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ABSTRACT The intricate dynamics of the human musculoskeletal system require complex mathematical
computations for accurate simulation, posing challenges in estimating muscle activity. Real-time processes
and comprehensive analysis greatly influence the effectiveness of monitoring applications. The objective of
our research was to enhance real-time muscle activity predictions by incorporating environmental data into
human musculoskeletal simulations, focusing on the upper extremity. Our model, developed using MuJoCo
software, consisted of 50 Hill-type muscles and integrated environmental context. Information on human
posture was collected from single RGBD sensors positioned at 32 three-dimensional node locations.We used
inverse kinematics computations to convert this data into joint angle parameters for our simulation model.
The stretch reflex of each muscle was regulated to initiate movement in the target joints. Desired muscle
stretch length was derived from themechanical interaction between the bone structure and the muscle-tendon
actuator connected to it. Ourmodel also allowed for the application of artificial force to simulate external load
conditions. To validate our model, we performed basic movements with the upper extremity and measured
muscle activity using EMG sensors. Our results confirmed the model’s ability to accurately predict muscle
activation and the force exerted by each muscle. Further experiments demonstrated its potential for seamless
integration with dynamic environmental conditions, thereby enhancing its utility as a comprehensive human
physical monitoring system.

INDEX TERMS Musculoskeletal model, upper extremity, real-time muscle-activity estimation.

I. INTRODUCTION
Computational musculoskeletal simulations are frequently
used to assess muscles’ function during movement and
examine the consequences of changes in the musculoskeletal
system or its neurological control caused by age, gender,
injury, disease, or clinical interventions. It can be difficult
or impossible to determine the contributions of individual
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muscles experimentally due to the complexity and multi-joint
arrangements of many muscles as well as the large numbers
of muscles coordinated during a single movement. Computer
modelling allows scientists to explore the database of
quantitative anatomy embodied in biomechanical models
to identify the contributions of individual muscles to a
movement of interest by combining anatomical information
about the size and arrangement of muscles and segments
in a system with information about the pattern of muscle
activation during movement [1].
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There are many simulations of human musculoskeletal
models which are conceptually similar to each other [2],
[3], [4], [5], [6]. They use human musculoskeletal with
Hill-type muscle models [7], [8], while other simulations
have been developed for animal musculoskeletal models [6],
[9]. Delp et al., (some of the researchers who developed a
Hill-type-muscle model), made their model interactive so that
it could examine the effects of various pathologies on the
human musculoskeletal system. Saul et al. [4], have devel-
oped an upper-limb musculoskeletal model. Holzbaur et al.
has also presented an upper-limb extremity model [10].
These models have all been validated for biological
fidelity.

These achievements provide insight applicable to mon-
itoring the muscle activity of humans. For example, the
models can be utilized for seamless muscle-strength detec-
tion, replacing the current method of muscle strength
measurements that requires a second person (for example,
the caregiver) to take the measurement [11]. This may
also open an opportunity between patient and caregiver
to engage with biomechanical data in real-time during a
patient examination [12]. By decreasing the time required
for data acquisition, this monitoring system also reduces
the cost. However, this kind of target requires real-time
musculoskeletal processing.

Creating a real-time human musculoskeletal model
requires real-time human muscle activation analysis based
on measured human pose recognition. It can bridge the
gap between data gathering and quick muscle analysis.
Several methods have been used to achieve the real-time
human musculoskeletal model [13], [14], [15], [16], [17].
Some of them consider joint moment analysis without the
muscle-activity variable [18], [19]. This method employs
synthetic simulation signals rather than accurate muscle
actuator analysis. Furthermore, the model is evaluated on a
desktop computer with associated computing performance
and lacks the ability to forecast internal joint forces
accurately. The issue of biological fidelity of real-time
muscle analysis has also been found in some current
research [15] because is required to achieve accurate human
muscle analysis. Durandau et al. developed a real-time
lower-extremity musculoskeletal modeling pipeline driven
by data from EMG and motion-capture using the OpenSim
platform [13], [20]. However, this model needs an EMG
signal to measure muscle activation.

Real-time human muscle monitoring requires integrating
feedback of force measurements from external sensors.
Muscle monitoring uses several methods, each testing a
different measurement of strength. Isometric, isokinetic,
and isoinertial strength measurements all have different
reliabilities [11]. For example, the isometric test involves
generating a static force while the length of the muscle
remains relatively constant. The test requires the subject to
push or pull against fixed force sensors, such as the grip
strength test. The force value thus generated is then used as
the feedback input to the model. Limited sensory output, such

as ground force sensors collisions with other objects, require
a simulated environment to generate the force feedback. The
muscle must generate the force to respond to the dynamic
feedback input in real time.

Responding to dynamic external force input in a real-time
musculoskeletal model requires an efficient muscle con-
trol mechanism. Considering the trade-off between muscle
complexity and computational speed is essential to building
the musculoskeletal model. The muscle actuator has been
represented as torque-driven [21]. In our previous work,
we have developed a muscle model of a legged animal
for analyzing its gait in an Open Dynamic Engine simu-
lation [22], [23]. We used a torque-driven mechanism to
represent the muscle. This control has fast computational
speed with good performance. However, it is far from
being biologically accurate. The number of muscles driven
also affects the computational cost in most simulation
engines. On the other hand, the MuJoCo simulation engine
shows prospective results in a tendon-based actuator [24].
Therefore, balancing muscle complexity and computational
speed, we used MuJoCo as the basis of our physical
simulation.

We propose to develop a human musculoskeletal model
simulation for a real-time human physical measurement
system firmly integrated with sensory feedback of envi-
ronmental conditions. The proposed model considers a
seamless and natural measurement system to improve users’
comfort, especially that of older people. The effectiveness
of the proposed model has been validated through several
muscle-activity validation experiments.

• Real-time control system of human upper limb muscle
activity for human physical monitoring.

• Providing real-time integration between the human
musculoskeletal model with environmental conditions,
acquiring feedback force from the environmental condi-
tion.

This paper is organized as follows. Section II shows the
upper-limb musculoskeletal model, muscle properties, and
their implementation on the proposed simulation engine
MuJoCo. Section III explains the proposed real-time control
system. Section IV introduces our proposed ‘‘living lab’’
that is used for the implementation of the proposed model.
To validate the proposed control system, Section V illustrates
several experiments. Finally, we conclude and discuss further
development in Section VI.

