
Received 16 June 2023, accepted 2 July 2023, date of publication 17 July 2023, date of current version 14 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3296260

Machine Learning Techniques for Prognosis
Estimation and Knowledge Discovery From
Lab Test Results With Application to the
COVID-19 Emergency
ALFONSO EMILIO GEREVINI 1, ROBERTO MAROLDI1,2,3, MATTEO OLIVATO 1,
LUCA PUTELLI 1, AND IVAN SERINA 1
1Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25121 Brescia, Italy
2Dipartimento di Specialitá Medico-Chirurgiche, Scienze Radiologiche e Sanitá Pubblica, Università degli Studi di Brescia, 25121 Brescia, Italy
3ASST Spedali Civili di Brescia, 25123 Brescia, Italy

Corresponding author: Alfonso Emilio Gerevini (alfonso.gerevini@unibs.it)

This work was supported in part by the Italian Ministry of Research and University, ‘‘Fondo Integrativo Speciale per la Ricerca (FISR)’’,
Project AICovidPrognosis2020 under Grant FISR2020IP_04373; and in part by TAILOR, a Project funded by European Union (EU)
Horizon 2020 Research and Innovation Program under Gant 952215. The work of Alfonso Emilio Gerevini was supported by Fondazione
Garda Valley, Italy.

ABSTRACT AI and Machine Learning (ML) offer powerful tools to support clinical decision making in
emergency situations such as the COVID-19 pandemic. In this context, the application of ML requires to
design predictive systems that have adequate accuracy and can effectively deal with issues concerning data
quality, sensitive errors, uncertainty, and interpretability of the predictions. We present a methodology that
deals with all these problems and a concrete study of its application to estimate the prognosis of hospitalised
patients with COVID-19. In particular, we address the task of predicting the outcome (alive or deceased) of
a patient at different times of her/his hospitalisation minimising false negatives (wrong survival predictions).
The proposed methodology builds different optimised ML models to select those that perform the best to
recognise, at different times of hospitalisation, patients who will have an unfavourable prognosis (decease).
These models exploit a new algorithm, presented in the paper, that identifies an uncertainty threshold to rule
out uncertain predictions with the purpose of making a ML model both more performing and more reliable.
Moreover, we propose a general method for automatically extracting multi-variable prognostic rules from
the available data. Such rules can provide possible new useful knowledge on the considered disease. We also
show how they can be used effectively to explain the predictions made by the ML models. All proposed
methods and techniques are experimentally evaluated in the context of our application task.

INDEX TERMS Smart healtchare, machine learning (ML), learning systems.

I. INTRODUCTION
The application of machine learning (ML) techniques in a
clinical environment can offer powerful tools to help face
emergency situations, such as the COVID-19 pandemic,
at various levels [1], [2], [3], [4]. In particular, predicting
possible adverse events or even the decease of a patient
can provide valuable support in clinical decision-making [5],
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as well as in the management of the limited critical resources
available in a hospital.

In this paper, we investigate a methodology that exploits
machine learning to build effective predictive models for the
mortality outcome of a patient with COVID-19 at different
times of her/his hospitalisation. Predictive models operate
as binary classifiers for mortality risk. We address several
important issues that arise when ML techniques are applied
in the medical context and, in particular, during an emergency
situation. In such a situation, the lack of time or scarcity of the
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available resources may considerably limit the amount and
quality of data on the patient’s health that can be acquired
and organised for training a ML model, while an urgent
prognostic assessment could be very helpful. Most existing
ML studies for COVID-19 usemany features of a hospitalised
patient to build a predictive model (e.g., [6], [7], [8], [9]).
Differently from them, in our workwe use a restricted number
of features that are based on demographic information (sex
and age) and the results of common laboratory tests, which
are relatively easy to acquire from a hospitalised patient, and
to collect from a hospital, in order to create training datasets.

Moreover, the amount of available data can sensibly differ
from one patient to another. For instance, the number of
exams performed strongly depends on the length of stay, and
patients hospitalised in the most critical phases of a pandemic
could have incomplete data. This makes generating datasets
that are suitable for exploiting the ML techniques non-trivial.

Another important aspect to consider in a very sensitive
context like clinical practise is that ML tools need to have
high predictive performance. Therefore, it is necessary to per-
form an accurate training of the algorithms and a statistically
sound evaluation of their performance. This evaluation should
also include amechanism to knowwhich predictions aremore
reliable and which are not, in order to avoid costly and critical
mistakes [10]. For this purpose, we investigated the degree of
certainty of the predictions made by our ML models. Since
standard approaches such as calibration [11] or NGBoost [12]
cannot be effectively adopted in our context, mainly due to
the limited size of the datasets [13], [14], [15], we designed a
new algorithm to identify and rule out uncertain predictions.
This is a general algorithm that can be used for domains other
than COVID-19.

Furthermore, in ML healthcare applications, it is important
to inform the user about the main criteria on which the pro-
vided prediction is based, to ensure that the prediction is well
justified and not biased [16] We propose a method to address
this explainability issue by a collection of (user-interpretable)
if-then rules that are automatically extracted. The extraction
of such rules uses simplified datasets where only the most
important features, identified by SHAP [17], are considered.
Our method belongs to the post-hoc approach to explain-
ability [18], which deals with the extraction of explanatory
information from an existing system, such as a complex ML
model, that does not allow a user to directly understand its
mechanisms in providing a result (e.g., a prediction), and
can be seen as a ‘‘black-box’’. In relation to the conceptual
framework for explainable AI in medicine recently proposed
by Combi et al. [18], in which the explainability of a system is
defined as the intersection of its interpretability, understand-
ability, usability, and usefulness, our method supports and
improves the interpretability and usefulness of the proposed
ML system for the prediction of the prognosis.

In addition to being useful for explainability, the extracted
rules can provide new knowledge that is useful, especially
when the rules concern a scarcely known disease. The rules

that were extracted from our models for the prognosis of
COVID-19 have been analysed on the basis of the recentmed-
ical literature on COVID-19, as well as of the clinical practise
in the hospital that provided the patients’ data for building
our ML models. This analysis confirmed their validity, and
indicated that some of our extracted rules provide valuable
clinical insights for the prognosis of COVID-19 patients.

Using raw data from more than 2000 patients collected in
the period February–May 2020 of one of the hospitals that
had more COVID-19 patients in Italy and Europe, Spedali
Civili di Brescia (SCB), we built different datasets describing
the ‘‘clinical history’’ of each patient during the hospitalisa-
tion. In particular, each dataset contains a ‘‘snapshot’’ of the
infection conditions of each patient considered on a certain
day after the start of hospitalisation. (As snapshot times for
a patient, in the experimental analysis presented in the paper,
we consider the 2nd, 4th, 6th, 8th, and 10th hospitalisation
days, and the day before the end of the hospitalisation.) For
each dataset, we built a different prediction model, allowing
one to make progressive predictions over time that take into
account the evolution of the disease severity in a patient,
which helps to formulate a personalised estimation of the
prognosis.

For generating the prediction models, we consider and
analyse several ML algorithms. A preliminary experimental
first comparison of their performance on our datasets showed
that the methods based on Bagging and Boosting of decision
trees were more promising than other methods [19]. A more
in-depth analysis (in this paper) about the use of Feed-forward
Neural Networks for irregular and complex datasets like those
we have in our application context confirmed this initial
observation. The resulting best-performing models showed
good predictive performance on a randomly chosen test set
of more than 350 patients. In particular, the overall system
makes very few errors in predicting patient survival, i.e., the
specificity of the prediction is very high.

Our datasets are designed and engineered to cope with
some important issues about the available data, partially
determined by the emergency, that include missing values
and irregularities in performing the lab tests for the patients.
We also propose a simple but effective technique to address a
‘‘concept drift’’ issue [20], [21], since on average the outcome
of a hospitalised patient was significantly worse (many more
deceased patients) during the earlier period of the emergency
(March 2020) when in Northern Italy many people were
hospitalised.

Summarising, in addition to proposing a new effective pre-
diction system for the prognosis of COVID-19 patients, and
experimentally analysing several machine learning methods
for the considered task, from a methodological point of view
the paper contains the following main contributions:

• a method for building several models at different days of
hospitalisation (for our experiments, we consider some
specific days, but other days could be chosen, as decided
by the user);
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• a method and an algorithm for identifying and handling
uncertain predictions through a threshold that is auto-
matically tuned at training time, and that we experimen-
tally show to be effective at test time (using instances
different from the training ones);

• a method for automatically discovering multi-variable
prognostic rules from the patients’ data that provide
potentially useful clinical knowledge for better under-
standing a disease like COVID-19;

• a method for using the discovered rules to interpret the
model predictions and provide explanations to the user.

The remainder of the paper is organised as follows. After
an overview of the methodology, the main proposed tech-
niques, and the issues addressed (Section II), we present our
methods and system in four sections: Section III describes the
techniques for creating the training and test sets; Section IV
concerns the techniques for training and selecting the best
performing ML models; Section V introduces our algorithm
for handling uncertain predictions; Section VI regards the
proposed model interpretation process and the procedure for
automatically extracting prognostic knowledge in the form
of multi-variable rules. Then, in Section VII we describe in
detail our clinical data, their characteristics, and the data qual-
ity issues we encountered. Next, in Section VIII, we provide
an experimental analysis aimed at (i) evaluating the perfor-
mance of the various ML models considered in our system in
order to identify the best performing ones, (ii) showing the
effectiveness of our methods to handle uncertain predictions
and to extract prognostic rules, (iii) providing a set of prog-
nostic rules for hospitalised COVID-19 patients, of which we
discuss clinical validity, and (iv) evaluating our method for
predicting explanation through the rules discovered. Finally,
in Section IX we discuss the related work and in Section X
we give the conclusions.

II. OVERVIEW OF THE METHODOLOGY, PROPOSED
TECHNIQUES AND ADDRESSED ISSUES
At a high level, our methodology for the problem of prog-
nosis estimation through ML models consists of five main
components, organised as described in Figure 1. The first
component (C1) generates a sequence of datasets from the
raw data of the patients about lab tests findings; each dataset
is indexed by a length of stay of the patient (hospitalisa-
tion day), that we call the Snapshot Dataset for that time.
Then, for each of these datasets, the second component
(C2) builds a number of ML models by training different
ML algorithms and configuring their hyperparameters. The
third component (C3) evaluates such generated models to
identify the best performing one for the considered hospital-
isation day. The fourth component (C4) refines the selected
model by including an (automatically generated) uncertainty
threshold in order to make the prognostic prediction (either
survival or decease) more reliable. The resulting final model
can then be evaluated by a testing module using a test
dataset. Finally, the purpose of the fifth component (C5) is
explaining the system prediction for a patient, as well as

to generate clinical knowledge in the form of prognostic
rules.

In the remainder of this section, we first highlight the main
issues we encountered in the design of these components, and
then outline our solutions to deal with them, while in the next
sections we provide a detailed description.

When applying machine learning to raw real-world data,
there are a number of challenging issues to deal with. This
is especially the case in the context of biomedical applica-
tions [22] and in emergency situations that hospitals have to
face, such as the pandemic of COVID-19. These issues have
a methodological impact on the design choices for building
a ML-based system that is effective and reliable. The main
issues that we address are:

• handling length-of-stay dependent data (in
component C1);

• dealing with incomplete and changing data about the
patient’s health condition (in component C1);

• handling the evolution of the data distribution (in com-
ponent C1);

• performing accurate training and selection of the learn-
ing method (in components C2 and C3);

• designing an effective algorithm for handling uncertain
and unreliable predictions (in component C4);

• designing a method for providing user-interpretable
explanations of the system predictions and discovery of
clinical knowledge from them (in component C5).

A. LENGTH-OF-STAY DEPENDENT DATA
Estimating the prognosis of a patient can be done at different
times during her/his hospitalisation using different infor-
mation about the patient’s health condition. Moreover, the
length of stay can sensibly differ from one patient to another,
depending on a number of factors such as the patient’s age,
comorbidities, and overall health conditions; thus, the total
number of performed lab tests and the relative findings signif-
icantly vary among the patients. However, typically machine
learning algorithms require a fixed amount of features for
each sample in the training/test dataset, and there is the need
to even each patient’s sample in a standard format that can
be processed by the machine learning algorithms. In order to
deal with this, we introduce the concept of patient snapshots
at different days of hospitalisation (e.g., at the sixth day after
the admission), each of which represents the patient’s health
conditions as indicated by the latest lab tests performed with
respect to the corresponding day.

