m)
c∗∫
−∞

cp(c)dc

νl(m)+ (1− ν)g(m)

∝ (ν +
g(m)
l(m)

(1− ν))−1 (18)

So in order to make the loss function small enough, i.e., the
expectation of I (m) is large enough, one needs to maximize
l(m)
g(m) . For each tree, a node is sampled 100 times under the
l(m) distribution using the Parzen estimator. The set of hyper-
parameters obtained from each sampling can be obtained
separately, and then multiplied to obtain the joint probabil-
ity to calculate l(m) and g(m). When l(m)/g(m) reaches its
maximum, m is the optimal hyperparameter in this iteration.
In all, the TPE algorithm works by constructing two sepa-

rate probability distributions: one to model the hyperparame-
ters that lead to good performance (the ‘‘good’’ distribution),
and another to model the hyperparameters that lead to poor
performance (the ‘‘bad’’ distribution).

To construct the two distributions, TPE uses a tree-based
search algorithm that partitions the hyperparameter space
into regions based on their performance. At each iteration,
the algorithm evaluates a fixed number of randomly chosen
hyperparameter settings and then updates the probability dis-
tributions based on the performance of these settings.

FIGURE 4. The flow chart of the original stacking structure.

The key advantage of TPE is its ability to focus the search
on promising regions of the hyperparameter space, rather than
exhaustively exploring the entire space. This makes it much
more efficient than grid search or random search for high-
dimensional problems, where the search space is too large
to explore exhaustively. So TPE was applied on XGBoost to
work more efficiently.

C. OPTIMIZE BY STACKING-NET
The above text explains the improved model of XGBoost
using TPE and we get the proposed TPE-XGBoost model.
Generally, setting the number of iterations to 50 can yield
models that perform well on the validation set. However,
in order to further alleviate overfitting and obtain even better
models, this thesis employs the stackingmethod for ensemble
learning.

Stacking is an ensemble learning method used in machine
learning to combine multiple classification or regression
models to improve their predictive performance. In stacking,
the predictions made by several base models are combined
using a higher-level model, called the meta-model.

The basic idea of stacking is to train several diverse base
models on the same dataset and use their predictions as input
to a meta-model, which predicts the final output. This helps
to reduce the individual weaknesses of each base model
and improves the overall performance. The flowchart of
original-stacking is shown in Figure 4:

There are two phases in stacking: training and prediction.
In the training phase, the base models are trained on the train-
ing data, and their predictions are stored. In the prediction
phase, the meta-model is trained on the stored predictions
from the training data and used to predict the final output on
the test data.

The essence of a stacking model is a hierarchical struc-
ture. In this study, we consider using a two-level stack-
ing approach. Suppose we have k base models, Model1_1
through Model1_k , and a secondary model, Model2. The
general process is as follows:
Step 1: The base model Model1_1 is trained on the training

set. 
...

Xtrain
...

 Model1_1 Train
H⇒


...

YTrue
...

 (19)
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After training, the model Model1_1 predicts the label for
both the ‘‘train’’ and ‘‘test’’ datasets, resulting in the predicted
labels P1 and T1, respectively.

...

Xtrain
...

 Model1_1 Predict
H⇒


...

P1
...

 (20)


...

Xtest
...

 Model1_1 Predict
H⇒


...

T1
...

 (21)

Step 2: For the other base models, Model1_2 through
Model1_k, the same training and prediction steps are
repeated. The prediction for Model1_i is as follows:

...

Xtrain
...

 Model1_i Predict
H⇒


...

Pi
...

 (22)


...

Xtest
...

 Model1_i Predict
H⇒


...

Ti
...

 (23)

Step 3:The predicted labelsP1,P2, . . . ,Pk , T1,T2, . . . ,Tk
are combined to form a new training set and testing set,
denoted as Train_2 and Test_2, respectively.

Train_2︷ ︸︸ ︷
...

...
...

...

P1 P2 . . . Pk
...

...
...

...

 and

Test_2︷ ︸︸ ︷
...

...
...

...

T1 T2 . . . Tk
...

...
...

...


(24)

Step 4:Themeta-model,Model2, is then trained on the true
labels of the training set using Train_2 as the feature set. The
trained Model2 is then used to predict the labels for Test_2,
resulting in the final predicted label column for the testing
set.