II. UPPER-LIMB MUSCULOSKELETAL MODEL
A physics-based computer simulation is the essential frame-
work for the human musculoskeletal model. The different
calculationmethodsmay affect the computational complexity
of the model. Because we require cost-efficiency along with
real-time estimation and the ability to integrate environ-
mental feedback, efficient computational cost is essential.
We therefore selected a basic physics engine as the base of
our model. Many human musculoskeletal simulation models
are available. Some of them are integrated with firm software
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such as OpenSim [3], Anybody [25], [26], SIMM [26],
MSMS [2], and MSk software [27]. Furthermore, The Delft
Shoulder and Elbow Model (DSEM) built the model in
SPACAR [28], [29]. The current model is able to estimate
muscle activity precisely, show reliability visualization, and
offers flexibility in parameter modelling. However, real-time
estimation is one of the issues in those models. Flexibility
of data acquisition varies with software. Lee et al. have
developed a comprehensive human musculoskeletal model in
a DART simulation engine [30]. However, DART is unstable
when the object is small with a high damping value [31].
In contrast, MuJoCo has faster and better accuracy over a
longer time looping compared with other simulations [32].

A. MUSCULOSKELETAL PROPERTIES
In the upper-limb musculoskeletal model, we modified the
Saul model proposed in [4]. The joint structure, composed
of 15 degrees of freedom, is based on the kinematics of
the Holzbaur model [10]. It is composed of glenohumeral
(clavicle and scapula) joints [33], elbow, forearm, wrist,
thumb, and fingers based on the recommendation by the
International Society of Biomechanics [34]. We converted
the model from OpenSim to MuJoCo using [35]. However,
several structural characteristics in MuJoCo are challenging
to represent precisely and should be estimated. We built the
joints in our hands to activate the Flexor Digitorum and
Extensor Digitorum.

In biomechanics, a muscle and a tendon are connected
to produce a muscle-tendon actuator. In MuJoCo, the
muscle-tendon combination is given the spatial properties of
the tendon. Therefore, the length of the muscle actuator Lact
becomes the sum of muscle length (LM ) and tendon length
(LT ), Lact = LM + LT in this model. Instead of defining
optimum tendon length LO, we defined scaled range[0] and
range[1] from the following equations:

range[0] = (Lact [0] − LT )/LO (1)

and

range[1] = (Lact [1] − LT )/LO (2)

To define the maximum force of each muscle actuator,
we defined the force scale parameter of each muscle.
The muscle-modeling parameters are tabulated in Table 1.
The advantage of the scaled quantities is that all mus-
cles behave similarly and the equations represent all
situations.

B. MUSCULOSKELETAL PROPERTIES
Our muscle actuator is based on a Hill-type muscle
model [38] where the total length of the muscle actuator (lmt )
is calculated as follows:

lmt = lm cosα + lt (3)

lm and lt are the length of muscle and length of the tendon,
respectively. Parameter α is the pennation angle at a certain

FIGURE 1. (a) Structure of hill-type muscle model (b) Diagram of
force-length-velocity function.

muscle length lm. In the current state, the pennation angle is
assumed to be 0. The effect of the pennation angle can be
approximated by adjusting the muscle force scale and also
adjusting the operating range (range[0] and range[1]) that is
defined in Table 1.

The muscle actuator model assumes the force is generated
from the force-length-velocity function calculated in Equa-
tions (5),(6), and (7) shown in Fig. 1.

FTOTAL = F0
m(a(t)FL(l̃m)FV (ṽm) + FP(l̃m)) (4)

Passive force is calculated in Equation (5), where f pmax is the
maximum passive force and parameter b is calculated from
b = 0.5(1+ lmax). lmin and lmax is the range of muscle length.
The muscle length under force is calculated in Equation (6),
where the value of B is calculated in Equation (8). The force
velocity of the muscle is calculated from Equation (7), where
vmax , f vmax , v are the maximum accepted muscle velocity,
maximumof forcemuscle, and the normalized currentmuscle
actuator velocity. Parameter v is calculated as v = Vact/vmax .
In Equation (8), lL is calculated as lL = 0.5 ∗ (Ci + 1) and lR
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TABLE 1. Muscle modeling parameters.
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is calculated as lR = 0.5 ∗ (1 + Cx).

FP

=


0 if Lact ≤ 1.0
0.25 f pmax((Lact − 1)/(b− 1))3 if Lact ≤ b
0.25 f pmax(1 + 3((Lact − b)/(b− 1))) otherwise

(5)

FL
= B(Lact , lmin, 1, lmax)

+ 0.15 B(Lact , lmin, 0.5(lmin + 0.95), 0.95) (6)

FV

=


0 if v ≤ −1
(1 + Vact/vmax)2 if v ≤ 0
f vmax − (f vmax − 1 − v)2/(f vmax − 1) if v ≤ (f vmax − 1)
f vmax otherwise

(7)

B(L,Ci,m,Cx)

=


0 if L ≤ Ci||L ≥ Cx
0.5((L − Ci)/(lL − Ci))2 if L < lL
1 − 0.5((m− L)/(m− lL))2 if L < m
1 − 0.5((L − m)/(lR − m))2 if L < lR
0.5((Cx − L)/(Cx − lR))2 otherwise

(8)

In order to calculate the activation dynamics (a(t)),
we refer to the Thelen model [39] implemented on OpenSim,
which can be seen in Eqs. (9).

da(t)
dt

=
u(t) − a(t)

τact
(9)

Parameters u(t) and τact are the input of neural excitation to
the muscle and the time-constant parameter, respectively. The
model considers the tendon to be stiff and inextensible. The
force produced by the contractile element specified equals the
forces generated along the tendon (Ft ), which is calculated as
follow:

Ft = F cos(α) (10)

III. CONTROL MODEL
There are many methodologies to control the human
musculoskeletal model. To consider external environmental
feedback forces, we require a continuous muscle control
method. Most researchers have converted the information
from human posture recognition to joint angle level using
their Inverse Kinematic models [7]; however, Lee et al. use
Deep Reinforcement Learning (DRL) to generate proper joint
angle based on target body pose [30], [40]. OpenSim adds
a residual reduction algorithm to refine the generated joint
angle from IK based on dynamical consistency [7].

DRL has the potential to control muscle-based actua-
tors [41]. Lee et al. combined Quadratic Programming and
DRL to consider the complexity of muscle synergies [40].
On the other hand, Proportional Derivative control has also
been used for postural control in the human musculoskeletal
model [42], [43]. This model considered only proprioceptive

FIGURE 2. Range of normalized muscle length (l̃m). The range of each
muscle (lm) (in grey span line) is acquired based on the joint movement
during experimental studies.

information of muscle (muscle length and lengthening
velocity). OpenSim used proportional and derivative control
to track the target joint angle [7]. They successfully controlled
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FIGURE 3. Overall control system of human musculoskeletal model. However, in the current state, we control only the upper extremity parts
with 50 Hill-type muscles. Input of posture recognition: 1) PH , 25 3D node position of hand pose 2) PB, 25 3D node position of body pose. lT (t) is the
target length of muscle tendon. θ(t) and lT (t) are the joint angle and the target length of muscle tendon in time t . l(T ) and le(T ) are the current length of
muscle tendon and the error length of muscle tendon. Gain of muscle (Gl (t)) is the output of the controller. The simulation also receive external force
sensor which is: F D(t) is the force recognition from door sensor, composed as Dc is the door condition, F Hx is door handling force in x direction (N), F Hy

is door handling force in y direction (N), F p is door handling position in z direction (N), and F M1 , . . . , F M10 is force of mat sensors (N).

the model bymaintaining the feedback information of muscle
stretch length with efficient computation. SIMM has been
confirmed in real-time process in [44]. Nevertheless, it is
applied using data of pre-captured movement.