B. INCOMPLETE AND CHANGING DATA ABOUT THE
PATIENT’S CONDITION
While patient snapshots allow to standardise the lab tests and
possibly other exams considered for each patient, it intro-
duces other issues. Lab tests and exams are not performed at
a regular frequency due, e.g., to the different kinds and timing
of the relative procedures, the availability of the required
resources (X-Ray machines, laboratory equipment, technical
staff, etc.), or to the different severity of the health conditions

VOLUME 11, 2023 83907



A. E. Gerevini et al.: ML Techniques for Prognosis Estimation and Knowledge Discovery From Lab Test Results

FIGURE 1. Diagram representing the main steps of our methodology for generating the final
model. Starting from raw data and the Hospitalisation Day, we create a Snapshot Dataset
(Snapshot Dataset Generation) representing the patients’ conditions in that day. Then,
we perform the Training and Hyperparameter Tuning of several ML algorithms. We select the
best performing one in terms of performance via a Bayesian approach (Bayesian Comparison
of the Models). Finally, we compute a threshold under which a prediction made by the ML
model has to be considered uncertain ( FindUncertainThreshold), generating the final model.
The same methodology is applied at different hospitalisation days, therefore we have several
snapshot datasets and we generate multiple models.
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of the patients. This leads to the need of handling missing
values and outdated values. For a snapshot of a patient at
a certain day, we have a missing value for a lab test fea-
ture if that test has never been performed since the patient
admission; while we have an outdated value for a feature
if the corresponding lab test was performed several days
earlier than the snapshot day. The outdated findings of the
lab test could be inconsistent with the current conditions of
the patient, and so they could mislead the predictive system.
Consequently, we should introduce additional data in the
snapshots to fill in the missing values through effective impu-
tation techniques, and deal with the outdated values. Another
important aspect that cannot be captured by the snapshots is
the evolution of the patient’s condition, from the admission
day to the snapshot day, which we handle by introducing
two additional features derived from the original data for
representing the trend of the disease.

C. DATA DISTRIBUTION EVOLUTION
In emergency conditions such as an epidemic, an
unfavourable prognosis (decease) of a patient can be influ-
enced by multiple external factors, including the high number
of patients currently hospitalised, the limited availability of
ICU beds or other critical resources, the experimentation of
new therapies, and the progressive increase of clinical knowl-
edge. These factors can vary over time, changing the data
distribution. In machine learning, this change is generally
known as concept drift [20], [21], and a classical method to
deal with it is training the algorithm using only a subset of
samples, depending on the data distribution considered [20],
[23]. This method has the drawback of significantly reducing
training data, and in biomedical applications (which are often
based on a limited number of patients) it can lead to poor pre-
dictive results. Thus, we follow a different approach, using the
full dataset with an additional feature that helps the learning
algorithm to discriminate if a patient is hospitalised during
a highly critical period or not. This allows to exploit more
training data, and achieve better predictive performance.

D. TRAINING AND SELECTION OF THE LEARNING
METHOD
The use of real-world data poses crucial challenges also to
the application of standard machine learning methods. While
machine learning has been proven to be very effective in
biomedical domains, typical issues of real-world data such
as noise, missing values, data inconsistency, limited amount
of available data, and data evolution have a negative impact
on the performance of the generated ML models. This can
be exacerbated when data are collected in emergency situa-
tions. Consequently, choosing an effective method among the
variety of available learning algorithms and deriving, after
adequate pre-processing of the data, an accurate ML model
is a task that requires careful training of the algorithms and
a thorough comparative evaluation of the generated models.
Moreover, in our medical context, it is important to minimise

false negatives, i.e., those patients in the training set whose
adverse prognosis is not identified by the algorithm; these
mistakes are the most critical and costly ones. Thus, we build
our MLmodels and evaluate them with particular attention to
this kind of classification errors.

In selecting the most adequate learning algorithm, it is
particularly important to properly configure the hyperpa-
rameters of the algorithm, since this can have a huge
impact on the resulting model. To do this, we automatically
generate many alternative models, using different hyperpa-
rameter configurations, which are trained and validated in
k-fold cross validation. The best performing models gener-
ated by the different configured algorithms are then evaluated
through a statistically sound comparison based on a Bayesian
approach [24].

E. UNCERTAINTY AND UNRELIABLE PREDICTIONS
In application domains where sensitive and risky decisions
need to be taken, recognising when the suggestions provided
by a decision support system are not confident enough is
important to avoid costly mistakes and increase the reliability
of the system. Especially in the first days of the hospitali-
sation stay, when there can be a scarcity of data indicating
the patient’s condition, the prognosis prediction obtained by
a ML model can have a low degree of confidence. Therefore,
we designed amethod (Component C4 in Figure 1) to identify
an uncertainly threshold for recognising unreliable predic-
tions, which can be integrated in the prediction/classification
model (in our case the one resulting from the analysis of
Component C3 in Figure 1). This method is based on a new
algorithm, called FindUncertainThreshold, that examines the
quality of the predictions at training time, and automatically
identifies a threshold under which the system should consider
the prediction not sufficiently reliable; in such a case, the
system considers the patient’s prognosis unpredictable and
classifies it as ‘‘uncertain’’.

The proposed method is general in the sense that it can be
used in other clinical applications and in different domains.

F. EXPLAINABILITY AND DISCOVERY OF PROGNOSTIC
KNOWLEDGE
Finally, our methodology includes a new method for extract-
ing useful clinical knowledge from the generated machine
learning model, that can be applied to any domain. Starting
from the most important features for the prediction, as iden-
tified by the standard SHAP algorithm [25], we propose a
new technique for automatically extracting and evaluating
multi-variable rules for prognosis classification that involve
such features. These rules combine the results of lab tests
that are quite common for estimating the prognosis of a
hospitalised patient, and can provide new knowledge that,
especially for a novel disease, is clinically interesting and
useful. Moreover, we devised a method that exploits such
derived rules to provide user-interpretable explanations of
(most of) the predictions made by the ML models, which is
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particularly important especially for applications in sensitive
domains.

Overall, the full methodology starts from raw data, gener-
ates a sequence of snapshot datasets indexed by increasing
length of stays of the patients, produces a ML model opti-
mised by an uncertainty threshold for each of the snapshots,
and generates prognostic rules for explaining the system
prediction and providing new clinical knowledge. In the fol-
lowing sections, all the modules and techniques introduced
above are described in detail.

III. GENERATION OF THE DATASETS FOR TRAINING AND
TESTING
In this section, we describe the process of generating the
training and test datasets (Component C1 of Figure 1) at
different days of a patient hospitalisation, according to the
current conditions of the patient that are reflected by the
available lab findings and other features. The basic features
that we consider for the datasets are:

• the age and sex of the patients;
• the values and dates of throat swab exams for
COVID-19;

• the values and dates of several common lab tests, such
as PCR, LDH, Ferritin, Troponin-T, White Blood Cells,
D-Dimer, Lymphocytes or Neutrophils;

• the final prognosis of hospitalisation at the end of the
stay, which is the classification value of our application
(either in-hospital death, released survivor, or trans-
ferred to another hospital or rehabilitation centre).

From the data of these features for a patient we generate some
additional temporal features that are described below. Other
information, such as symptoms, comorbidities, generic health
conditions, admission in ICU or clinical treatments were not
available from the hospital that provided the data during the
considered emergency period.

We remark that the general methodology that we follow
in this work and the specific techniques that we propose are
independent from the specific basic features that we use,
in the sense that they can be exploited in other biomedical
contexts, with more or less demographic information, differ-
ent lab tests or other clinical exams.

A. TEMPORAL FEATURES AND PATIENT SNAPSHOTS
To provide a prediction for a patient at different hospitalisa-
tion times, we introduced the concept of patient snapshot to
represent the patient health conditions at a given day. In this
snapshot, for each lab test of Table 1, we consider its most
recent value. In the ideal case, we should know the lab test
findings at every day. However, as explained in Section II,
in a real-world context the situation is often quite different.
For example, in our data, if we consider taking a snapshot
of a patient 14 days after hospital admission, we have cases
with very recent values of PCR, LDH, or WBC (one or a few
days before), very old values for Fibrinogen or Troponin-T
(obtained at the first day of the hospitalisation) and even no
value for Ferritin.

Given the difficulty to set a predefined threshold that
separates recent and old values of the lab tests, we chose
to always use the most recent value, even if it could be
outdated. To allow the learning algorithm to capture that
a value may not be significant for representing the current
status of the patient (because too old), we introduced a fea-
ture called ageing for each test finding. If a lab test has
been performed at day d0, and the snapshot of a patient
is taken at day d1, the ageing is defined as the num-
ber of days between d1 and d0. If there is no available
value for a lab test, its ageing is considered as a missing
value.

Monitoring the conditions of a patient means knowing not
only the patient status at a specific time, but also how her/his
conditions evolve during the hospitalisation. For this purpose,
we introduced two features called short trend and long trend
that are defined as follows.

For each lab test, if there is no available value for a lab
test, or if the patient has not performed the lab test at least two
times, then the trend features have missing values. Otherwise,
we consider a set of pairs (d, v), where d is the date of a lab
test and v is its value, as points in the Cartesian space of dates
and lab-test values. From such points we calculate a simple
linear regression y = ax+bwhose angular coefficient a indi-
cates the trend of the lab-test values. To ensure the reliability
of such a coefficient for representing the trend, we use only
lab-test points that are strongly correlated according to the
Pearson Correlation Coefficient, which we constrained to be
above 0.7, in the case of a positive trend, and less than−0.7 in
the case of a negative trend. If the Pearson coefficient does
not indicate a sufficiently strong correlation according to all
available values, then we iteratively omit some points until it
does so. We perform this in two different ways as shown in
Figure 2, obtaining two coefficients that define the values of
the short/long features:

• short trend: the coefficient of the linear regression is
computed starting from the last lab-test point (most
recent lab-test findings) and incrementally adding less-
recent points, going backwards in time, until one of the
above correlation thresholds holds;

• long trend: the coefficient of the linear regression is
computed by first considering all lab-test points, and
then progressively removing the oldest ones, until the
remaining points lead to a linear regression satisfying
one of the above correlation thresholds.

Finally, in order to deal with the concept drift issue men-
tioned in the previous section, we introduce a new feature,
that we call death rate, which provides an indicator of the
status of the epidemic emergency at a given day d (the
considered patient’s snapshot), and is defined as the ratio of
all patients who died over all those discharged (dead or alive)
over the t days preceding d (in our experiments we set t to
7 days).

Summarising, for each dataset representing a patient snap-
shot we have: for each considered lab test, the most recent
value, the relative ageing, and two trend features; two static
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FIGURE 2. Plot of the short and long trend lines computed for the
C-Reactive Protein (PCR) lab-test exam at 20th day of hospitalisation.

features for patient age and sex; the average death rate over
the previous 7 days.

Figure 3 shows the feature extraction process for generat-
ing the hospitalization snapshot for a single patient. Given a
specific hospitalisation day, we consider the hospitalisation
data of the patient until that day, and then we transform the
features (different exams) for the snapshot representation.
For each feature, we consider the most recent value, and we
compute its ageing and trends; then we combine these four
features to derive the snapshot representation of the original
feature. In addition, we add the death rate of the hospital-
isation day chosen as input. The snapshot of the patient’s
hospitalisation for the given day is made by the union of all
the previous features. The final snapshot dataset is obtained
by repeating the same process for each patient who has a
hospitalisation period longer than or equal to the number of
days chosen for the snapshot generation, and merging all the
resulting snapshots together.