Train_2︷ ︸︸ ︷
...

...
...

...

P1 P2 . . . Pk
...

...
...

...

 Model2 Train
H⇒


...

YTrue
...

 (25)

Test_2︷ ︸︸ ︷
...

...
...

...

T1 T2 . . . Tk
...

...
...

...

 Model2 Predict
H⇒


...

YPredict
...

 (26)

YPredict represents the final predicted output of the stacking
model. This is the basic and original idea of a two-level
stacking model: adding another layer of model on top of the
predictions made by different base classifiers, then retraining
the model to obtain the final prediction.

Stacking is essentially a straightforward approach, but it
can sometimes pose problems when the training and testing
sets are not consistent. The problem lies in using the labels
trained by the initial model and then retraining with the true
labels, which undoubtedly leads to some degree of overfitting
on the training set. This may result in reduced generalization
ability or effectiveness of the model on the testing set. There-
fore, the current problem is how to reduce the overfitting
caused by retraining. Here, we generally have two methods:
select a simple linear model as the meta-model or use K -fold
cross-validation. Here, 5-fold cross-validation is applied to
the stacking model.

After 5-fold cross-validation, the final stacking model was
applied to the test set to obtain the final results. Compared
with other models, stacking is more stable. It can integrate
the performance of different base classifiers and use a highly
fittedmeta-model for prediction. It is particularly useful when
the problem is complex and the available data is limited
or noisy. We call the final model combined with Modified-
GAN, XGBoost with TPE and stacking: MTX-stacking. The
prediction for specific data will be explained in the next
section.

V. EXPERIMENTS
The global GOSSIS consortium at MIT has developed a valu-
able resource for assessing illness severity. They have com-
piled multiple databases to create a comprehensive dataset
containing 131,051 ICU admissions in a year. This dataset
includes patients’ demographic information, test results,
chronic health conditions, APACHE scores and other metrics.
In total, the dataset contains 185 features.

Predicting mortality is the main target variable. Howerver,
the training set is imbalanced, with only 7,915 deaths out
of a total 91,713 admissions. Despite this phenomenon, the
dataset offers a rich and diverse set of features, making it
a valuable resource for machine learning researchers and
practitioners in the healthcare field.

Many statistical analysis methods are used to impute miss-
ing values, including hot-deck and regression imputation
[36]. In this research, features with more than 50% of missing
data are entirely removed. For features of continuous type,
the median is chosen to fill in; for features of subtype, the
plural is chosen to fill in. Finally, a data set without missing
values was obtained. The final data set has 91713 samples
and 80 features.

The characteristic of each feature is different, such as
property, dimension, and magnitude, which makes it impos-
sible to analyze the characteristics directly. Also, as big data
grows, the time required also increases. In order to effectively
alleviate the gradient explosion problem brought by big data,
unitization of features is performed in this research. All the
features were rescaled using themin-max normalization tech-
nique (Equation 27), where X ′ is the scaled value, and X is
the original value.

X ′ =
X −min(X )

max(X )−min(X )
. (27)
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FIGURE 5. The distribution of hospital_death.

It normalizes the data using the minimum and maximum
of the original data, and maps the original data into the area
of [0,1].

The dataset used in this study is a common imbalance data.
As is shown in the Figure 5, in this data set, the number
of people who survived within 24 h was much larger than
the number of people who died. So it is necessary to use
method to balance the dataset so that the model has a good
generalization capability.

First, data on patients who died within 24 h (data from
minority class) were selected. These data were used to train
the Modified-GAN model. The Modified-GAN structure
consists of a generator and a discriminator. Both the gen-
erator and the discriminator are three-layer fully connected
networks.

Suppose z ∼ N (0, 1) and z ∈ (0, 1). The Modified-GAN
approach involves introducing random noise into the genera-
tor, which is subsequently repeated multiple times to generate
the requisite number of samples of the minority class while
also performing feature rounding (classification) for the 0-1
type features in the generated data. This initial data gen-
eration process represents the outcome of the 0th iteration.
Subsequently, the Modified-GAN discriminator is leveraged
to determine the degree of proximity between the generated
and actual data. Through iterative procedures, the distribution
of the generated data gradually converges with that of the
real data, ultimately resulting in synthetic samples that are
indistinguishable from the actual data.