An overall-control model can be seen in Fig. 3. There
are two control loops used in this proposed model, external
input processed at 30 Hz and forward dynamic processed
at 1000 Hz. In the external input process, posture recognition
is acquired from two sensors: an RGBD Kinect camera for
body pose recognition and a Leap sensor for hand pose
recognition. The output of hand pose recognition is composed
of 25 3D node positions (PH ), and body pose recognition
is composed of 32 3D node positions (PB). The 3D node
positions are then converted to the joint angle level of the
human skeletal model by the Inverse Kinematics module,
explained in [45]. To obtain the change in stretched muscle
length from the current joint angle, we use the Jacobian
matrix to establish the relationship between quantities in joint
and constraint coordinates. Once the joint angle (θ(t)) is
given, we get the wrap points of muscle-tendon. To get the
length of the target of the muscle actuator (lT ) from the length
of the muscle-tendon wrap point, the value of (lT ) will be the
input of the PID controller in the forward dynamic process of
simulation.

The output of the PID controller (Gl) will be transferred
to the control muscle actuator in the simulation in parameter
(u(t)) in Eq. 9. The Gl is calculated as follows:

Gl(t) = Glp(t) + Gli(t) + Gld (t) (11)

where the value of Glp(t), G
l
i(t), and G

l
d (t), are calculated in

Eqs. (12),(13),and (14), respectively.

GlP(t) = Kple(t) (12)

GlI (t) = Ki

t∫
0

le(τ )dτ (13)

GlD(t) = Kd
dle(t)
dt

(14)

The error or tendon length le is calculated from the
difference between target muscle tendon length lT and
current tendon length (lmt (t)). Parameters Kp, Kd , and
Ki are the constant gain parameters for proportional,
derivative and integrator. The target muscle tendon length
lT comes from the human kinematic data. Based on the
preliminary experiment shown in the supplementary material
Section V-B, we set Kp, Kd , and Ki as 50, 100, and 0.01,
respectively.

To integrate environmental factors, we integrated the pro-
posedmodel with real-time external sensory informationwith
a sampling rate of 30 Hz. There are external force sensors
FD(t) from the door sensor, where Dc is the door condition,
FHx is the door handling force in the x-direction (N), FHy

is the door handling force in the y-direction (N), and Fp

is the door handling position in the z-direction (N). These
information provided by these sensors will be the input of
artificial force by the hand of the human musculoskeletal
model. Furthermore, mat sensor information FM1 , . . . ,FM10

(N) is provided to give the input of the normal force of both
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legs while opening the door. The sensory feedback will be
calculated internally in forward dynamic of simulation as
follows

v̇ = M−1(τ + JT − c) (15)

where, v̇ is the value of joint acceleration given per unit of
time, M (q) is the inertial joint space, J (q) is the constraint
Jacobian, f is the constraint force, and c is the bias force (such
as Coriolis, centrifugal, or gravitational).

To generate the external force, we applied three-
dimensional force and torque to the hand in the human mus-
culoskeletal model. We used the function ‘‘mj_applyFT’’ to
calculate the applied forces (τ ) in every degree of freedom
from the given force and torque to the hand. The applied
forces (τ ) are stored in the variable ‘‘qfrc_applied’’ in the
MuJoCo systems. These values depend on the external force
input.

IV. ENVIRONMENT OF LIVING LAB
A ‘‘living lab’’ is a room containing many integrated sensors
for a seamless monitoring system. The proposed living lab is
similar to a Japanese single room. It contains a bed, mattress,
cupboard, and kitchen. The toilet is not included in the current
living lab. The layout can be seen in Fig. 4. There are several
sensors included in the room, which are: Two Kinect Azure
sensors for human pose recognition, two webcam cameras
for human activity detection, one webcam camera for object
detection, one pair of pressure sensor installed in the pair of
sandals, vibration sensors in the bed, ten pressure sensors
in the mat, six loadcell sensors in door handles, and one
leap motion sensor for hand pose recognition. We used body
tracking developed by Microsoft for Kinect Azure [46]. The
Kinect camera recognition can identify the coordinates of the
points which belong to a specific person and output their
positions in 3D. This paper focuses on the handle sensors and
door sensor.

We attached force sensors to common tools to monitor
force exerted in natural daily use. We expect that the subject
will not feel themself being monitored. Two sensors are
discussed in this paper, the handle sensor and the door
sensor. The handle sensor may analyze the gripping force and
lifting force during the action of transitioning from sitting
to standing. The door sensor will; provide data to analyze
the subject’s strength when opening the door. The door will
remain open for several seconds to analyze the muscle’s
isometric strength during the opening process.

V. EXPERIMENTAL RESULTS
To validate the effectiveness of the proposed model,
We conduct some preliminary experiments to validate the
kinematics, control systems, and the dynamics systems,
explained in Section V-A, V-B, V-C. Then we conduct
validation experiments, and application experiments on
muscle monitoring while interacting with environments,
in Section V-D and V-E.

A. ANALYSIS OF MOMENT ARM
To validate the kinematic of the simulation of the skeleton
model, we calculated the moment arm by moving shoulder
and elbow joints. Then, we analyzed the moment arm of the
Deltoid Anterior, Medial, and Posterior muscles to the three
joint angles of shoulder joints (Shoulder flexor/extensor,
shoulder elevation, shoulder rotation). We compared the
proposed model with several other models. We divided the
moment arm analysis into four parts: 1) Single joint positions
of moment arm in shoulder and elbow joint 2) Shoulder
abduction joints moment arm 3) Shoulder rotation joints
moment arm 4) Elbow joints moment arm

1) SINGLE JOINT POSITIONS OF MOMENT ARM IN
SHOULDER AND ELBOW JOINT
To validate the proposed model, we compared the
moment arm with experimental data provided in [10].
In Figure 5, the muscle moments were compared with
study of Holzbaur et al. [10], Otis et al. [47], Liu et al. [48],
Hughes et al. [49], and Kuechle et al. [50]. The data from
the proposed model are shown in red diamond marker.
The rotation and abduction moment arm in Subscapularis
(SUBSC), Supraspinatus (SUPRA), Infraspinatus (INFRA),
and Teres minor (TMIN) are located near the reference
experimental data. In Figure 5(b), the moment arm of Deltoid
anterior (DELT1), Deltoid Medial (DELT2), and Deltoid
posterior (DELT3) are analyzed from the flexion-extension
and adduction-abduction viewpoints. We compared our
study with the experimental studies of Holzbaur et al. [10],
Otis et al. [47], Liu et al. [48], and Kuechle et al. [50]. There
is a big range in the moment arm, especially in the Deltoid
posterior muscle (DELT3). However, the proposed model
is still within the acceptable range of the experimental
data references, and the flexion and abduction joints are
also within the acceptable ranges. In Figure 5(c), the
moment arm of the references also have big ranges between
Holzbaur et al. [10] and Kuechle et al. [50]. The proposed
model has similar moment arm to the Holzbaur model.
In the elbow joint comparison shown in Figure 5(d), the
proposed model also has similar moment arm data to that of
Holzbaur et al. [10] and Murray et al. [51].