B. CONSTRUCTION OF THE PATIENT SNAPSHOT
DATASETS FOR TRAINING AND TESTING
While it is certainly useful to provide an initial indication of
the prognosis based on the first lab tests, in the following
days of hospitalisation more data are available, and they
can be used to improve the prediction. Therefore, we can
automatically create a training set and a test set for each
day in a sequence of hospitalisation days during which we
intend to progressively perform the prognosis prediction for
a patient. In particular, we distinguish three configurations of
these datasets:

• Start of the hospitalisation. This training/test dataset
includes all patients’ snapshots for the first days after
admission.1 In this snapshot, the ageing and trend

1In our implementation, as described in Section VII-A, we chose the first
two days of hospitalisation. If a patient performed a lab test more than once
during these initial days, the snapshot only considers the oldest value.

features are not included. The purpose of the machine
learning model trained using this dataset is to predict
the outcome of the patient as soon as possible, with the
earliest available information.

• Different days of the hospitalisation. In these datasets,
the corresponding snapshots also contain the ageing and
trend features (both short and long), and the lab-test
values are the most recent ones in the available data.
The purpose of each of these datasets (a pair of training
and test sets for each considered day) is to capture the
conditions of the patient at the corresponding hospi-
talisation day in order to estimate his/her prognosis at
that time. We can consider all consecutive days of the
patient hospitalisation or simply a selection of them; in
our implementation and experiments, we assumed that
the prognosis estimation is made every two days.

• End of the hospitalisation. This training/test dataset
includes all patients’ snapshots for a day near the end
of the hospitalisation, capturing the patient conditions
slightly before her/his release or death (in our imple-
mentation and experiments, we chose the day before the
release/death).

It is important to observe that while the datasets of the
latter days contain more information about the single patients
(more lab tests findings, less missing values), the overall
number of patients in the datasets decreases with the increase
of the prediction day. This is due to the fact that more patients
are released or died within longer periods of hospitalisation,
and therefore such patients are not included in the corre-
sponding datasets.

Moreover, each dataset can have missing values. In order
to deal with this issue, we use an IterativeImputer with
BayesianRidge as regressor [26], [27], [28], [29] for replac-
ing missing values with automatically generated values.2

A description of this and other imputing techniques that we
tried is given in Appendix A-A.

Finally, we used stratified sampling for selecting 80% of
the patients for training the models and 20% for testing them.
This splitting of the data is done only once considering all
patients, and not for each dataset. For instance, if a patient
belongs to the training set at the start of the hospitalisation,
then she/he does not belong to the test set of the following
days.

IV. GENERATION OF THE PROGNOSIS MODELS
Our goal is to design and developmachine learning classifiers
for recognising those patients who will have a fatal outcome
minimising false negatives (i.e., incorrect classifications of
patients with favourable prognosis). Therefore, in all phases
of the project (preprocessing and dataset generation, model
training, and testing of the trained models), when we evaluate
alternative choices in the system design and the predictive
performance of the resulting system, we use the F-β score

2In general, other imputing techniques can be used; if the dataset is
particularly small, replacing the missing values with a constant or with the
mean or the median value could improve the performance.
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FIGURE 3. Diagram of the patient snapshot generation for a single patient. Starting from the Patient Hospitalisation Data, we select the data until a
particular Hospitalisation Day (d ). Then for each feature (numbered from 1 to N), we include the Last Value of that lab test, its Ageing and the two trend
features (Short Trend and Long Trend), obtaining the snapshot data of that feature. In addition, we calculate the Death Rate until the day d considering
the previous seven days of the Hospitalisation of all patients in the dataset. All these features are combined together to form the Patient hospitalisation
Snapshot on day d .

with β = 2 as performance metric. The F-β score is the
weighted harmonic mean of the precision and recall mea-
sures. Specifically, it is defined as follows [30]:

F-β = (1 + β2) ·
Precision · Recall

β2 · Precision+ Recall

where the parameter β indicates how many times the recall
is more important with respect to the precision. We chose
β = 2 in order to give particular importance to false
negatives.

Another common issue in the generation of ML models
for prognosis (outcome) estimation is class imbalance, since
generally the deceased patients are much less than those
released alive. Imbalanced classes lead the learning method
to prefer the majority class, possibly causing a lack of per-
formance in terms of F-2 Score. We address this problem
through the class weights [31], [32] technique provided in the
Scikit-Learn implementation.3 This technique enables class
balancing implicitly, improving performance without delet-
ing original samples or adding synthetic ones. More details
are given in A-B. Other popular solutions for imbalanced data
are sub-sampling and super-sampling methods, which both
alter the number of samples in the classes: the former removes
samples from classes havingmore samples than the class with
the fewest samples; the latter adds synthetic samples to the
classes having fewer samples.

A. TRAINING AND HYPERPARAMETER TUNING
For each generated dataset of patients’ snapshots, we trained
and evaluated the followingML algorithms: Random Forests,

3For more details on the computation of the Balanced Heuristic
the reader can see the documentation page of the class_weight
function at https://scikit-learn.org/stable/modules/generated/sklearn.utils.
class_weight.compute_class_weight.html

Extra Trees, XGBoost, LightGBM (all based on ensem-
ble of Decision Trees) and Feed-Forward Neural Networks.
A description of these algorithms can be found in B.

It is well known that the performance of most machine
learning algorithms strongly depends on the settings of their
hyperparameters. Therefore, to obtain the best performance,
the hyperparameters are (automatically) tuned through exper-
iments that evaluate different hyperparameter configurations.
The configuration obtaining the best performance is then
used by the ML algorithm to build the prediction model.
It is important to note that such models are then tested on
an entirely separate test set, composed by instances used
neither for the training of the algorithm nor for tuning the
values of its hyperparameters. This process can be quite
expensive especially if the machine learning algorithm has
several hyperparameters with a large number of different
possible configurations to consider. Therefore, we need a
proper balance among the quality of the results, the strength
of the evaluation for the hyperparamenter configurations, and
its execution time. We perform a k-fold cross evaluation as
follows:

1) The training set of each dataset is partitioned into k
folds with k = 10.

2) For each considered configuration 6 of the hyperpa-
rameter values, the learning algorithm is run in k-fold
cross validation.

3) For each fold of the k folds, the performance of
the algorithm using 6 is evaluated in terms of
F-2 score.

4) For each configuration 6, the overall evaluation score
of the k-fold cross validation is computed by averaging
the scores obtained for each fold.

5) The hyperparameter configuration with the best overall
score is selected.
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More specifically, for the algorithms based on ensemble
of decision trees, we use a Random Search [33] optimising
process with 4096 hyperparameter configurations randomly
selected among all the possible configurations. These ensem-
ble methods share some hyperparameters (e.g., the purity
measure for node splitting, the number of decision trees to
create, and their maximum depth). For Random Forest and
Extra Trees, we considered four other hyperparameters pro-
vided by the implementation framework that we used, which
are the same for both methods. For XGBoost, we considered
ten more hyperparameters, and for LightGBM twelve more;
such hyperparameters are related to the internal regularisation
behaviours, feature selection, and the way the weak learners
are built and assembled.4 The full set of hyperparameters, the
relative range of considered values, and the selected values
are in B-E.
Random Forest and XGBoost algorithms are capable of

exploiting parallel execution. Therefore, the Random Search
approach, in combination with fast training algorithms,
allows us to maximise parallel execution, obtaining good
hyperparameters settings in a limited time, despite a high
number of considered hyperparameter configurations (4096).
On the contrary, an optimisation approach for the hyper-
parameters tuning, which adapts to the already evaluated
configurations (i.e., Bayesian Optimisation, Tree-structured
Parzen Estimator, etc.), puts some limitations in terms of
highly parallel execution. Therefore, for Random Forest and
XGBoost, Bayesian Optimisation generally achieves worse
results in the same amount of time (i.e., far fewer considered
configurations) compared to Random Search.

On the other hand, in neural networks approaches, the
training time for a single hyperparameters configuration of
a neural network and its initialisation overheads (weights
initialisation, data transfer) is significantly higher than for
models based on decision trees, and a smarter approach like
BayesianOptimisation allows us to obtain better hyperparam-
eter settings with less trials, requiring nearly the same amount
of time as the Random Search. Therefore, for optimising the
neural network architecture, we implemented the Bayesian-
optimisation approach via the Optuna framework [34] with
a limit of 2048 search iterations. As previously described,
the hyperparameters search is performed using 10-fold cross-
validation on the training set of each dataset at different days
of hospitalisation.

In addition, as proposed by Pastor-Pellicer et al. [35], the
F-measure can be used in Neural Networks and other
loss-based models as loss function, instead of the typical
Log-Loss or Binary Cross Entropy, to improve performance
(especially in terms of reducing false negatives) in highly
unbalanced problems. In fact, other works [36], [37] use
F-β losses with different β values to specifically improve
the performance for unbalanced and difficult tasks in the

4For more details the interested reader is referred to the documentation
of the APIs of XGBoost and LightGBM available from https://xgboost.
readthedocs.io/en/latest/ and https://lightgbm.readthedocs.io/en/latest/

medical domain. Therefore, for our neural network models,
we adopted a loss function based on the F-2 score metric
defined as follows:

F-βloss = 1 −
(1 + β2) · Precision · Recall
β2 · Precision+ Recall + ε

with β = 2, and ε = 10−7 which is used to avoid zero-
division errors.

B. MODEL SELECTION
Given that several datasets (with different number of
instances, attributes, and missing values) are considered,
there is no guarantee to find a single algorithm suitable for
all of them. Therefore, after the hyperparameters tuning for
each considered algorithm, we need to perform a comparison
of the performance of all the generated models. For selecting
the best performing one, instead of evaluating the relative
performance of the models on a single validation dataset,
we follow a Bayesian approach because it is statistically more
robust. The Bayesian pairwise comparison was performed as
suggested in [24]:

1) For each considered algorithm tuned using the best
hyperparameter configuration, we compute a 10-fold
cross validation repeated 10 times, for a total of
100 train-validation combinations.

2) Then, for each pair of tuned algorithms, we compute the
mean x̂ and the corrected variance σ̂ 2 of the differences
between the performance scores (F-2 measures) of the
models generated by the algorithms. The correction
of the variance, suggested in [38], is needed because
the scores of the models are not independent from
each other, and so the relative performances could be
underestimated.

3) For all pairs of models, we compute the posterior dis-
tribution of the performance difference as a Student’s
t distribution, as suggested in [24]. More formally,
we compute

St
(

µ; n− 1, x̂,
(
1
n

+
ntest
ntrain

)
· σ̂ 2

)
where nn is the total number of samples, x̂ is the
mean of the performance score differences, ntest is the
number of samples used for testing, ntrain is the number
of samples used for training, and σ̂ 2 is the variance of
the observed differences.

4) Given the posterior distribution, we then compute the
‘‘worse probability’’ (i.e., the first model performs
significantly worse than the second one), the ‘‘bet-
ter probability’’ (i.e., the first mode performs signif-
icantly better than the second one), and the ‘‘Region
Of Practical Equivalence’’ (ROPE), which denotes the
probability of the two models having no significant
differences in their performances. If two model perfor-
mances differ by less than 1%, then they are consid-
ered practically equivalent. Therefore, our ROPE is the
probability of x (i.e., the performance difference) being

VOLUME 11, 2023 83913



A. E. Gerevini et al.: ML Techniques for Prognosis Estimation and Knowledge Discovery From Lab Test Results

in [−0.01, 0.01], the worse probability is the probabil-
ity of x ∈ [−∞, −0.01), and the better probability is
the probability of x ∈ (0.01, +∞].

For each patient snapshot dataset, the model with the highest
sum of ROPE probability and better probability is selected.

V. DECIDING UNCERTAIN PROGNOSIS THROUGH
OPTIMISED CLASSIFICATION THRESHOLDS
As pointed out in the study by Brajer et al. [39] about the
evaluation of mortality prediction models and their imple-
mentation in the real world to assist clinical decision-making,
it is important that the predictions are associated with a
degree of confidence evaluating their uncertainty [10]. This
is particularly important in clinical applications where sen-
sitive and difficult decisions are taken. Doctors have the
need of discriminating the quality of the predictions sug-
gested to them through an associated probability or degree
of confidence [40].

