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ABSTRACT Manufacturing is a broad field with different types of production processes. Therefore, specific
processes can accommodate multiple parallel machines operating simultaneously in some production
environments. This assumption is particularly crucial in factory scheduling for industries such as textile,
aircraft, and semiconductor manufacturing. The assumption proposed in this paper is differ from FJSP in
that they are closer to the real world by allowing different machines to perform the same multiple processes.
In this paper, a new approach for solving the flexible job shop scheduling problem has been proposed, which
is referred to as the flexible job shop scheduling problem in a parallel machine environment with a variable
group. We proposed a hybrid genetic algorithm-based variable neighborhood search algorithm (GA-VNS)
to solve this problem, where the multiple parallel machines can operate the same operations simultaneously
and are grouped as a variable group. The GA-VNS algorithm combines the global searching ability of GA
with the local searching ability of VNS to fully reflect the condition of the parallel machines with variable
groups. The objective functions of the algorithm are to minimize the production makespan and to improve
facility usage. Multiple simulation experiments are conducted using forty-seven test instances to assess the
feasibility and effectiveness of the new approach. This study is expected to reduce processing time and
production costs for Small and Medium Enterprises (SMEs) with low cost and high efficiency compared to
existing systems, such as the manufacturing execution system, enterprise resource planning, and job shop
scheduling system.

INDEX TERMS Genetic algorithms, variable neighborhood search algorithm, flexible job shop scheduling
problem, global and local searching algorithm, parallel machines, small and medium sized enterprises,
manufacturing platform.

I. INTRODUCTION
The manufacturing industry is embracing multiple shifts due
to the multi-product and small-volume production system
trend [1]. This requires manufacturing companies to stock
up on various raw materials and adopt the latest digital tech-
nologies. To keep up with this trend, SMEs need to improve
and develop their manufacturing technologies. Hence, the
manufacturing industry has adopted information technology
systems to keep pace with the changes. Information tech-
nology systems are used extensively in manufacturing, and
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their users and goals are varied. The goals include energy
savings, sales growth, automatic systems, flexible manufac-
turing, real-time monitoring, and optimal scheduling [2], [3].
Building these systems requires the input of human research
resources, the introduction of new equipment and cutting-
edge technologies, adaptability to changes in existing human
resources, and abundant capital investment [4], [5], [6].

However, SMEs are not always able to meet the demands
of change. Mittal et al. [6] suggest that while several SMEs
have a wide range of opportunities and high economic value
creation potential, often fail to realize this potential due to
factors such as their low capital, limited use of advanced
manufacturing technologies, inflexible corporate culture, and

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 79531

https://orcid.org/0000-0002-7505-0411
https://orcid.org/0000-0003-2168-7983
https://orcid.org/0000-0003-1547-5503


Y. Choi et al.: Variable Group Parallel Flexible Job Shop Scheduling in a SMEs Manufacturing Platform

lack of investment in research and development. Therefore,
the high barriers to entry for smart manufacturing systems
prevent many SMEs from fully exploiting the potential eco-
nomic benefits of these technologies and reaping the financial
benefits.

There are two types of manufacturing software commonly
used in manufacturing systems today: enterprise resource
planning (ERP) and manufacturing execution system (MES).
MES primarily focuses on information systems that improve
the quality, accessibility, cost-effectiveness, and operability
of manufacturing systems. These systems provide users with
a variety of functions. Among these functions, scheduling
systems are most commonly used for job shop scheduling
in manufacturing [7]. Job shop scheduling reduces delivery
time and energy consumption and improves manufacturing
efficiency.

The digital revolution in manufacturing systems has trans-
formed the relationship between buyers and producers.
Buyers expected providers to share shipping information
and provide customized orders. To meet this demand,
providers need to stockpile a variety of resources and stream-
line their production processes. While large enterprises are
well-equipped to meet these demands, SMEs are struggling
with limited resources in comparison. Therefore, when order-
ing large quantities of customized products, buyers may need
to find two or more SMEs for different products. Further-
more, because SMEs rely on existing buyers, they may have
difficulty finding or reaching out to new SMEs, and they may
have difficulty assessing their reliability before placing an
order [8], [9], [10], [11]. These trends in buyer-producer rela-
tionships can impact how new SMEs build new relationships
with potential buyers.