Modified-GAN is conducted for 500 rounds. Two features
are selected to visualize when the iterations are 0, 100, 200,
300, 400 and 500. The original data was random, so the
generative data’s distribution is quite far from the real data
(Picture (a) in Figure 6). After 400 rounds, the generative
data is very close to real data. During 400-500 iterations, the
generated data tends to stabilize, meaning that the generated
data no longer differs much from the real data. So finally
500 iterations are chosen to be the strategy which helps
balancing the dataset.

If the model is trained directly with the training set, it will
easily cause overfitting. Therefore, the training set after pro-
cessing data imbalance is sliced again: 85% of the original
training set is used as the training set and 15% of the orig-

FIGURE 6. The visualization of Modified-GAN.

FIGURE 7. Proportion of training, validation, test set.

inal training set is used as the validation set (to adjust the
hyperparameters). The test set was divided into two equal
parts: the public and private sets, as shown in Figure 7. Both
of these sets are completely new and unseen by the model,
making them valuable resources for evaluating the model’s
performance.

The evaluation metric used for assessing the model’s per-
formance is the area under the receiver operating character-
istic curve (AUC) [37]. The AUC is calculated by comparing
the anticipated mortality results to the values of reality. This
is a commonly used metric in healthcare-related machine
learning tasks and provides a comprehensive assessment of
the model’s performance.

The XGBoost model is constructed on the training set and
the hyperparameters are adjusted using TPE in the valida-
tion set. TPE helps to improve XGBoost model. A total of
50 iterations were performed in this thesis, and the following
table and figure shows the results of the iterations. To evaluate
the data augmentation performance of the Modified-GAN
in comparison to the traditional SMOTE algorithm, both
methods are applied to the same training set to create new
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FIGURE 8. Training model based on Modified-GAN’s data: improve
XGBoost using Tree-structured Parzen estimator.

TABLE 2. The AUC value of best model using initial data set or processed
data set.

training sets for each method, and the parameters are adjusted
using theXgboost+Tree-structured Parzen estimatormethod.

According to Figure 6, after 500 iterations, the initial
Modified-GAN’s training data can be expressed by Z . Z is
divided in final training data and validation data. Further-
more, XGBoost with TPE is constructed using the above data.
After 50 iterations, the best AUC value is 0.8933.

According to Figure 8, the red lineplot means the best value
(AUC) and it’s obvious that the value almost stops increasing
when it rises to 0.89, which means that after 50 rounds, the
model has reached a relatively stable level, indicating the
usefulness of Modified-GAN in data pre-processing.

Finally, the optimal model is applied to the ‘‘black-box’’
prediction set by tuning the parameters on the original data
and the enhanced data of the above two methods (SMOTE
and Modified-GAN), and the final results are shown in the
Table 2.
The findings reveal that the approach to handling data

imbalance is a critical factor in improving prediction accu-
racy. The initial accuracy levels of 0.832 and 0.841, respec-
tively, without any data processing, increase significantly
when the XGBoost prediction model is applied after process-
ing the imbalanced data through either SMOTE or Modified-
GAN. Notably, the Modified-GAN method yields a more
substantial improvement in model accuracy, thereby under-
scoring its superiority in generating stable and realistic data.
Consequently, we select the Modified-GAN method for han-
dling data imbalance.

After tuning with TPE, the five best performing base mod-
els on the validation set are selected. According to Figure 4,
in this research, the fivemodels are used as the basemodels of
the first layer Classifier1,Classifier2, . . . ,Classifier5, and
for each base classifier, the training set is cross-validated in
five folds. After cross-validation, the predictions on the train-
ing set are combined and used as the output of the first layer.
And the output of these five models are merged to generate a

TABLE 3. Comparison of MTX-stacking model and some classical
methods on ICU patients’ dataset.

5-column prediction output Otrain1 . This output will be fed
to the second layer model (logistic regression with default
parameters) in order to alleviate the overfitting situation to
some extent. The logistic regression is used to trainOtrain1 and
output the prediction (classification) Otrain2 of the stacking
model on the training set, which is the training process of the
stacking model. After training, the whole stacking-model is
applied to the prediction data set to classify.

To verify the advantage of this model, we compare the
MTX-stacking model with several classical or state-of-the-
art models.