Therefore, a classifier should not only predict the class
of a given test sample, but also estimate the probability that
this sample is a member of the predicted class. However,
the most used ML models (Naive Bayes, Decision Tree,
Random Forest, XGBoost, Artificial Neural Networks, etc.)
give output probabilities that do not reflect the real probability
of the sample to be of the predicted class [14]. On the other
hand, it is possible to transform amachine learningmodel into
a ‘‘good’’ probabilistic classifier as defined by [41] and [42]
by a technique called calibration [11], [43], [44]. Calibrating
a classifier allows to obtain better overall performances of the
predictions by discharging the low probability predictions of
the calibrated classifier [13], but it needs an high number of
samples for avoiding overfitting issues and providing good
results [13], [14], [15], which often are not available in emer-
gency situations.

Given that the calibration approach seems infeasible in
our context (a more detailed explanation is provided in
Section IX), we propose a new technique to identify a thresh-
old value under which the prediction of a classifier should be
considered too uncertain, and so the prognosis of the patient
should be classified as unpredictable. Such a technique is fea-
sible for applications with complex and scarce data like ours.
Instead of training a regressor, we consider the simpler task
of finding a single value τ (the threshold) so that instances
that have class-prediction (classification) probabilities below
τ are classified as uncertain (unpredictable). Note that if
τ is too high, many samples (patients) could be classified
as uncertain, and our model would be much less useful in
the clinical practise. To avoid this, during the search for an
adequate τ value, we can impose a maximum fraction of
(training) samples that can be considered uncertain. This is
a parameter, called max_u, that in our experimental analysis
was set to 0.25 (this value was considered adequate by the
physicians collaborating in our project).

The threshold τ for a model A generated by a specific
machine learning algorithm (in our case, the model selected
as described in Section IV-B) is calculated at training time as

follows. We evaluate A in k-cross validation, and we derive
τ as the average of the best thresholds τ i found for each
validation fold i (i = 1, . . . , k), where τ i is computed by a
new algorithm called FindUncertainThreshold.

Figure 4 shows the pseudocode of FindUncertainThresh-
old. Given the original classification labels L of the validation
samples and their prediction probabilities P derived by the
learning algorithm, FindUncertainThreshold performs the
following main steps:

• The predicted labels Lpred , i.e., the output class values
with the highest probabilities, and the relative probabil-
ities Pmax are calculated (lines 1-2).

• The algorithm evaluates the original performance score v
calculated using the input score function (in our imple-
mentation, F-2 score) on the samples of the validation
fold (line 3).

• The initial value of the threshold (τ ) is set to the mini-
mum probability in Pmax (line 4).

• The loop of lines 6–18 finds an optimal threshold value
τ and computes the score function for the validation
set reduced to the validation samples with predicted
labels that have probabilities above τ . The threshold
values considered are obtained using the δ-increments
defined at lines 5 and 7. First, we calculate the new
threshold τ ′ by increasing the current threshold by δ, and
then we derive the set S of sample ids with prediction
probabilities higher than τ ′. Next, we calculate the per-
centage u of samples that are labelled uncertain using the
threshold τ ′. If u ≥ max_u, we can terminate returning
the current best new score v, and the corresponding
threshold value τ (a higher threshold value cannot lead to
label as uncertain fewer samples than the returned value
τ ). Otherwise, (u < max_u), we set L ′ to the correct
labels for the samples in S and L ′

pred on the predicted
labels for such samples, and we compute the new score
value v′ using L ′ and L ′

preds. If v
′ is a better score than v,

then we update both the threshold and the score values.

VI. TECHNIQUES FOR MODEL INTERPRETATION AND
KNOWLEDGE DISCOVERY
Often, ML algorithms are seen as black boxes that provide
no explanation to the user about their results or internal
behaviour. However, the use of ML techniques in clinical
practice requires that the provided predictions are supported
by information that helps the user to interpret the results,
explain how the prediction is made, and provide the main
criteria used for it [45]. In addition, when a ML model for
the prognosis estimation of a novel disease like COVID-19
performs well, explaining how the model works to the user
could reveal new knowledge that is useful from the clinical
point of view.

In this section, we propose a method for interpreting
the predictions made by a machine learning model and for
deriving prognostic knowledge in the form of multi-variable
rules. Figure 5 gives a schematic overview of our method.
First, the most important features for each snapshot dataset
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FIGURE 4. Pseudocode of algorithm FindUncertainThreshold.

and corresponding best-performing prognosis-classification
model (as described in Section IV) are identified and selected
(Component C1 of Figure 5). Then a Simplified Snapshot
Dataset containing only such selected features is generated,
and a single Decision Tree is trained on this dataset, using
the same training and hyperparameter tuning procedure pre-
sented in Section IV-A (Component C2 of Figure 5). Such
decision tree is then processed to generate a collection of pre-
dictive rules (Component C3 of Figure 5). Finally, these rules
are evaluated in terms of accuracy and agreement with the
original model constructed using the full set of the features
(Component C4 of Figure 5). In the following, we explain
our methodology more in detail.

A. ANALYSIS OF THE MOST RELEVANT FEATURES AND
SIMPLIFIED SNAPSHOT DATASETS
We analyse the contribution of the features used by our
models through SHAP (SHapley Additive exPlanations), one
of the most important methods to explain the prediction for
an instance that a machine learning model makes [25]. This
method is based on assigning to each feature a value, called

Shapley value, which summarises the importance of the cor-
responding feature in the prediction made. Intuitively, this
value is obtained by computing the contribution of the feature
to the prediction of the model (a probability distribution over
the possible class values) obtained with and without it in the
dataset, for any possible combination of all the features [25].

The shapley values can be used not only for explaining a
single prediction, but also for identifying which features are
the most important for the model in general. Given a test
set with N instances (patients), the overall Shapley value Si
for a feature i is the average contribution for each of the N
instances, i.e.,

Si =

∑N
j=1 sij

N

where sji is the SHAP value of the feature i for the test
instance j.

We calculated the Shapley values of our features for the
best performingmodels in each dataset, and from these values
we identified the features that are most important for making
the predictions. To give an overall assessment of the relative
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FIGURE 5. Methodology for deriving a collection of prediction rules for model intepretation and
knowledge discovery. After computing the Simplified Snapshot Dataset with the most important features
extracted by the Features Selection procedure, we train the Best Performing Decision Tree. This model is
the result of the training and tuning many Decision Tree models (Training and Hyperparameters Tuning)
with the aim of finding the best hyperparameters combination for the considered task. From the best
performing decision tree, we extract the Predictive Rules via the Rule Generation procedure. Finally, such
rules are evaluated in terms of their agreement (Agreement Evaluation) with the original model (Final
Generated Model).

importance of our features, here we consider an average
Shapley value over all datasets. First, for each feature i and
each dataset d , we compute the sum Sdi of the Shapley values
of i for all tests instanced from d . Then we normalise each
Sdi to a value between 0 and 1. Finally, we calculate the
arithmetic mean of the normalised values on all datasets:
Ŝi =

∑
d∈D S

d
i /M , where M is the number of features and

D the set of the datasets considered.
Once we have computed a measure assessing the over-

all importance of the dataset features, defining a threshold

on the Shapley values to discharge the less important fea-
tures is not trivial and depends on the specific applica-
tion context. In our context, we performed several trials
executing the training and tuning procedure on simplified
datasets, progressively excluding more features and evalu-
ating the difference in terms of performance with respect
to the original models built using all the features. The
obtained final versions of our Simplified Snapshot Datasets
include the demographic information, the death rate and
7 lab tests. The models built using such datasets perform
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between 1 and 3 points worse than the original ones in terms
of F-2 score.

B. A METHOD FOR GENERATING PREDICTION RULES
In a clinical application, it is important to provide not only
high-accuracy predictions (and possibly minimising false
negatives) but also explanations about the criteria the pre-
dictions are based on. We devised a technique to provide
prediction explanations through implicative (if-then) rules
extracted from the data of the form

c1 ∧ . . . ∧ cn ⇒ class-value

where c1∧ . . .∧cn is the rule condition defined as a conjunc-
tion of feature constraints, each of which is an inequality that
bounds the value of a single feature (e.g., ci = age ≤ 69),
and class-value is a prognostic prediction (either survival or
decease). A rule can be evaluated in terms of its support,
which is the percentage (or number) of instances in the dataset
that satisfy the rule condition, and of its accuracy, that is,
the percentage of instances in the dataset that are of the class
predicted by the rule.

From a single decision tree we can (automatically) derive
a prediction rule from each path connecting the root to a leaf
node that classifies the instance. However, from an ensemble
of decision trees, which is the best-performing method in
our application, extracting this kind of rules can be much
more complicated. For this reason, partially following the
approach of [6], we propose to use the Simplified Snap-
shot Dataset described in the previous section to train a
single Decision Tree, following the hyperparameter search
described in Section IV-A. In general, such a simple pre-
diction model does not perform as well as the model built
with the complete Snapshot Dataset, especially in terms of
the F-2 score. However, from the paths from the root to the
leaf nodes of the decision tree, we can automatically extract a
collection of prognostic rules that have remarkable accuracy
and significant support for a large percentage of patients. For
example, our rule generation approach derives the following
rule for the second day of the hospitalisation of a COVID-19
patient

(age ≤ 69) ∧ (LDH ≤ 502) ∧ (neu/lym ≤ 5.73) ⇒ survival

which is valid for 490 of the considered patients and has
97% accuracy in the test set (neu/lym stands for the ratio
between neutrophils and lymphocytes). A generated rule can
be effectively used for explaining the prediction made for a
patient by a complex model (e.g., ensemble-based) built from
a full dataset containing more features than the simplified
dataset from which the rule was extracted (e.g., the snapshot
dataset for a particular day) provided that the rule condition
matches the patient’s features. This explanation is effective
only if three conditions hold:

• the rule has very high accuracy,
• the rule has adequate support, and
• the rule has a very high agreement with the class pre-
dicted by the complex model.

Given a rule that predicts class y, we define the agreement
of the rulewith the prediction model as the percentages of test
instances that satisfy the rule condition and that the model
classifies as y. For instance, if 90% of the test patients that
satisfy the three conditions of the above rule are classified
as ‘‘survival’’ by the model, then the agreement of the rule
is 90%.

The set of rules discovered for our prognosis prediction
task, together with their analysis in terms of accuracy, support
and model agreement are given in the next section.

VII. DATA DESCRIPTION
In this section, we describe the raw data about our cohort
of patients, from which the snapshot datasets were gener-
ated. Next, we analyse the data quality, and we report the
pre-processing techniques that were employed to solve the
most relevant issues.

A. AVAILABLE DATA
During the COVID-19 outbreak, from February to April
2020, at the Spedali Civili Hospital in Brescia, one of the
largest hospitals in northern Italy, more than 2, 000 patients
were hospitalised. From this hospital we had data for a total of
2015 hospitalised patients. For each of these patients, in addi-
tion to the information described in Section III, we include
a score (an integer between 0 and 18) that evaluates the
severity of pulmonary conditions resulting from radiographs
according to the method described in [46]. While in our data
such a RX score was manually assigned by the physicians,
it can also be automatically calculated by a Convolutional
Neural Network that analyses an X-ray image as described
in [47].

The median age of our cohort of patients is 68 years
(77 for the deceased patients, 65 for those released alive),
and 65% of them are male. 81.6% of our patients were
released alive, while the remaining 18.4% died during the
hospitalisation. Please note that for the 4days, 6days, 8days
and 10days datasets this percentage varies. This is because
these datasets contain a subset of the overall cohort, excluding
those patients who were released before the day selected for
the dataset. For instance, the 8days dataset does not contain
patients released or died before their 8th day of hospitalisa-
tion. The percentages of alive and decesead patients for these
datasets are: 83.5% and 16.5% for 4days, 85.0% and 15.0%
for 6days, 85.2% and 14.8% for 8days, 85.2% and 14.8%
for 10days. In terms of mortality, there are no significant
differences between male and female patients. As reported
in Section IV, we addressed this class imbalance problem
through class weights [31], [32]. For more information about
this technique please see Appendix A-B.