2) SHOULDER ABDUCTION JOINTS MOMENT ARM
We compared the moment arm of shoulder joints with
moment arm data provided in [52]. Figure 6 shows the
comparison of shoulder elevation (abduction moment arm)
Supraspinatus (A), Infraspinatus (B), Teres Minor (C),
Subscapularis (D) and Deltoid (E) over a range of shoulder
abduction angles. We moved the shoulder elevation and
abduction from 0DEG to 90DEG,with other joints (Shoulder
Rotation, Flexion, and Elbow joint) remaining at 0 DEG. As a
result, all of the proposed muscles have similar direction.

The supraspinatus muscle has a similar moment-arm value
at 0 DEG, and has a difference of around 2 cm at 90 DEG.
However, this muscle has a similar direction. The proposed
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FIGURE 4. Layout of living lab that is used in the proposed experiments.

infraspinatus moment arm is still in the range of fiber
muscle of Webb et al. [52]. In the teres minor muscle, the
moment arm from the proposed model is negative, which is
similar to the comparison models. The moment arm in the
Subscapularis muscle, has a similar value across the range
of the joint, with only 3 mm of difference. In the deltoid
muscle, the proposed model has similar characteristics to
the Holzbaur model. The Deltoid medial muscle has similar
moment direction across the joint range. At 0 degrees, all the
models of the in Deltoid anterior muscle have similar values
with a positive direction. In the 65 DEG, the proposed model
of moment arm changes to negative direction, while the
Holzbaur model changes the moment direction at 50 DEG.
Furthermore, the moment arm of the proposed model has
similar value with Holzbaur model at 90 DEG. Then, it has
1 cm difference at 0 DEG of shoulder abduction angle.

3) SHOULDER ROTATION JOINTS MOMENT ARM
We compare the moment arm of the shoulder joint with
moment-arm data provided in [52], as shown in Figure 7.
We show the comparison of shoulder rotation of Supraspina-
tus (A), Infraspinatus (B), Teres Minor (C), Subscapularis
(D) and Deltoid (E) over a range of -45 DEG to 45 DEG
of shoulder rotation, with Shoulder Elevation, Flexion, and
Elbow joint remaining at 0 DEG.

The proposed model has a moment arm of Supraspina-
tus, Infraspinatus, and Teres minor muscle with simi-
lar characteristics to the Holtzbaur et al. [10] model (see
Figure 7 A, B, C). It is within the range proposed by
Webb et al. [52]. In the Subscapularis muscle, the proposed

model has a similar moment arm to the Holzbaur model
in 10 DEG of joint angle and has 6 mm of difference
at 45 DEG. It has in the range of the Webb model. All the
models have similar moment directions In the deltoid muscle
shown in Figure E, The moment arm of the Deltoid posterior
has 4 mm of difference compared to the Holzbaur model, and
it has similar direction. In the proposed Deltoid medial, there
is a big difference of the moment arm from the Holzbaur
model in the internal rotation, but the moment arm value
is in the range of the Webb model. The proposed model of
the Deltoid anterior muscle has similar characteristics to the
Holzbaur model, including the same moment direction and
moment value of 0 in -35 DEG of rotation joint.

4) ELBOW JOINTS MOMENT ARM
In the elbow flexor analysis, we move the elbow joint from
the straight position 0 DEG to maximum flexed position
(130 DEG). The forearm joint angle was set in the neutral
forearm position (Zero Deg, or mid- pronation/supination).
We compared ten upper-extremity specimens from the
study of Murray et al. [51]. As a result in Figure 8, the
proposed Brachioradialis, Biceps, ECRL, Bracialis, Triceps,
and Pronator teres are in the range of the moment arm
distribution from 10 specimens. Brachioradialis muscle has
0 moment arm in a straight configuration and 8 cm in
90 degrees of flexor. The Bicep muscle has 7 mm of moment
arm in a straight configuration and 45 mm in 90 deg of elbow
flexor. ECRL muscle has 0 moment arm in 16 degrees and
29 mm in 90 deg of elbow flexor. Brachialis muscle has
0 moment arm in 9 degree and 23 mm in 90 deg of elbow
flexor. The triceps muscle has negative joint moment, where
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FIGURE 5. Comparison of the moment arm at the upper limb a) the rotator cuff of shoulder b) the three segments of deltoid muscles c) the
other muscles including Pectoralis major (PECM), Latissimus dorsi (LAT), and Teres major (TMAJ) d) the muscle in elbow joints. In a), the
shoulder rotation and abduction moment arm are calculated with 60o of shoulder abduction joint and 0o of rotation joint. In b) and c) the
shouder flexion and abduction moment arm were calculated in neutral position with elbow flexion in 90o.

in 0 DEG, it has -20 mm of moment arm and -16 mm in
90 deg of elbow flexor. Pronator Teres muscle has positive
joint moment, in 0 DEG it has 2 mm of moment arm and
15 mm in 90 deg of elbow flexor.

In the forearm rotation analysis, we rotated the forearm
joint angle from −90 (maximum pronation) to 90 (maximum
supination) with elbow flexed to 85 DEG. We compared
the male and female model specimens from the study of
Murray and the fresh cadaver specimen from the studies
of Bremer, and Saul’s OpenSim model. In the pronator
teres moment arm, the proposed model has an amplitude
similar to the Murray and Bremer studies. The Saul model
has a larger magnitude of moment arm. However, all the
models have positive joint moment. In the Biceps muscle,
the proposed model has a similar value of moment arm to
the Saul model. In all muscles the values of moment arm
have negative moment arm with range from −10 mm to
−16 mm. Furthermore, the Brachioradialis muscle in all the
models showed similar characteristics in their moment arm.
They have positive moment arms in a supinated position and
negative moment arms in a pronated position.