Our final method, the MTX-stacking model, outper-
forms all other techniques considered in this study. Other
top-performing techniques include H2O AutoML, which uti-
lizes an ensemble learning approach based on several models,
achieving AUC scores of 0.900 and 0.902 on the private and
public sets, respectively. Additionally, the DEEP Learning
technique, which employs a feedforward neural network,
obtained an AUC score of 0.895 and 0.896. Finally, the
APACHE IV, a well-known scoring system based on logistic
regression, achieved an AUC score of 0.868 and 0.871.

Also, we conducted a comparative analysis of MTX-
stacking model with several stacking models that utilized
various data preprocessing techniques. The results indicate
that data preprocessing is a critical step in improving the
AUC score. We observed that without data preprocessing,
the AUC score was comparatively lower. However, after
applying the SMOTE method, the AUC score improved sig-
nificantly, achieving a score of 0.879 and 0.882. Nonetheless,
the AUC score of these models still could not outperform
Deep Learning and H20 AutoML. As a result, we employed
Modified-GAN as a data preprocessing method to process
TPE+XGBoost with stacking net, ultimately leading to the
development of the MTX-stacking model, which achieved a
better prediction performance.

To sum up, the MTX-stacking model proposed in this
research achieved an AUC of 0.912 on the public dataset
and 0.909 on the private dataset for predicting ICU mortality.
The model outperforms classical methods, demonstrating its
better prediction performance on this dataset and addressing
the issue of low prediction accuracy to some extent. More-
over, as explained earlier, the stacking framework used in this
model can alleviate overfitting. Therefore, this model can be
used for predicting ICUmortality and contribute tomitigating
the shortage of medical resources.

The SHAP method is applied to the MIT’s GOS-
SIS dataset and the MTX-stacking model. For feature j,
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FIGURE 9. The top twenty shapley values on the MTX-stacking model. The
dots on this graph represent the impact of these features on the model
predictions.

its value:

8j =
∑

S⊆[{x1,x2,...,xk }\{xj}]
η ∗ (fx(S ∪

{
xj

}
)− fx(S)), (28)

η =
|S|!(k − |S| − 1)!

k!
, (29)

where {x1, x2, . . . , xk} represents the set of all input features,
k is the number of features, {x1, x2, . . . , xk} \

{
xj

}
represents

the set of all possible input features excluding xj, fx(S) is the
prediction of feature subset S.

The weighting variable η can be understood as:
• Denominator k!: there are k! combinations of k features
in any ordering.

• Molecular |S|!(k − |S| − 1)!: after determining the
subset S, k features in a particular ordering have
|S|!(k − |S| − 1)! kinds of combination cases.
When the subset S is determined, the set of features
should be

{
x1, . . . , x|S|, xj, x|S|+2, . . . , xp

}
and the sub-

set
{
x1, . . . , x|S|

}
itself has |S|! of sequential combina-

tions to be followed immediately by the feature j,then the
remaining features

{
x|S|+2, . . . , xp

}
have (k − |S| − 1)!

combinations, then after determining the subset S there
are |S|!(k − |S| − 1)! combinations of cases.

• So η is the percentage of feature combination cases
of subset S, and the sum of the percentage of feature
combination cases of all possible subsets S is equal to 1.

Figure 9 displays the top twenty features with the highest
shapley values on the MTX-stacking model. Shapley values
provide important insights into how different features con-
tribute to the model’s predictions and can be used to identify
the most important features for accurate predictions.

The features displayed in Figure 9 are sorted from most
important to least important, with the most important feature
at the top. The ‘‘shapley value (impact on model)’’ is the
horizontal location that indicates whether the feature has a
positive or negative impact on the model’s prediction. The
color of each point represents the value of the corresponding
feature for the given observation, with red indicating high
values and blue indicating low values. By examining the plot,
we can gain insights into which features are most important
for the model’s predictions and how they contribute to the
overall performance of the model.

It is vividly shown that the most significant feature is the
age. The output is similar to the real-life situation: the older
the patient (red dots), the more likely the patient is to die
within 24h (positive shapley value), while the younger patient
(blue dots) has a relatively lower hospital_death (negative
shapley value). The second-rank feature with high signif-
icance is ‘‘d1_bun_max’’, which means the highest blood
urea nitrogen concentration of the patient in their serum or
plasma during the first 24 hours of their unit stay. It is obvious
that blood urea nitrogen concentration increases the predicted
mortality risks (when the feature value is high, the shapley
value is positive), which means that the blood urea nitrogen
concentration of the patient is also a feature worth focusing
on. If this feature is quite high, the patient may be hard to
survive according to the MIT’s GOSSIS dataset.