Table 1 specifies the lab tests and the X-ray exam con-
sidered, their normal range of values (which is provided by
the medical literature as a reference for healthy people), their
median values in our set of patients, and the value ranges
(first and third quartiles) for patients who were released alive
and for the deceased ones. As we can observe, most of the
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TABLE 1. Lab tests and X-ray exam performed during the hospitalisation. The second column shows the range of values considered clinically normal for
each specific exam. The third column shows the median values extracted considering the lab test findings for our set of 2015 patients. The fourth and the
fifth columns (each with 2 subcolumns) show, for the patients released alive and deceased respectively, the median and the range of values between the
first and third quartile (in square brackets) of the distribution for the lab test findings.

median values (with the notable exceptions of WBC and
LDH) of the lab test results of our cohort of patients are
not in the normal range. In particular, we can see that the
median values of PCR, Ferritin (for both male and female
patients) and D-Dimer exceed the double of the maximum
value in the normal range. If we analyze the values obtained
from patients deceased and those who were released alive,
we can notice some significant differences for most of the
lab tests. For instance, the median value of the D-Dimer for
deceased patients (1797) is more than three times the value
for the alive patients (553). Similar results can be seen for
PCR (77.1 versus 34.3) and Neutrophils over lymphocytes
(13.4 versus 4.8). Evenmore worrying conditions can be seen
if we observe the third quartile of the lab test results distri-
bution. For instance, D-Dimer for a quarter of the deceased
patients is higher than 3817, more than ten times the normal
limit (250). Please note that for the values of Lymphocytes
and their percentage, the most worrying conditions happen
when the patient has a value below the normal range. In
fact, deceased patients have a median of 6.5% of lymphocites
(with a first quartile of 3.6) versus a median of 15.4% for the
alive patients, while the minimum value of the normal range
is 20%.

Although we observed that some lab tests have values in
the normal range (almost exclusively for the patients released
alive), we decided to include them in our datasets anyway.
These values can provide useful information to the model,
especially if they are at the extremes of the normal range,
or if they have a different distribution for alive and deceased
patients. In fact, for deceased patients, there are always at
least some features outside their normal range. Note that the
lowest/highest values of each normal range are defined by the
first/third quartile of the distribution; therefore, the minimum
and maximum observed values are not included in the normal
range. Moreover, particular combinations of some values that
are all in the normal range (and so are individually non-
problematic) may, in spite of their normality, be informative.
For example, four exams having values close to the mini-
mum in their normal range could indicate a bad condition
that is really informative. Furthermore, when considered in

combinationwith other lab tests and trend features, they could
indicate a favourable (or unfavourable) progression of the
disease.

In accordance with the methodology described in
Section III-B, we trained and tested ML models for the
following hospitalisation times: start of the hospitalisation,
considering the first lab tests performed during the first 2 days
of hospitalisation; 4, 6, 8 and 10 days after the admission,
considering the latest laboratory tests and also including
ageing and trend features; the day before release or death of
the patient, that we indicate with End of the hospitalisation.

B. DATA QUALITY ISSUES AND PRE-PROCESSING
As we discussed in Section II, medical data collected during
emergency situations can present several issues in terms of
data quality. In particular, it is often not possible to guar-
antee a regular frequency of performing the lab tests. The
frequency can significantly vary for different lab tests and
patients. In Table 2, we report the frequency to which the
lab tests are performed in our dataset in terms of average and
standard deviation. We can observe that there are significant
differences among the different lab tests. For instance, the
chest X-Ray score is provided on average every 7.34 days,
while lab tests such as PCR and WBC are performed more
frequently (respectively, every 2.38 and 2.06 days). Note that
the different features related to Neutrophils and Lymphocytes
have the same frequency because these are different results of
the same lab test. Considering the standard deviation, there
can be significant differences in terms of lab test frequency
among different patients. Although most regular lab tests
(such as PCR or Lymphocytes) have very low standard devi-
ation values, which means that the frequency is almost the
same for all patients, less frequent exams, such as Troponin-
T and Fibrinogen, have a higher standard deviation (7.25 and
4.94 days, respectively).

During the pre-processing phases of our system,
as reported in Section III-A, we extend our snapshot datasets
with the additional ageing features (excluding the 2days
dataset). Such features count the number of days passed since
the lab test was performed, and allow the learning algorithms
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TABLE 2. Frequency and ageing for the considered lab tests. The frequency columns (Freq.) report the frequency of the lab tests in terms of average and
standard deviation. The ageing columns (Age) report the average ageing of the lab tests for each snapshot.

to consider whether a lab test result represents the current
condition of a patient, or if it is too old to be valid. In
Table 2, we report the average ageing of each lab test in our
snapshot datasets. We can observe that some exams, such
as Troponin-T or LDH can have a significant ageing, such
as 6.38 and 4.09 days, respectively, on the 10days dataset.
On the contrary, Neutrophils, Lymphocytes and PCR have an
ageing that almost never exceeds two days, thus providing a
very recent account of the patient’s current conditions.

From the machine learning perspective the most important
issue related to the irregular frequency of the lab tests con-
cerns the missing values. In fact, for every considered day,
several patients of our cohort did not perform one or more
specific lab test. Therefore, the values of the correspond-
ing features in the related snapshot datasets are considered
missing. Table 3 reports the percentage of missing values
for each lab test in each of our snapshot dataset. D-Dimer,
Ferritin, Troponin-T, Fibrinogen and Chest XRay-Score are
particularly problematic since these exams have a significant
percentage of missing values especially in the first days of
hospitalisation. For instance, 60.43% of the patients did not
have their D-Dimer tested in the first two days of hospital-
isation. There are significant issues also for the 8days and
10days snapshots: for almost 30% of the patients, we do not
have a value of Ferritin even after 10 days of hospitalisation.
Although exams such as PCR, WBC or lymphocytes are
performed more frequently, the datasets related to the first
days of hospitalisation can still contain some missing values
(for instance, 3.19% of the patients did not have their PCR
tested in the first 4 days).

To solve the missing-values problem, we tested the use of
standard imputation techniques [48], [49], such as:

• substituting each missing value with a constant, with
the mean or the median of the values in the snapshot
datasets, and

• estimating the most probable value given the remain-
ing values by implementing an Iterative Imputer
with Bayesian Ridge Regression [26], [27], [28], [29],
as already reported in Section III-B. This technique
obtained the best results.

More information on these techniques is given in
Appendix A-A.

VIII. EXPERIMENTAL ANALYSIS
In this section, we describe the context in which we evaluate
the proposed methods, we present the results of the overall
machine learning process, as produced by the components of
Figure 1, and we provide an experimental evaluation concern-
ing prediction performance and discovered knowledge.5 Next
we analyse the products of our methodology, showing the
results of the Bayesian comparison assessing the generated
models, the features that turned out to be most important in
the considered application context, and the prognostic rules
that were discovered for COVID-19 patients; such rules are
discussed also comparing them with the medical literature.
Finally, we experimentally evaluate our models and prognos-
tic rules using a test set made of patients totally different from
those used for the training and tuning processes.

A. LEARNED MODELS AND RULES
For each snapshot dataset that was generated, we performed
the training and hyperparameter tuning, and we selected the
best performing model using the Bayesian Approach (see
Figure 1). The learning algorithms considered are as fol-
lows: Random Forests, Extra Trees, XGBoost, LightGBM,
and Feed-forward Neural Networks. The hyperparameters
and their spaces of values that we considered for the tuning
of Ensembles of Decision Trees (Table 9) and Neural Net-
works (Table 8) are specified in B-E.

The results of the Bayesian analysis comparing the learn-
ing algorithms are given in Table 4. In the second column
(Model 1) we have the best-performing model, and in the
third column (Model 2) the other compared models perform-
ing worse than the first one; in the other columns, we have the
probabilities (better, worse, and ROPE) for the first model
versus the second one. For the 2days, 4days and 6days
datasets, the XGBoost and LightGBM models perform quite
similarly; indeed, their machine learning approach is very
similar (both are based on advanced gradient boosting). For
datasets 8days and 10days, the ExtraTreesmodel becomes the
second (probabilistically) best model in terms of performance
behind the XGBoost model, instead of the LGBM model.

5Our system is implemented using the Scikit-Learn [50] library for
Python; all the experiments were carried out using an Intel (R) Xeon (R)
Gold 6140M CPU @ 2.30GHz.
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TABLE 3. Percentage of missing values for every lab test considered in each snapshot.

TABLE 4. Statistical comparison between pairs of considered models via the Bayesian method.

Finally, the ExtraTrees model is the best for the End dataset,
surprisingly followed by the DeepNeuralNetworks (DNN)
model. It is worth noting that the End dataset differs from
the other datasets because it has a low number of missing
values for every patient, and furthermore it contains all the
available patients (with the data regarding the last day of
their hospitalisation). The larger amount of data and their
better quality help the DNN model, increasing its perfor-
mance for this dataset, and making it comparable with the
models based on decision trees. In general, however, the
best performing algorithms are the ones based on boosting
techniques.

We believe that the main problems with using neural
networks in our context are the scarcity of data, the high
number of missing values in the data sources, the unbalanced
classes, and the structured nature of our data. With these
data issues, other standard ML methods obtain better results.
Our conjecture is consistent with the work of Shaikhina and
Khovanova [51], who showed that one of the main problems
of medical datasets is the scarcity of data, and this negatively

impacts the performance of ML models based on neural
networks. When the dataset is small, neural networks are
influenced by many factors such as the initialisation step, the
train-test splitting procedure, and the order of the data used
in the mini-batched optimisation procedure. These elements
form a random bias that is usually irrelevant if the datasets are
large, but that could be a crucial issue when they are small
like ours. Several other works in the literature report that,
for classification tasks in the medical field with relatively
small datasets, neural networks tend to perform worse than
ensembles of decision trees [52], [53].

After the hyperparameter tuning and the Bayesian com-
parison, we obtain the best performing models according to
a sound statistical measure. As we explained in Section VI,
we can use thesemodels to extract themost important features
and predictive rules. Following the approach described in
Section VI-A, we observed that the most important feature in
our models is the age of the patient, which obtains the highest
value for each dataset. On the contrary, the patient’s sex is not
as important as one could have expected, since, according to
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our datasets, this feature often is not in the ten most important
features.

In Figure 6 we show the average Shapley values for the
most important features based on the lab tests considered.
We can observe that neutrophils and lymphocytes are very rel-
evant indicators of the status of the disease; they are involved
in four different features: the ratio between them (average
Shapley value 0.97), which is the most important lab-test
feature, the percentage of lymphocytes (average Shapley
value 0.83), and their absolute values (average Shapley values
0.22 and 0.23, respectively). Furthermore, the learnt models
also take into account how the percentage of lymphocytes
changes over time, as indicated by the feature evaluating
the ‘‘long trend’’ of the percentage of lymphocytes (average
Shapley value 0.26).

The features of LDH and PCR are also valuable for mon-
itoring an infection, and according to our datasets, these
laboratory tests are performed almost every day. As shown in
recent studies [54], D-Dimer is an important feature to assess
COVID-19 severity, and our analysis confirms that it is one
of the most relevant laboratory tests. However, in our datasets
D-Dimer is not measured using the same frequency as PCR or
LDH, and therefore we can have ‘‘outdated’’ or even missing
values for this lab test. Therefore, our learnt models cannot
rely much on the D-Dimer feature, which obtains an average
Shapley 0.39. Slight importance is given to the swab test,
while Ferritin and Troponin-T are not very relevant, possibly
because according to our datasets, they are performed with a
very low frequency (once a week or even less).

Regarding the Chest X-Ray Score (RX), despite its effec-
tiveness for assessing the severity of the pulmonary condi-
tions [46], the SHAP analysis shows that our models do not
consider this information very useful, given the information
provided by the other features. In our opinion, this is mainly
due to the fact that, in the considered datasets, these exams
were conducted too rarely, leading to several missing or
outdated values.

We discussed themost important features that we identified
with the medical staff of the SCB hospital that provided the
data for our datasets. The validity of this information was also
confirmed from a clinical point of view. Each of the features
that we found to be the most relevant for our prediction
models is significant in the clinical practice of COVID-19,
and in particular PCR, LDH, D-Dimer, and the scarcity of
lymphocytes. However, while in the hospital the lymphocytes
are considered in their absolute value, our algorithms tend to
consider their percentage or the ratio between them and the
neutrophils. The latter is consistent with the clinical studies
in [55], which show the remarkable effectiveness of using
this ratio to evaluate the severity and mortality of COVID-19
patients.