B. EXPERIMENTS OF RESPONSE MUSCLE CONTROL
MODEL
To validate the agreement between the target joint angle and
the result in simulation, we analyzed the response of the
output of the joint angle generated from the muscle forces.
We showed the result of different gain parameters in Figure 9.
It requires around 100ms to achieve the stable target position.
In this test, we performed the elbow lift and moved the elbow
flexor joint from 0 to 90 degrees. A higher value of Kp causes
a faster response, but it also caused an overshoot.

To show the effect of the constant parameter on the slow or
fast target movement, we conducted experiments as shown in
Figure. We analyzed the movement of the elbow flexion joint
from the muscle driven. We gave the target movement to the
elbow joint from 0 degrees and from the straight position to
90 degrees at three different speeds, 10 rad/s, 2.5 rad/s, and
1 rad/s. We perform the movement for each target speed with
five different sets of constant gain parameters.

1) Kp = 10, Kd = 100, Ki = 0.01
2) Kp = 30, Kd = 100, Ki = 0.01
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FIGURE 6. The comparison of shoulder elevation joint (Abduction moment Arm) in Supraspinatus (A),
Infraspinatus (B), Teres Minor (C), Subscapularis (D) and Deltoid (E) over a range of shoulder abduction angles.
The proposed model is compared with finite element muscle model from Webb et al. [52], Muscle model from
Holtzbaur et al. [10], and experimental measurements from Liu et al. [48], and Otis et al. [47]. ANT, MID and POST
in figure E represent the deltoid anterior, middle, and posterior of Holzbaur model [10].

3) Kp = 50, Kd = 100, Ki = 0.01
4) Kp = 100, Kd = 200, Ki = 0.01
5) Kp = 150, Kd = 200, Ki = 0.01
The results, in Figure 10, show that the lower gain

parameter (No. 1 and 2) cannot achieve the target position at
slower or higher speeds. The highest gain parameter (No. 5)
has overestimation and oscillation in slower and higher joint
speed. The gain parameter No. 3 and 4 have less oscillation
and is able to achieve the target position at any joint speed.
Therefore, the faster movement is not required for the higher
gain parameter and slower movement is not required for the
lower gain parameter.

In the implementation, test movements were slower than
human gait or functional arm movements. This is caused
by a delay from the human-skeleton-recognition process and
the delay from muscle-driven control. The choice of gain
parameter may also cause the delay of movement. Previously,
in the validation experiments in Section V-D we just defined
the Kp Kd Ki as 50, 100, 0.01. However, it can be optimized
to achieve better response.

C. ANALYSIS OF PHYSICS DYNAMICS
In inverse dynamic analysis, velocities and acceleration
are computed by differentiating the positions. The inverse

dynamic is calculated as follows:

τ = Mv̇+ c− JT f (16)

where, v̇ is value of joint acceleration is given in every
time step. M (q) is inertial in joint space J (q) is constraint
Jacobian, f is the constraint force, c is bias force such as
Coriolis, centrifugal, gravitational. We analyzed the forces,
moments, and joint angles during two performances, elbow
lift and back curl, with and without holding the 5 kg barbell
load.

In the elbow lift performance, shown in Figure 11(a), the
brachialis and brachioradialis muscles sustain significant
force during the load. The biceps muscles also increased the
force value. In the first 150 ms, there is a high force impact
to move the elbow flexion joint from 0 degrees (straight
position) to 90 degrees. The torque of the joint has a high
value when the elbow moves from 0 degrees to 90 degrees.
However, it becomes zero after the elbow joint remains at
90 degrees.

In the back curl performance, shown in Figure 11(b), the
Deltoid Posterior, Brachialis, and Brachioradialis muscles
have significant force during the load. In the first 200 ms,
there is a high force impact to move the elbow flexion and
shoulder elevation joint from 0 degrees (straight position) to
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FIGURE 7. The comparison of shoulder rotation joint in Supraspinatus (A), Infraspinatus (B), Teres Minor (C),
Subscapularis (D) and Deltoid (E). The proposed model is compared with the finite element muscle model of
Webb et al. [52] and the Muscle model of Holtzbaur et al. [10].

90 degrees. The torque of the joint has a high value when
the elbow and shoulder move from 0 degrees to 90 degrees.
However, it becomes zero after the elbow joint remains at
90 degrees.

Furthermore, we compared the torque output from inverse
dynamics and from muscle-driven simulation in the elbow
joint. Wemoved the elbow joint from 0 deg (straight position)
to around 90 degree by driving four muscles, BIClong,
BICshort, BRA, BRD. We put external forces of 50 N in the
gravitational direction from the hand. The result has shown
in the Figure 12. The red line represents the total torque
from four muscles, the purple line represents the torque from
the external load, and the blue line represents the torque
from inverse dynamics. The torque from inverse dynamics
can generate the same value comparing to the torques from
muscle driven with torque from external load. To show the
effect of gain parameters to the torque output, we compared
between lower gain and higher gain as shown in Figure 13.
Graph A represents a lower gain parameter with Kp = 30, Kd
= 100, Ki = 0.01, and Graph B represents a higher gain with
Kp = 100, Kd = 200, Ki = 0.01. We analyze the gap range
between muscle driven torque and inverse dynamics torque.

The higher constant gain parameter has bigger gap than the
lower gain parameters.

D. VALIDATION EXPERIMENTS
To validate the simulation with regard to muscle activity,
we recorded muscle activity using EMG sensors by Delsys
Trigno. We compared these results to the muscle activity
from the simulation. We attached EMG sensors to the
peak contraction area of the muscle. There are ten muscles
to be recorded, which implies that ten sensors will be
attached. They attachment muscles are: 1) Brachioradialis,
2) Biceps, 3) Triceps, 4) Deltoid Anterior, 5) Deltoid Medial,
6) Deltoid Posterior, 7) Pectoralis Major, 8) Latissimus
Dorsi, 9) Flexor Digitorum Profundus, and 10) Extensor
Digitorum Communism.

Four healthy subjects with variant height (165, 175, 170,
and 173 cm), ages 36, 31, 30, and 40,and weights (56,
67, 73, and 80 kg) took part in this experiment. This
study has been approved by Ethical, Legal, and Social
Issues (ELSI) of Tokyo Metropolitan University, Japan.
All participants prepared informed consent prior to this
study.
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FIGURE 8. The comparison of moment arm in elbow flexor and forearm rotation joint angle. The moment arm in elbow flexion
joint comparison in provided by experimental data of Murray et al. [51]. The moment arm in forearm rotation is compared with
several data from Murray et al. [51], study of Bremer et al. [53], and Saul’s simulation model in opensim [4].

FIGURE 9. Comparison of control response in different constant parameters.