The ‘‘ventilated_apache’’ is also important, which is a
binary variable indicating whether the patient is invasively
ventilated at the time of the highest scoring arterial blood gas
using the oxygenation scoring algorithm, including any mode
of positive pressure ventilation delivered through a circuit
attached to an endo-tracheal tube or tracheostomy. When
the patient is mechanically ventilated (ventilated_apache=1,
the red dots), the shapley value is positive, which means
that all patients’ mortality rates rise as a result of ven-
tilation. Some Glasgow Coma Scale features (including
‘‘gcs_verbal_apache’’ and ‘‘gcs_eyes_apache’’) are consid-
ered as important factors in themodel: these features indicates
a person’s level of consciousness using verbal and eyes. A low
score (blue dots) is associated with positive shapley value,
which indicates those with little consciousness will be more
possible to be close to death.

Finally, some features associated with patients’ vital data
are contributing to the model. The ‘‘d1_spo2_min’’ and
‘‘d1_sysbp_min’’ indicate the patient’s lowest peripheral
oxygen saturation during the first 24 hours of their unit
stay and the patient’s lowest systolic blood pressure during
the first 24 hours of their unit stay, either non-invasively
or invasively measured respectively. They all get positive
shapley values when they are not too high, indicating that
a patient with low oxygen and blood pressure has higher
predicted risk.

VI. CONCLUSION
This research endeavors to construct an ensemble learning
model for predicting the survival of intensive care unit (ICU)
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patients within a 24-hour timeframe, utilizingMIT’s GOSSIS
dataset as a case study.

Firstly, considering the issue of data imbalance, we
employed the classical SMOTE method to address the orig-
inal dataset. Additionally, we introduced a novel approach
called Modified-GAN to tackle data imbalance and demon-
strated the convergence of the Modified-GAN method. Sec-
ondly, following the data preprocessing stage, we applied
the XGBoost boosting method for classification purposes.
However, due to the modest prediction accuracy of the orig-
inal XGBoost model, we incorporated the tree-structured
Parzen estimator (TPE) to optimize the hyperparameters of
XGBoost. Through a comprehensive evaluation of various
iterations, we identified the TPE-XGBoost model that exhib-
ited the most favorable performance on the validation set.
Subsequently, the predictions of TPE-XGBoost were com-
pared on the original data, SMOTE-preprocessed data, and
Modified-GAN-preprocessed data in the final black-box test
set. The results demonstrated that Modified-GAN + TPE-
XGBoost yielded the most promising outcome, affirming
the effectiveness of the proposed Modified-GAN method in
addressing data imbalance. Thirdly, to further mitigate over-
fitting and enhance the model’s performance, we employed
the stacking method, where the top five XGBoost models
after TPE were employed as base learners, with logistic
regression serving as the meta-model to generate the final
output. This comprehensive model, referred to as the MTX-
stacking model, achieved a high area under the curve (AUC)
of 0.909 and 0.912 on the private and public test sets,
respectively. Moreover, we conducted a comparative analysis
with commonly used or state-of-the-art methods, includ-
ing APACHE IV, DEEP LEARNING, and H2O AUTOML,
revealing the superior performance of our final model.

Finally, to provide interpretability to the MTX-stacking
model, we employed the SHAP (Shapley Additive exPlana-
tions) method and observed that the generated explanations
aligned with clinical expectations, enhancing the model’s
transparency and trustworthiness.

Although the results obtained in this research are more
powerful than other compared model, there exists some
potential prospects:

(1) Our aim was to construct the most accurate model
by AUC, but there existed some other factors which could
result in the final death of patients. Moreover, the selection
of variables in this research was simple. We did not consider
the correlation between variables.

(2) The Modified-GAN method provides an idea of data
augmentation, but there is still room for improvement within
it: the commonly used 500 iterations are set as the gate value
in this research, and perhaps an optimization algorithm can be
used to determine the optimal number of iterations to achieve
optimal data augmentation.
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