We created the Simplified Snapshot Datasets considering
the seven most important lab tests, the patient’s age and sex
and the death rate. As explained in Section VI-B, from each
of these datasets we can build a Decison Tree from which

FIGURE 6. Most relevant lab-test features according to our SHAP-based
analysis.

we can derive useful prognostic knowledge in the form of
predictive rules. For our experimental analysis, we selected
the rules discovered with the support of at least 50 training
instances, training accuracy above 75%, and agreement above
85%. Then we applied them to the test sets and evaluated
them in terms of accuracy and agreement with the test set. The
extracted rules are presented in the left-hand side of Table 5,
where we also report their (high) accuracy and agreement
that will be described in Section VIII-B. (The meaning of the
different colours used for the rule conditions is described in
the caption of the table.)

Comparing our results with the medical literature, in many
clinical studies examined in [55], such as the one presented
in [56], the reported cut-off values are remarkably similar to
those we (automatically) found for our rules. For example,
considering the cohorts of patients analysed in [55] which are
mostly similar to ours in terms of age, the reported cut-off
values are between 5 and 6, which are consistent with the
values 5.7 and 5.2 in the rules discovered from the 2days
and 6days datasets, respectively. Furthermore, values around
3 (such as 2.7 in our rules for the 4days dataset) are used in
several studies to discriminate the least severe patients. After
8 days, the threshold for neutrophils over lymphocytes in our
rules is 9.1; according to clinicians, this is consistent with
the administration of corticosteroids in severe patients for the
treatment of respiratory failures. In fact, this treatment has the
tendency to diminish lymphocytes.

In our opinion, the most interesting rules are those that
in the left hand side of the rule include a positive feature
condition (colored green) and a very negative feature con-
dition (colored red), as well as those with some worrying
conditions for the patient (in light green and orange). For
example, the second rule for the 8days dataset regards patients
with a very dangerous value of the neutrophils/lymphocytes
ratio (higher than 9.1), but who are relatively young (less than
64 years old) and with a PCR value that is not considered dan-
gerous. Despite this combination of conditions, the patient’s
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TABLE 5. Prognostic rules extracted from the simplified datasets, i.e. from data about the patient features that are most important (according to our
SHAP-based analysis), and that are available at the 2nd/4th/6th/8th/10th day and before the last day of hospitalisation (End). Each rule states that, if the
rule condition is satisfied by the patient (column ‘Predition-rule condition’’), then a certain prognosis is expected (column ‘‘Predicted Prognosis’’); Each
rule condition is the logic product (∧) of certain constraints on some feature (such as age ≤ 69). Column ‘‘Support’’ indicates the percentage and (in
brackets) the number of patients who match the rule condition in the corresponding dataset. Columns ‘‘Acc.’’ and ‘‘Agree’’ indicate the accuracy and the
agreement rates of the rule w.r.t. the test set and our prediction models, respectively. The colours of the rule conditions have the following meaning:
green for very positive conditions in terms of survival and which regards almost only alive patients; light green for conditions who regard a majority of
alive patients but also some deceased; orange for negative conditions who regard also some alive patients; red for strongly negative conditions which
regard a vast majority of deceased patients. The black conditions are not particularly significant. neu/lym is the ratio between neutrophils and
lymphocytes; %lym is the percentage of lymphocytes.

83922 VOLUME 11, 2023



A. E. Gerevini et al.: ML Techniques for Prognosis Estimation and Knowledge Discovery From Lab Test Results

prognosis is ‘‘survival’’ with high accuracy. Another inter-
esting rule in Table 5 is the third for the 6days dataset, which
predicts survival for patients with potentially alarming values
(neutrophils/lymphocytes > 5.2 and possibly high values of
D-Dimer and LDH), and when the hospital was in a critical
emergency phase (death rate > 0.2). Although the support
for this rule is lower than for other rules, we think it can be
helpful to consider it, especially in emergency situations.

A remarkable correlation between lab test findings can be
seen in the first two rules for the 6days dataset. In these rules,
for those patients who have a neutrophils/lymphocytes ratio
below 5.2, the range of LDH values for predicting that a
patient will be released alive differs. For the older patients
(age > 61), LDH must not exceed 301, for the younger
patients, LDH must not exceed 373. Given that according to
UpToDate (a reliable online resource for medical knowledge
used by clinicians),6 severe conditions of COVID-19 are
associated with LDH values higher than 245, the first two
rules of the 6days dataset (which, combined, refer to more
than 30% of our patients) provide interesting information
about survival conditions of severe patients. Another useful
example is the first rule for the End dataset. This rule high-
lights that relatively young patients (age < 64) can survive
even with a very high value of LDH and a low percentage of
lymphocytes, if the PCR is not particularly high (according
to UpToDate, patients with severe COVID-19 are associ-
ated with PCR higher than 100 while the normal range is
between 0 and 8).

The severity of the conditions in our rules (highlighted
using different colours) is evaluated using the distribution of
lab test findings in our cohort of patients. However, a similar
evaluation can be obtained using the distribution derived
from other cohorts, such as the ones described in [57] and
[58]. Although we cannot evaluate the support and accuracy
of our rules for these cohorts (because their data are not
available), we think that this similarity provides promising
insights about the generality of our rules. As a future work,
we intend to evaluate their validity in another cohort of
patients obtained from another hospital in Norther Italy, ASST
Papa Giovanni XXIII (Bergamo).

B. TESTING OF THE LEARNED MODELS, RULES
GENERATION AND EXPLANATION
As explained in Section III, 80% of the 2015 hospitalised
patients considered in our study were used for the model
training the hyperparameters tuning, which led to a set of
trained learning models, one for each snapshot dataset. The
remaining 20% of the patients were used as a test set to
evaluate the performance of such models and the extracted
prognosis-prediction rules.

1) PERFORMANCE OF THE LEARNED MODELS
The performance of the learned models was evaluated using
the test set in terms of the F-2 score and the ROC-AUC

6https://www.uptodate.com/landing/covid19

TABLE 6. Predictive performance in terms of F-2 and ROC-AUC scores,
considering all instances in the test set (columns F-2 and ROC) and
omitting the instances classified as uncertain (columns F-2U and ROC-U).
For each dataset, the column ‘‘Model’’ indicates the method chosen for
generating the predictions i.e., is the best performing one for that dataset
(see Table 4). The percentages of instances that the system classifies
uncertain are in column ‘‘% Unc.’’; ET stands for Extra Trees, RF for
Random Forest, XGB for XGBoost, and LGBM for light gradient boosting
machine.

score. The second metric is defined as the area under the
Receiver Operating Characteristic (ROC) curve, which plots
the true positive rate against the false positive rate, and it also
takes into account the probability that the predictive system
produces false positives (i.e., false alarms). This metric is a
standard method for evaluating medical tests and predictive
models [59], [60].

Overall, our experimental analysis shows that models
based on ensembles of decision trees perform better than
the models based on neural networks. The training phase
for the former models is also relatively fast: including the
hyperparameter tuning over the 4096 random configurations
considered and the optimisation of the uncertainty threshold,
for every dataset at the considered hospitalisation days, the
overall training time was between 30 and 40 minutes. There-
fore, we can build the four most promising models generated
by Random Forests, ExtraTrees, Light Gradient Boosting,
and eXtreme Gradient Boosting in about two hours, and then
select the best performing model among them. It is also
worth noting that in our system, the models for predicting the
patient’s prognosis on different days are completely indepen-
dent from each other, and so we can consider the prediction
tasks on different days as different tasks.

Table 6 shows the performance of our system on each
considered day (dataset). In terms of the F-2 score, the system
obtains good results even during the early stages of hospital-
isation, with scores 67.8 on the 2nd day of hospitalisation
(considering only the first exams available) and 70.7 on
the 4th day. On the 6th day, in terms of the F-2 score, the
performance is inferior to what one could expect. This is due
to the fact that in the 6days dataset the overall number of
patients decreases by almost 20%, since some of them are
deceased or have been released, and there is no significant
information on the remaining patients during the previous
days. In terms of ROC-AUC, the observed performances
are generally good also for the 6th day. After a week, the
patient’s conditions are generally clearer, with more lab tests
performed and more information about the progression of the
disease through our trend features. This leads to a significant
improvement in terms of the F-2 score, with a maximum of
76.5 on the 8th day, as well as in terms of the ROC-AUCwith
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values between 84 and 86 for both the 8th and 10th days.
Finally, the performance for the End dataset is particularly
good in terms of both the F-2 score (83.8) and the ROC-AUC
(almost 90).

In all cases, extending the models with the use of the
threshold computed by algorithm FindUncertaintyThreshold
increases the performance in terms of F-2 and ROC-AUC
scores. In particular, for the most problematic case, which
is for the 6days dataset, we obtain a significant improve-
ment of more than 6 points in terms of F-2, and almost
4 points in terms of ROC-AUC. It is important to note that
both F-2U and ROC-U scores improve over time, confirm-
ing the intuition that, with days passing, the richer avail-
able data allow the learner to better evaluate the patient’s
condition.

While the threshold value under which the system labels
an instance (patient prognosis) as uncertain is derived at
training time, imposing a maximum percentage of uncertain
samples (we used 25%), there is no formal guarantee that
this percentage limit is satisfied for the test set. However,
we observed that in most cases the percentage of uncertain
test instances (indicated with ‘‘% Unc’’ in Table 6) is signifi-
cantly below the limit imposed during training. Particularly
interesting is the result for the 10days dataset, where we
observe an improvement of more than 4 points in terms of
ROC-AUC, and only 8.8% of the test instances are labelled
as uncertain. The highest uncertainty is for the 2days dataset
(19.4%), which considers less data for each patient, and for
the End dataset (23.2%).

Figure 7 shows the confusion matrices for the test sets gen-
erated by our predictive models. The lowest performance is
obtained at the 4th day, i.e., with very little information about
the patient, where only nine patients in the test set are false
negatives using the model without uncertainty threshold (see
the second ‘‘complete’’ matrix in Figure 7). False negatives
tend to decrease with the duration of hospitalisation, and they
consistently decrease (for every considered dataset) if we use
the uncertainty threshold (‘‘No Unc’’ matrices in Figure 7).

On the other hand, we observe a high number of false
positives (false alarms), especially on the second day of
hospitalisation (more than 100 incorrect classifications). This
is mainly due to the difficulty in evaluating the prognosis
of a patient given only the first exams and no informa-
tion on how the disease is progressing. Therefore, it is not
surprising that our algorithm for dealing with uncertainty
labels 19.4% of patients as uncertain, which has the conse-
quence of avoiding 41 false positives (identified as uncertain
cases).

False positives decrease markedly with hospitalisation
time, with 23 errors at the 8th day and 16 errors at the 10th
day. Furthermore, as also observed for false negatives, false
positives decrease consistently when using the computed
uncertainty threshold, reaching only 9 false positives for the
10days dataset.

Finally, note that all these results are obtained after
addressing the class imbalance problem as described in

Section IV. Without such a balance, the best performance
achieved by our models was about 30% lower.

2) EVALUATION OF THE RULES GENERATION AND
EXPLANATION
Tables 5 and 7 show the rules extacted as described in
Section VI-B, their support over the entire dataset, their accu-
racy, and their agreement. In general, the agreement between
the rules and the best performing model is often very high,
and never lower than 79%. For each dataset except 2days
and 6days, the proposed approach is capable of providing
an explanation to more than 50% of all test instances in the
dataset. While for the dataset End we have a remarkable
result of 77.9% test instances explained, for the dataset of
the 6th day we have a much lower percentage of explained
instances (40.3%); notice that this is also the dataset with
the worst performance in mortality prediction (see Table 6
and Section VIII-B). On the other hand, for the explained
instances of dataset 4days, on average the selected rules have
a high accuracy (81.9).

Moreover, if we consider applying these rules only to the
test instances that are predicted alive (which are the most crit-
ical predictions if we need to minimise false negatives), both
the percentage of explained instances and the accuracy of the
rules significantly increases (see the 3rd and 5th columns of
Table 7).
The average accuracy of the rules is generally very good.