1) DATA ACQUISITION
The subjects were asked to plan a sequence of tasks. The
Delsys sensors collected the EMG data for each subject as
they performed the actions. We considered the data collection
setting based on the study of Ives and Wigglesworth [54],

which has established the best sampling rate for acquiring
sEMG data. According to this research, under-sampling can
result in data loss, and over-sampling (above 1000 Hz) is
not required to capture the critical components of the sEMG
signal. However, since the memory allocation was not a
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FIGURE 10. Comparison of control response in different constant parameters and target of joint speeds.

problem, we set the frequency to 2000 Hz. The EMG data is
recorded together with the proposed real-time musculoskele-
tal simulation. The experimental documentation can be seen
in Supplementary Figure 18 and video experiments can be
seen in the Supplementary Video 1 for subject A, Video 2 for
subject B, Video 3 for subject C, and Video 4 for subject D.

2) MUSCLE ACTIVITY COMPARISON
In this part, we compare the muscle activity generated by
the proposed simulation of our humanmusculoskeletal model
and the EMG sensors. The comparison graph can be seen
in Supplementary Figure 18. The comparison graph in the
Deltoid Anterior muscle (see Supplementary Figure 19(a))
shows the similarity between the control signal and the
normalized EMG signal almost in every desired movement.
The comparison graph in the Deltoid Medial muscle (see
Supplementary Figure 19(b)) shows the similarity between
the control signal and the normalized EMG signal in the first,
second, and third desired movements. However in the fourth
and fifth movements, which are back lift and shoulder back
lift, the similarity between the EMG sensor and the control
signal is different. The reason may be the attachment of EMG
sensors to the posterior area. The comparison graph in the
Deltoid Posterior muscle (see Supplementary Figure 19(c))

shows similarity activation in Subjects A, B, and D. It seems
there is overlapping EMG sensors attachment in Subject C.
The EMG signal of the Deltoid Anterior and Posterior in
Subject C has a similar signal. However, three subjects show
correct EMG signal where the Deltoid Posterior activated
during back lift and shoulder back lift movements. The
Glenohumeral joint has a high risk of muscle activation
detection. A small error in skeleton detection may cause
the error of muscle activation in the simulation. In the case
of Deltoid Medial muscle, it may be caused by the error
of the shoulder elevation joint. The value of the shoulder
elevation joint generated by skeleton detection is more in the
adduction direction than the actual value. The actual shoulder
elevation tend to be located towards the adduction direction.
Therefore, the EMG sensors detect any activation in Deltoid
Medial muscle. In the simulation, the Deltoid muscle was not
required to generate the force to lift the shoulder elevation
joint.

The graph of the Pectoralis Major muscle (see Supple-
mentary Figure 19(d)) does not show any explicit activity.
We could not analyze the similarity in this muscle. Then, the
comparison graph of the Biceps muscle shows the similarity
between the EMG activation signal and the control signal of
humanmusculoskeletal model. Finally, the comparison graph
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FIGURE 11. Analysis of dynamic performance a) elbow lift performance b) back curl performance.
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FIGURE 12. The comparison of the torque output from inverse dynamics and from muscle-driven simulation in Elbow joint.

of the Triceps muscle shows the similar activation signal in
Subjects A, B, and D. It shows an activation signal during the
back lift movement. Furthermore, there is an activation signal
of EMG signal in Subject C during shoulder front raise and
shoulder side raise movement.

3) MUSCLE FORCE ANALYSIS
Further analysis of muscle force depicted in Supplementary
Table 2 shows the force tension generated by each muscle.
The force value is acquired from the muscle actuator force
generated by MuJoCo. Different scale parameters for each
muscle implies that each muscle will have a different
maximum force value. Supplementary Table 2 shows the peak
muscle force of each subject.

In the maximum force analysis, the ratio of force
distribution is similar to the maximum isometric force of
actual measurement in [36] and [37]. For instance, in the
real measurements of elbow flexor, the maximum force of
the Biceps Long Head, Biceps Short Head, Brachialis, and
Brachioradialis muscle are 525.1 N, 316.8 N, 1177.4 N,

and 276.0 N, which has ratio 1 : 0.603 : 2.24 : 0.525,
respectively. In the simulation, the average maximummuscle
force has ratio 1 : 0.44 : 1.78 : 0.507. The error ratio of elbow
flexed with Bicep long head as muscle reference is 0, 0.266,
0.2, 0.03, and the average error ratio is 0.125. In the real
measurement of elbow extensor, the maximum force of in
triceps long head, Triceps medial head, and Triceps Lateral
head are 771.8 N, 717.5 N, and 717.5 N, which has ratio 1
: 0.929: 0.929, respectively. In the simulation, the average
maximum muscle force has ratio 1 : 0.889 : 0.884. The error
ratio of elbow extensor with Triceps long head as muscle
reference is 0, 0.04, 0.04 and the average error ration is 0.03.
Furthermore, in the real measurement of Deltoid muscle, the
maximum forces of the Deltiod Anterior, DeltoidMedial, and
Deltoid Posterior muscles are 1218.9 N, 1103.5 N, 201.6 N,
which have ratio 1 : 0.905 : 0.165, respectively. In the
proposed simulation, the average maximummuscle force has
ratio 1 : 0.892 : 0.255. The error ratio of Deltoid muscle with
Deltoid Anterior as muscle reference is 0, 0.013, 0.368 and
the average error ratio is 0.127. The relatively small value
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FIGURE 13. The comparison of the torque output between lower and higher constant gain parameters. Graph A represents a lower gain parameter with
Kp = 30, Kd = 100, Ki = 0.01, and Graph B represents a higher gain with Kp = 100, Kd = 200, Ki = 0.01.

FIGURE 14. Attachment position of EMG sensors. The Delsys sensor
placed along the longitudinal midline of the muscles with the arrow
parallel to the muscle fibers.

of ratio error implies the proposed human musculoskeletal
simulation generates a similar force to the real measurements.

4) QUANTITATIVE ANALYSIS
To improve the validation experiments, we conducted quan-
titative analysis with different subjects. Five healthy subjects
with variant heights (164, 171, 168, 169, and 170 cm), ages
30, 31, 24, 40, and 47 years old, and weights (63, 75, 76,
60, and 78 kg) joined in this experiment. We performed the
basic poses of the upper limbs shown in Figure 15 (elbow

FIGURE 15. Sequence action for experiment validation.

lift (hammer curl), shoulder front raise, shoulder side raise,
back lift, shoulder back lift(triceps kickback)) with grasping
a 5kg barbell). This weight will be added as constant external
force in the simulation model. Each subject conducted five
sets of sequential actions. In one set movement, the user will
perform for 15 seconds continuously: three seconds each for
the elbow lift, shoulder front raise, shoulder side raise, back
lift, and shoulder back lift.