Only two rules on the first days of hospitalisation have inade-
quate accuracy; this is when it can be more difficult to predict
the prognosis, as there are less available data on the patient at
the first days. In particular, for the 4th day, the relatively low
average accuracy of 81.9% is due to a single rule that predicts
the dead class if the following condition holds:

(lymphocytes_percentage < 11.8) ∧ (age > 64).

Given that the elderly patients are more at risk, and that the
normal range of the percentage of lymphocytes for an adult
is between 20 and 45, this rule captures potential critical
patients. However, its condition is not sufficient to properly
identify an unfavorable prognosis (decease), which can lead
to many false positive errors. In fact, the accuracy of this rule
is slightly below 50%. This is consistent with the behaviour
of the prediction model using an ensemble of decision trees
for the 4th day, which also has a significant number of false
positive errors, as shown in Figure 7.7 On the other hand, for
the datasets on the latter days, the average accuracy is always
higher than 90%.

IX. RELATED WORK
A. PROGNOSIS PREDICTION
A first study on prognosis prediction for COVID-19 is pre-
sented in [6]. This work uses data on lab tests, symptoms,

7As described and discussed above, our system attempts at optimising
false negatives more than false alarms, since the first type of errors are more
important for the kind of medical application we are considering.
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FIGURE 7. Confusion matrices at different hospitalisation days for the dead-alive predictions of (i) all test patients
(‘‘Complete’’ matrices) and (ii) only the test patients that are not classified as uncertain/unpredicatble (‘‘No Unc’’
matrices). For each matrix of 4 numbers, on the main diagonal we have the correct predictions (alive class on the
top-left corner and dead class on the bottom-right corner); on the anti-diagonal, we have the incorrect predictions
(false positives and on the top-right corner and the false negatives on the bottom-left corner).

TABLE 7. Summary of the overall performance of the extracted rules in each dataset in terms of: percentage of test instances to which the rules can be
applied (have their conditions satisfied) to explain the relative predictions (2nd column for all instances; 3rd column for only the instances predicted of
class alive), weighted average accuracy of the class predicted by the rules (4th column for all instances; 5th column for only the instances predicted of
class alive), and weighted average agreement (considering all instances) of the rules with the models based on ensembles of decision trees (6th column).

and some epidemiological information to predict if a patient
will die in the next 10 days The authors use an XGBoost
algorithm [61] to build a prediction model considering a
cohort of only 375 patients (2/3 of these for training and
1/3 for validation) from the Wuhan region, China. Then they
select the most important features for the learned model, and
train a single small decision tree that is intended to provide
an operable decision schema to quickly predict patients at the
highest risk. Our work significantly differs in many aspects:
we study the prediction of the patient’s mortality without
a restricted temporal window (10 days in [6]); our models
are learnt and tested using much larger datasets (overall
2015 patients); we use different information (features) about
patients regarding lab test exams and lung damage informa-
tion from X-ray exams; our models are trained considering
the importance of minimising false negatives; we study the
most important features for prediction and model interpre-
tation using the standard approach SHAP [25], instead of a
custom algorithm; the techniques in [6] do not deal with
uncertain predictions, while we do it through a new method;
we propose general methods to extract from data knowledge
in the form of prediction rules, and to exploit them for pro-
viding explanation to the predictions made by a complex ML

model. The extracted rules for the prognosis of COVID-19
are also analysed in depth.

The work by Cornelius et al. [62] proposes a Clustered
Random Forest to predict the mortality of patients with
COVID-19, and to examine the hidden heterogeneity of the
patient frailty. They considered 10 features mainly related to
demographic information for 10, 000 individuals, with 5% of
the individuals who died, randomly selected from the CDC’s
case surveillance data from January 2020, to March 2021.
They compare Clustered Random Forests and AdaBoost for
mortality prediction, with the best model achieving 95%
accuracy, but only 47% of F1 score. They also use Neural
Networks and K-Means clustering for follow-up analysis to
provide information on the type and magnitude of mortality
risks associated with COVID-19. Despite the high accuracy,
the authors report a low percentage of the F1 score and,
moreover, they do not consider using more proper metrics
for evaluation, such as the F2 score and ROC-AUC scores.
In addition, they do not consider more advanced methods,
such as boosting algorithms or neural networks, and an
attempt to model explanation is missing.

The study in [63] proposes machine learning methods to
predict COVID-19 mortality using data from 370 patients
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(1766 datapoints). They use mainly blood tests as input fea-
tures, such as Neutrophils, Lymphocytes, Lactate dehydro-
genase (LDH), high-sensitivity C-reactive Protein (hs-CRP),
and Age. The best-performing method, which uses XGBoost
for feature importance and neural network for classification,
predicts with an accuracy of 90% as early as 16 days before
the prognosis. On the contrary, in our approach we predict
prognosis at different days of hospitalisation starting from the
second day. The reduced number of patients data, the small
number of features considered, no information on the trend
of the features over time, and the lack of explainability of the
best model are some of the main differences from our work.

The work in [8] uses information on 1500 patients from the
Ayatollah Taleghani Hospital registry (Iran) and several ML
algorithms to predict COVID-19 mortality. The 38 features
considered in [8] include risk factors (comorbidities), clinical
manifestations, and oxygen therapy information, which can
be very helpful features for mortality prediction. Although
the data for such features were not available for our study, our
approach reaches high predictive performance even without
using them. The work in [8] treats unbalanced class labels
(more alive than deceased) using the SMOTE technique, and
proposes a best model based on the RandomForest algorithm,
but without a method for automatically extracting prognostic
rules and using them for the explanation, as we have proposed
and experimentally analysed. Moreover, this approach lacks
an evaluation of the uncertainty associated with the prediction
made by the ML model.

The work in [9] proposes a prediction model of in-hospital
mortality for COVID-19 patients treated with steroids and
remdesivir. They considered 1571 patients (21% deceased)
from the Mount Sinai Health System (New York City) hos-
pitalised in the period from March 2020 to March 2021.
Similarly to our work, this work proposes to use SHAP and
a boosting model (LGBM) for the feature importance detec-
tion and the prognosis prediction, respectively. However,
our approach appears to obtain good performance with less
information about the hospitalised patients (especially their
comorbidities and treatments), and furthermore it includes
modules for the automatic generation of prognostic rules and
their use to explain the prediction made by the learned mod-
els, that are not present in [9]. Another important difference
is that our approach is able to identify those patients for
whom the prediction made by theML algorithm is unreliable,
labeling them as uncertain.

In a short paper that we presented in 2020 at a work-
shop [19], we gave a first description of our work and prelim-
inary results on predicting the patient’s prognosis at different
times during patient hospitalisation. Here, we substantially
extend and revise that preliminary work with new results and
several improvements in key aspects. In particular, additional
learning algorithms are considered, better prediction results
are obtained, and data quality issues such as trends, missing
values, and concept drift are better analysed and handled.
Moreover, in this paper we also analyse the most important
features of the prediction task and address the problem of

interpreting the predictions through a set of simple rules
extracted from a simplified version of our model, which can
be seen as a ‘‘surrogate model’’ [64].
Several AI and machine learning techniques have been

developed for estimating the prognosis of diseases different
from COVID-19. The survey in [65] presents a review of
statistical and ML systems to predict the patient’s prognosis,
the need of beds in intensive care units [66], or the duration
of patient hospitalisation. An overview of the issues and chal-
lenges of applying ML in a critical care context is available
in [67]. This work stresses the need to deal with corrupted
data, such as missing values, imprecision, and errors, which
can increase the complexity of the prediction tasks. Lab test
results and their variation over time are the main focus of the
work presented in [68], where the authors describe a system
that processes these data to generate an alarm predicting if a
patient will have a circulatory failure 2 hours in advance.

B. UNCERTAINTY, EXPLANATION AND RULE EXTRACTION
The most important technique for making a machine learning
model a probabilistic classifier [41], [42] is calibration [11],
[43], [44]. With probabilistic classifiers, it is possible to
discharge the low probability predictions and therefore to
remove possible mistakes [13]. In our context, performing
calibration onto our models lead to radically worse results,
losing from 20 to 30 percent in terms of F-2 score with-
out having a good Brier score [69], which is the common
metric to evaluate calibration quality. Furthermore, the cal-
ibration curves are jagged and rough, showing that the cali-
bration mechanism failed due to overfitting and insufficient
samples.8

Another approach to obtain reliable probabilities as out-
put predictions of a machine learning model consists in
integrating probabilistic properties directly into the machine
learning algorithm. NGBoost [12] is a recent example of
this approach, which combines gradient boosting methods
and probabilistic prediction, using Natural Gradient [70] to
correct the training dynamics of the multiparameter boosting
method, instead of the standard gradient approach. In [12],
the authors of NGBoost show better performance compared
to existing methods for probabilistic prediction (using mainly
regression tasks), while maintaining flexibility and scalabil-
ity. In our experiments, we used NGBoost with the settings
supported for binary classification tasks (‘‘Bernoulli’’ as the
classification distribution and ‘‘LogScore’’ as the prediction
score).9 The results we obtained using NGBoost in terms of
the F-2 score are significantly worse than the results obtained
using the other methods; we observed a performance drop of

8The calibrator was implemented using the Scikit-Learn package [50]
which offers a probability calibration with either Isotonic [43], [44] or
Logistic [11] regression in a cross validation fashion. We chose logistic
regression due to the low number of available samples, and the same number
of cross-validation folds as for the training (10), to reduce overfitting as
suggested in [15]. We also performed calibration with other settings of the
hyperparameters obtaining worse results.

9The official implementation of NGBoost is available at:
http://proceedings.mlr.press/v119/duan20a.html
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about 20%. We speculate that the complexity of the task, the
class imbalance, and the presence of many missing values in
our datasets compromise the learning of the correct probabil-
ity distribution.

Recenlty, Combi et al. proposed a novel conceptual frame-
work providing a foundational definition of explainable AI
(XAI) in medicine in which the explainability of a system
is definable as the intersection of four characteristics of
the system: interpretability, understandability, usability, and
usefulness [18]. In relation to this definition, our method
supports explainability of our prognosis prediction models by
improving their interpretability and uselfulness. In addition,
the high performance of our models represents another ele-
ment that fosters the usefulness of the system, in accordance
with the discussion in [18].

While there are several approaches for explaining a sin-
gle prediction (‘‘local explanation’’) such as [25] and [71],
in our work we also focus on extracting knowledge in the
form of rules that can be studied and applied by physicians.
CHIRPS [72] and Action Rules [73] are typical methods for
rule mining, but, applied to our scenario, they were unable to
provide rules with sufficient accuracy and support. Similarly,
TreeASP [74] was only partially applicable in our context,
given that it extracts rules only from LightGBM and Random
Forests, excluding XGBoost which provides the overall best
results in our context. Moreover, for the only model into
which TreeASP was applicabile (the LightGBM classifier
in the 4days model) it didn’t provide meaningful results.
In particular, the extracted rules with a support over more
than 50 patients had an average accuracy of 30%. Given the
complexity of our data in terms of missing values, errors, and
outdated values, approaches that directly mine rules without
any relation to a pre-trained classifier like the Bayesian Rule
List [75] are not suitable for our context.

X. CONCLUSIONS AND FUTURE WORK
We have proposed a collection of methods and a concrete
system for the estimation of the prognosis of hospitalised
patients in emergency situations, such as during the first wave
of the COVID-19 pandemic in Northern Italy, in which the
scarce knowledge of the disease and the limited availabil-
ity of clinical data make the estimation of the prognosis
of patients much harder. We focused the prognosis estima-
tion on the worst-case scenario (decease), and we addressed
it as a binary classification task. Although our approach,
methods and techniques are proposed and evaluated in the
context of COVID-19, they could be useful also for other
diseases (or possible future harmful variants of COVID-19),
especially when there is still limited clinical and prognostic
knowledge.