Next, we compared the muscle activity generated from
the proposed model with the real muscle activation from
the EMG sensors. We analyzed the time on and time off
and calculated the error for each set of values. The success
rates are calculated as the mean squared error–the average
squared difference between the ground-truth values and the
EMG sensor values. We calculate the success rate of muscle
activation for each action shown in Eq. (17). The error
calculation is started from starting time tON to tOFF . In this
experiment, the starting time and end time are defined from
the manual analysis. If the muscle is active in i-th pose
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FIGURE 16. (a) Graph of target joint angle and generated joint angle by
human musculoskeletal simulation (b) Graph of CPU time cost.

action, then the value of uidata = 1, otherwise uidata =

0. The ground-truth muscle activation value is acquired
from analyzing data from the EMG sensors in the previous
validation function. If the ground-truth muscle is active in i-th
pose action, then the value uiREF = 1.

SuccessRate

= 1/5
i=5∑
i=1

1
tOFF − tON

t=tOFF∑
t=tON

(1 − (uiREF − uiREF )
2) (17)

Supplementary Video 10 shows the quantitative experi-
ments, which are listed in Table reftable:quant_exp. From
their analysis, we achieve a success rate of muscle activation
of 0.799, or, nearly 80%. The Deltoid Anterior muscle has
better success rate, which is 0.861, followed by the Biceps
which achieve 0.854. Tricepsmuscle activation has the lowest
success rate at 0.747. This is because many subjects had
difficulties performing shoulder back lift.

5) REAL-TIME ANALYSIS
To analyze the real-time estimation process, we calculate the
time difference between each process, from human skeleton
recognition to muscle force validation. Figure 16(a) shows
the different target joint angles from the simulation’s skeleton
recognition and joint angle. There is a 100-ms difference
between skeletal recognition and human musculoskeletal
simulation.

Furthermore, we calculated the time cost for one looping
process in computational analysis–shown in the figure 16(b)
and the Supplementary Video 9. We calculated this cost as
around 0.4 ms. The system can process humanmusculoskele-
tal simulations around 2,500 times in one second. However,
our computational process only required 1,000 processes in
one second.

E. MUSCLE MONITORING WHILE INTERACTING WITH
ENVIRONMENTS (LIVING-LAB)
One of the contributions of our proposed musculoskeletal
model is its integration with environmental conditions.

To show the effectiveness and its applicability, we con-
ducted experiments in the proposed living lab explained
in Section IV with several samples of activity, which are
1) analysis of muscle activity while opening doors, and
2) analysis of muscle activity in transitional movement from
sleeping to robot-assisted walking (RT-1)

1) ANALYSIS OF MUSCLE ACTIVITY DURING OPENING THE
DOOR SENSORS
This experiment analyzed the force and muscle activity
measured by the sensors when a person opens the door. The
system will ask the person to push or slide the door open
with high force and within ten seconds. This proposed model
calculates the isometric force while opening the door. This
phase only involved one subject. The subject was standing
in the living lab, walking to the door, and opening sliding
the door using the right hand. The video experiments can be
seen in the Supplementary Video 5. The snapshot of video
experiments can be seen in Supplementary Figure 20. The
graph ofmuscle control activity can be seen in Supplementary
Figure 21.
While monitoring the opening of the door, we could

record the activation of Muscle in real-time. There is a
significant change of muscle activity or control signal
in Deltoid Anterior, Deltorid posterior, Pectoralis Major,
Biceps, Teres minor, Coracobrachialis. Deltoid Anterior
and Coracobrachialis muscles are activated during opening
the door, while Pectoralis major and Biceps muscle have
increased of activity. In comparison, the Deltoid posterior and
teres minor muscles are deactivated.

2) ANALYSIS OF MUSCLE ACTIVITY IN TRANSITIONAL
MOVEMENT FROM SLEEPING TO ROBOT ASSIST WALKING
(RT-1)
In this experiment, we analyzed the force and muscle activity
when a person moves from a sitting position to a standing
position by using RT-1 [55]. RT-1 is the robot that assists with
walking for elderly people. Several sensors were installed to
support the system. In this experiment, the subject performed
the transition action three times with different bed heights,
8 cm, 40 cm, and 60 cm. We use the force sensors in the
robot’s handle to calculate the pulling or pushing of the hand
during transitional movement from sitting to standing. The
video experiments can be seen in the Supplementary Video 6,
Video 7, and Video 8 for the three bed heights, respectively.
The snapshot of video experiments can be seen in Fig. 22.
The graph of muscle control activity can be seen in Fig. 23.
From this generated control activity, we may analyze the
effectiveness of muscle usage.

The transition movement begins with the activity of the
biceps muscle. After the user’s elbow height was higher than
the handle of RT1, the Triceps muscle was activated. There
is a significant increase in the Biceps and coracobrachialis
muscle in the 8-cm bed height, but there is no activity in
the Deltoid middle muscle (see red box). While at 40-cm

VOLUME 11, 2023 74353



A. A. Saputra et al.: Real-Time Control System of Upper-Limb Human Musculoskeletal Model

TABLE 2. Data of muscle peak force in experiment a (validation).

TABLE 3. Data of success rate of quantitative experiments.

and 60-cm bed heights, there is no significant increase of
control activity in Biceps and coracobrachialis muscle, but

there is increasing activity in Deltoid middle muscle. In this
experiment, there is no significant difference between bed
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FIGURE 17. Snapshot of validation experiments.

FIGURE 18. Attachment of Delsys EMG sensors in the right hand of subjects.

heights of 40cm and 60cm. From these experiments, we show
that the proposed human musculoskeletal model can be
successfully integratedwith environmental information as the
external force feedback.

VI. DISCUSSION AND CONCLUSION
In this paper we have shown how we achieved real-time
muscle activity estimation using human musculoskeletal
simulation. We focused on the upper extremity of human
musculoskeletal model with 50 Hill-type muscles. We built

the model in MuJoCo simulation in including surrounding
environments as external information to the human mus-
culoskeletal model. The proposed human musculoskeletal
simulation can be freely integrated with surrounding environ-
ment.

First, we validated the kinematic of the simulation of the
skeleton model by comparing the moment arm of muscles
related to the three joint angles of shoulder joints (Shoulder
flexor/extensor, shoulder elevation, shoulder rotation) and
Elbow joints. We compared the proposed model with several
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FIGURE 19. Comparison diagram of muscle activity between proposed simulations and real measurement of EMG sensors. There are recorded data
from four subjects separated by muscle type. Six muscles are compared in this diagram. (a) Deltoid Anterior muscle (b) Deltoid Medial muscle
(c) Deltoid Posterior muscle (d) Pectoralis Major (e) Biceps muscle (f) Triceps muscle. The blue line represents the normalized EMG signal and the
orange line represents the control signal in the musculoskeletal model. We use moving window average to filter and normalized data from EMG
sensors. We set the window width by considering the quality of the EMG data. In Subject A and D, we set the window width as 750 ms. While in
subject B and C which has better EMG data, we set the window width as 75 ms.
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FIGURE 19. (Continued.) Comparison diagram of muscle activity between proposed simulations and real measurement of EMG sensors. There are
recorded data from four subjects separated by muscle type. Six muscles are compared in this diagram. (a) Deltoid Anterior muscle (b) Deltoid Medial
muscle (c) Deltoid Posterior muscle (d) Pectoralis Major (e) Biceps muscle (f) Triceps muscle. The blue line represents the normalized EMG signal and
the orange line represents the control signal in the musculoskeletal model. We use moving window average to filter and normalized data from EMG
sensors. We set the window width by considering the quality of the EMG data. In Subject A and D, we set the window width as 750 ms. While in
subject B and C which has better EMG data, we set the window width as 75 ms.

other models. As shown in the Supplementary Material
Section V-A. The proposed model has similar moment
direction in all compared model.

The proposed control model requires gain parameters (Kp
Kd Ki) whose settings were acquired from experimental
data. We validated the. The result shows that the lower gain
parameter cannot achieve target position in slower to higher
speed. The higher gain parameter has overestimation and
oscillation in slower and higher joint speed. Compromising
gain parameter setting is required to achieve less oscillation
and able to achieve target position in any joint speed. Delay
time response is around 100 ms from the target movement.
However, this is still acceptable for the real-time monitoring
application which is not required any real action to the user
or subject. Decreasing the time response delay will be an aim
for the future.

To validate the dynamics model, we compared the torque
output from inverse dynamics and from muscle-driven
simulation in the elbow joint shown in Supplementary
Material Section V-C. The torque from inverse dynamics
can generate the same value comparing to the torques
from muscle driven with torque from external load. Then,
in the effect of gain parameter selection, we compare
higher and lower gain parameters setting. The higher

constant gain parameter has bigger gap than the lower gain
parameters.

To prove the effectiveness of the simulation to the real
application, we conducted muscle validation experiments
that compare the control activity from the simulation and
the recorded EMG sensors. Four subjects were involved in
the validation experiments. They performed five planned
movements, including: elbow lift (hammer curl), shoulder
front raise, shoulder side raise, back lift, shoulder back
lift (triceps kickback). We attached 10 EMG sensors which
are: 1) Brachioradialis 2) Biceps 3) Triceps 4) Deltoid
Anterior 5) Deltoid Medial 6) Deltoid posterior 7) Pectoralis
Major 8) Latissimus dross 9) Flexor digitorum profundus
10) Extensor Digitorum Communism. However, we com-
pared 6 muscle (Biceps, Triceps, Deltoid Anterior, Deltoid
Medial, Deltoid posterior, and Pectoralis Major) which has
significant activity in the desired movement. From the graph
shown in Supplementary Figure 18, the control activity
has mostly similar with the muscle activity recorded from
the EMG sensors. Only one subject in Deltoid Posterior
muscle, two subject in Deltoid Medial muscle, and one
subject in Triceps muscle which have a different activation.
However those errors may occur from the attachment
problems.
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FIGURE 20. Snapshot of experiments during opening sliding door with force sensors.
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FIGURE 21. Force of muscle graph during opening the door.

Furthermore, we analyzed the maximum force of each
muscle in the validation experiment. We compared the
maximum force of the Elbow Flexor, the Elbow Extensor,
and the Deltoid muscle with the actual measurements of
maximummuscle force [36], [37].We calculate the error ratio
of each muscle. As a result, the average error ratio of elbow
flexor, elbow extensor, and Deltoid muscle are 0.125, 0.03,
and 0.127, respectively. The relatively small error implies that
the proposed simulation can generate a similar force value to
the actual measurements.

In addition, the experiments show our proposed simulation
can be effectively integrated with the surrounding environ-
ment and/or artificial environment.We showed two additional
experiments that integrated environmental conditions. First,
we analyzed the force and muscle activity when a person
opened the doors. Second, we analyzed the force and muscle

activity when a person moved from a sitting position to a
standing position by using RT-1. In the two experiments,
we succeeded in measuring and analyzing the muscle
activity and muscle force in real-time for further analysis.
This method may increase the comfort in human physical
monitoring system. The system may recognize the user
muscle activity without involving any other person.

Overall, based on the validation by the experiments, the
contributions of this paper are as follows:

• Real-time control system of human upper limb muscle
activity for human physical monitoring.

• Providing real-time integration between human muscu-
loskeletal model with environmental condition.

In the future work, we will enhance the complexity of
the muscle, especially for the hand muscle. We will attach
some Leap motion and Hand pose detection from MediaPipe
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FIGURE 22. Snapshot of experiments using RT1 with different height of bed, A) 8 cm height of bed B) 40 cm
height of bed C) 60 cm height of bed.

to recognize the muscle activity of the hand while grasping
some tools. Furthermore, we will improve the balance of
the human musculoskeletal model by adding some stability

control in the proposed system. In addition, the issue of
decreasing the time response will be considered as the future
works
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FIGURE 23. Force of muscle graph during transitional movement from sitting to standing using RT1 with different height of bed.

LINK TO THE SUPPLEMENTARY VIDEOS
1) Video of validation experiments of Subject A

https://www.dropbox.com/s/43vnm2awj63s
1mp/data_experiment_right_upper_A.mp4?
dl=0

2) Video of validation experiments of Subject B

https://www.dropbox.com/s/zr8elny70hcg7ih/
data_experiment_right_upper_B.mp4?dl=0

3) Video of validation experiments of Subject C

https://www.dropbox.com/s/fhxtoob54digoe7/
data_experiment_right_upper_C.mp4?dl=0

4) Video of validation experiments of Subject D

https://www.dropbox.com/s/tlegukwpzv5zc1t/
data_experiment_right_upper_D.mp4?dl=0

5) Video of experiments during opening sliding door with
force sensors

https://www.dropbox.com/s/mwozljw2vx5tjb6/
open%20door.mp4?dl=0

6) Video of experiments using RT1 with 8 cm height of
bed

https://www.dropbox.com/s/esnhc4p1a484efa/
WakeUpWithRT1_8cm.mp4?dl=0

7) Video of experiments using RT1 with 40 cm height of
bed
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https://www.dropbox.com/s/niz4sxf38l59hgf
/WakeUpWithRT1_40cm.mp4?dl=0

8) Video of experiments using RT1 with 60 cm height of
bed

https://www.dropbox.com/s/e6ln5s3nwxck28f
/WakeUpWithRT1_60cm.mp4?dl=0

9) Video of experiments time cost analysis

https://www.dropbox.com/s/6vvv2xw502izafg
/time_cost_analysis.mp4?dl=0

10) Video of quantitative analysis of validation experi-
ments

https://www.dropbox.com/s/hw8ggz733bc
51gn/Quantitative_experiments.mp4?dl=0
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