Starting from raw data, ourmethods (i) generate a sequence
of snapshot datasets indexed by the increasing length of stays
of the patients, (ii) identify a best-performing ML model
for each of the snapshot datasets, (iii) produce a set of
multi-variable prognostic rules, and (iv) exploit such rules for
providing user-interpretable explanations (in simple clinical

terms) to the prognosis prediction of the ML models, as well
as to suggest possible new clinical knowledge on the disease
that is discovered from the patients’ data. Furthermore, the
ML models are optimised by a new technique for automat-
ically identifying, at training time, an uncertain threshold
that helps avoid potential prediction errors and improve the
overall performance of the system.

All our techniques are implemented in a system that was
experimentally analysed considering several ML algorithms.
Overall, we observed that the predictive performance of our
models is high, especially in terms of ROC-AUC scores and
number of false negatives (patients erroneously predicted
survivors), which are very few. This gives a predictive test for
patient survival that has very good specificity, in particular
when the system can exclude patients who are below the
computed uncertainty threshold. On the other hand, in terms
of false positives, there is still room for significant improve-
ment. We are confident that the availability of additional
information about patients, such as comorbidities or clini-
cal treatments, can help improve performance, reducing the
number of false positives and (very few) false negatives.
The best-performing models were built using the ensemble
methods XGBoost and LightGBM, while our experimental
analysis shows that feed-forward neural networks do not
reach the same level of performance.

We are currently studying the use of Recurrent Neural
Networks (RNN) in which we consider the sequence of lab
test findings, instead of the snapshot of the patient’s health
conditions defined by the most recent available lab test find-
ings and their trend. However, our first results with an RNN
model are not promising [76], since it does not improve the
performances of the best models that we have presented in
this paper. This is probably due to the limited size of the
dataset that can be detrimental to the application of deep
learning techniques.

In future work, we intend to study to what extent the
predictive performance that we obtained can be improved if
additional relevant information about the patients is avail-
able, as well as to address other prediction tasks, such as
the duration of hospitalisation or the need for specialised
equipments in intensive-case units or other critical resources.
Furthermore, we intend to extend and validate our system
with additional data on patients with COVID-19 from at
least another hospital in Northern Italy, such as the Papa
Giovanni XXIII hospital in Bergamo, and make our datasets
available.

Finally, given that the proposed approach can potentially
be applied to any disease other than COVID-19, further stud-
ies can be conducted to evaluate the generalisability of our
techniques using different datasets and populations.

APPENDIX A
DATA PREPROCESSING TECHNIQUES
In this appendix we describe the techniques we investi-
gated for handling missing values and class imbalance in the
datasets built from the available raw data.
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A. HANDLING MISSING VALUES
After the generation of training and test sets for different
days according to the methodology that we have described,
an important issue to address is handling the missing values.
One of the most commonly used techniques for doing this
is imputation [48], [49]. We considered and experimentally
compared four different types of imputers, of which the fourth
one showed to be the most effective for our ML models:

• Constant: it replaces a missing value with a constant
value, typically 0 or−1. Given that our features are only
positive, we use −1 as an indicator of a missing value.

• Mean: given a feature, it replaces a missing value with
the mean of the values of that feature. This strategy is
fast and widespread, but can be affected by outliers, and
could amplify the biases already present in the training
distribution, creating a strong correlation among the
mean of the features having a particular output value.

• Median: it is similar to the previous one except that
it uses the median instead of the mean, mitigating the
effect of outliers, but with the same bias issues as the
previous one.

• Iterative with Bayesian Ridge Regression [26], [27],
[28], [29]: this type of imputer is a multivariate one that
estimates each feature from all the others. Given a set of
column features F , at each step, a feature column fi ∈ F
is designated as the output and the other feature columns
F ′

= F \ {fi} as the input of a regressor model ri; the
regressor model is trained using F ′ as input and fi as
output.

B. ADDRESSING CLASS IMBALANCE
Another important issue in ML tasks is class imbalance.
Imbalanced classes lead the learning method to prefer the
majority class, which can decrease performance in terms of
the F-2 score. We address this problem through class weights.
This technique concerns the creation and the use of a weight
for each class to give different importance to samples from
different classes. The weight wi for a class i is defined as
follows:

wi =
M

N · mi

whereM is the size of the dataset, N is the number of classes
(in our case N = 2) and mi is the number of samples of class
i [31]. The weights are used in the error function computed
for training and for evaluating the trained model/classifier.
In gradient-based methods and artificial neural networks,
weights are used in the loss function to increase error val-
ues for samples of classes that have fewer samples, and
to decrease error values for samples of classes with many
samples. During the creation of a Decision Tree, the weights
are used to increase the impurity value of a tree node that
misclassifies samples from a class with limited samples in
the training set.

Other popular solutions for imbalanced data are sub-
sampling and super-sampling methods. The former method

removes samples from classes that have more samples than
the class with the fewest samples. The latter method adds
synthetic samples to classes that have fewer samples. Both
methods are used to obtain the same number of samples in
each class. Unlike these two methods, the class-weighting
technique enables class balancing implicitly, improving per-
formance without deleting samples or adding synthetic ones.

APPENDIX B
MACHINE LEARNING ALGORITHMS
In this appendix we briefly describe the machine learning
algorithms that we used for building the prognosis prediction
models.

A. SINGLE DECISION TREE
Decision Trees are one of the most popular learning methods
to solve classification tasks [77]. In a decision tree, the root
and each internal node provide a condition for splitting the
training samples into two subsets depending on whether the
condition holds for a sample or not. In our context, for each
numerical feature f , a candidate splitting condition is f ≤ C ,
where C is called cut point. The final splitting condition is
chosen by finding f and C providing the best split according
to an impurity measure such as Entropy index, Gini index,
or Information Gain. A subset of samples at a tree node can
be split again by additional feature conditions that form a
new internal node or, if the algorithm cannot find a split
that improves the current measure, it can become a leaf node
labelled with a specific classification (prediction). In our
application domain, the classification label is patient alive or
dead.

Let us consider a decision tree with a leaf node l and a
subset S of associated training samples (those patients that
meet all conditions on the path of the tree from the root to the
leaf node). A test instance X that reaches l from the root tree
is classified (predicted) y with probability:

P(y|X ) =
TP

TP+ FP
(1)

where TP (True Positives) is the number of training samples
in S that have a class value y, and FP (False Positives) is the
number of samples in S that do not have a class value y [78].
Given that in our task there are only two classes (y = alive
and y = dead), we have P(y|X ) = 1−P(y|X ). The result of a
classification of the decision tree for X is the class value with
the highest probability.

B. RANDOM FORESTS AND EXTRA TREES
Random Forests (RF) [79] is an ensemble learning
method [80] that builds a number of decision trees at training
time. To build each individual tree of the random forest, ran-
domly chosen subsets (with replacement) of the data features
and of the training samples are used. While in the standard
implementation of random forests the final classification
label is provided using the statistical mode of the class values
predicted by each individual tree, in our implementation
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TABLE 8. Hyperparameters and relative space of values used for building the Neural Network models.

TABLE 9. Hyperparameters and relative space of values used for building the models based on Decision Trees (Random Forest, Extra Trees, XGBoost,
LightGBM).

the probability of the classification output is obtained by
averaging the probabilities provided by all trees. Hence, given
a random forest with n decision trees, a class (prediction)
value y is assigned to an instance X with the following
probability:

P(y|X ) =

∑n
i=1 Pi(y|X )

n
(2)

wherePi(y|X ) is the probability given by the i-th decision tree
of the ensemble (Equation 1).
Extremely Randomised Trees (Extra Trees or ET) are

another ensemble learning method based on decision
trees [81]. The main differences between Extra Trees and
Random Forests are:

• In the original description of Extra Trees [81], each
tree is built using the entire training dataset. However,
in most implementations of Extra Trees the decision
trees are built using a random subset of the training data,
as in Random Forests.

• In standard decision trees and Random Forests, the cut
point is chosen by first computing the optimal cut point
for each feature and then choosing the best feature
for branching the tree; while in Extra Trees, we first
randomly choose k features and then, for each chosen
feature f , the algorithm randomly selects a cut point Cf
in the range of possible values of f . This generates a set
of k couples {(fi,Ci) | i = 1, . . . , k}. The algorithm then

compares the splits generated by each couple (e.g., under
the split test fi ≤ Ci) to select the best using a split
quality measure such as the Gini Index or others.

The probability P(y|X ) that instance X is of class y is
calculated as in Random Forest (Equation 2).

C. GRADIENT BOOSTING ALGORITHMS
A Gradient Boosting Method (GBM) incrementally assem-
bles several weak learners, such as small decision trees,
to produce a single predictive model. GBM uses a gra-
dient descent procedure to assign a weight to each weak
learner, whose value is related to the ability of the learner
to reduce errors. XGBoost (eXtreme Gradient Boosting) [61]
and LightGBM (Light Gradient Boosting Machines) [82]
are two of the most popular GBM-based algorithms that
use decision trees as weak learners in the default setting.
An important aspect of XGBoost and LightGBM is how
they control overfitting, which is a known issue in gradient
boosting algorithms. XGBoost and LightGBM adopt a more
regularised model formalisation, which allows these algo-
rithms to obtain better results than GBM.

The main differences between XGBoost and LightGBM
are related to the methods for building trees, error calcu-
lation, and feature selection. While XGBoost builds each
weak learner according to the distribution of the overall data,
LightGBM focusses on the samples that actually have more
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TABLE 10. Feed-forward neural network architectures and hyperparameter settings found by the tuning process. ‘‘B.S.’’ stands for Batch size. ‘‘Hidden L.’’
stands for Hidden layers.

impact on the loss function. In addition, LightGBM adopts
several approaches to reducememory usage, such as grouping
categorical features that are mutually exclusive to each other
and replacing continuous values with discrete bins.

D. NEURAL NETWORKS
Feed-forward Neural Networks are one of the most common
architectures of artificial neural networks. They consist of
layers of neurons that form a directed and weighted acyclic
graph [83]. In these machine learning models, all input fea-
tures (which form the input layer) are connected to a first
hidden layer composed of a series of neurons. Each neuron
computes the weighted sum of the input and applies an acti-
vation function that provides the output of the neuron. For
computing the weighted sum, a feed-forward neural network
has two sets of parameters: the weight matrix (which is
multiplied by the input) and the bias vector, which is summed
after this multiplication. The output calculated by the hidden
layer can be connected to another hidden layer, which per-
forms the same operations using a different weight matrix
and a different bias vector. The last layer of a feed-forward
neural network, called output layer, provides the predicted
class for the input training instance. The learning algorithm
compares the predictions with the target values and evaluates
the loss function of the model. During the training phase, the
feed-forward neural networks learn the parameters of each
layer byminimising the loss function through an optimisation
algorithm that is usually Back-propagation. In our case, given
that as output we want probability values for two possible
classes, the output layer of the network is composed of two
neurons with activation softmax [84].

Feed-forward neural networks are the most widely used
ANN models to address learning tasks with structured data
in the medical and biological fields [85], [86], especially
for small datasets [51]. In fact, the use of more complex
architectures (e Deep Convolutional Neural Networks, for
instance) requires a substantially larger amount of training
data to provide adequate performance [87], [88]. Moreover,
given the novelty of our application context, it is difficult to
find a pre-trained model that can be effectively exploited for
transfer learning [89].

E. HYPERPARAMETERS OF THE MACHINE LEARNING
ALGORITHMS
Tables 8 and 9 show the hyperparameters and relative space
of values that were used to build theMLmodels considered in
our experimental analysis. Figure 8 shows the (automatically)

FIGURE 8. Hyperparameter values of the selected ML models. The table
at the top left reports the values of the hyperparameters found for the
best XGBoost (XGB) models selected for the 2days, 6days, 8days and
10days datasets. The table at the top right reports the values of the
hyperparameters found for the best LightGBM (LGBM) model selected for
the 4days dataset. The table at the bottom reports the values of the
hyperparameters found for the best ExtraTrees (ET) model selected for the
End dataset.

tuned values of the hyperparameters of the selected (best
performing) ML model for each of our datasets. Table 10
reports the tuned values of the hyperparameters of the models
based on Neural Networks; we remind that these models are
not chosen by our model selection procedure because they
perform worse than others, and here we include them just for
the sake of completeness.
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