In this sense, the main function of the proposed job
shop scheduling engine is to schedule production tasks.
The job shop scheduling engine aims to efficiently sched-
ule the production process to minimize the delivery time
for buyers’ orders. By efficiently executing scheduling, the
job shop scheduling engine can solve the problem of job
shop scheduling and ensure optimal makespan for the pro-
duction processes [12]. Numerous attempts have been made
to solve the job shop scheduling problem (JSSP) in the
manufacturing industry. Shao and Kim [13] proposed a self-
supervised long-short term memory (SS-LSTM) to solve
the JSSP. Solving the NP-hard problem of JSSP yields an
optimal schedule, but there are still limitations in practi-
cal implementation [14]. JSSP is constrained by the con-
dition that each machine can only process single job at a
time. As a solution to this limitation, the flexible job shop
scheduling problem (FJSP) was considered, where opera-
tion of each job can be processed on multiple machines.
Li and Gao [15] proposed a hybrid algorithm (HA) to
solve FJSP, which combines genetic algorithm (GA) and
tabu search (TS) to enhance both global and local search
capabilities. However, the methodmay not be globally prefer-
able in other cases, as the algorithm relies on predefined
conditions.

Hence, various studies have proposed and modified
scheduling approaches to solve specific problems based
on their requirements. Li et al. [16] proposed a hybrid
self-adaptive differential evolution (HSDE) algorithm with
heuristic strategies and set job priority and outsourcing
operation constraints. Luo et al. [17] proposed an improved
memetic algorithm based on the non-dominated sorting
genetic algorithm II (NSGA-II) structure to solve the clas-
sical distributed flexible job shop scheduling problem,
with the aim of achieving minimum makespan, maximum
workload of machines, and variable workload of work-
ers. Fattahi et al. [18] applied a novel approach to FJSP
and solved the problem by utilizing a simulated anneal-
ing (SA) algorithm. The objective of the study is to
minimize the makespan and optimize the machine usage
efficiency. Tian et al. [19] proposed a novel multi-objective
bi-population differential artificial bee colony (BDABC)
algorithm to generate the energy-efficient scheduling of
multi-variety and small batch flexible job shop operations in
aerospace manufacturing facility. The study utilizes mathe-
matical modeling techniques to consider multiple variables.
Lin et al. [20] applied a learning-based cuckoo search (LCS)
algorithm to minimize makespan in multiple machines and
various routing operations for each job environment. The
aforementioned new approaches to solving FJSP will lead to
more realistic and feasible solutions to real-world scheduling
problems.

In this paper, a new approach to FJSP is proposed by
utilizing parallel machines with variable group conditions.
Variable group (VG) is used for job splitting and machine
allocation. In traditional FJSP, each job consists of a set of
operations that must be executed on a group of machines,
each with a generated processing time. In FJSP with parallel
machines and variable groups, each job still consists of a set
of operations, but these operations are grouped into a set of
variable groups. In a real-world scheduling scenario, a job
can consist of multiple operations and can be processed in
parallel on multiple machines. In this sense, VG technique
specifies operations based on the number of parallel machines
available for processing. FJSP with parallel machines and
variable groups utilizes GA for the global searching function,
and variable neighborhood search (VNS) algorithm for the
local search function. GA is powerfully effective in process-
ing global constraints through its encoding and decoding
features [21]. The local search performed by VNS includes
a machine selection [22] and an iterative best improvement
algorithm to enhances its ability to perform local search and
to address the complex constraints of the proposed approach.

The main contributions of this paper are as follows.
• To validate the effectiveness and feasibility of the pro-
posed job shop scheduling engine, we present a case
study utilizing a real-world manufacturing data-driven
example.

• Designing a modified FJSP on parallel machines
with variable groups should be feasible in real-world
solutions.
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• The GA algorithm has powerful efficiency in global
searching ability, and VNS is used to achieve local
searching ability to make best combination of machines
during the searching process.

• The optimal combination of parameters for GA-VNS is
determined using an orthogonal experimental approach.

The remainder of this manuscript is organized as follows.
Section II reviews the flexible job shop scheduling problem
and related work on parallel machine scheduling. Section III
describes the architecture and procedures of the job shop
scheduling engine. In Section IV, we introduce the FJSP
algorithm for parallel machines with variable groups, con-
duct some numerical experiments, and reports the results.
Section V concludes this work and outlines directions for
future studies.

II. RELATED RESERACH
A. FLEXIBLE JOB SHOP SCHEDULING PROBLEM
The FJSP is the NP-hard problem and is more complex
than traditional JSSP. FJSP has two additional conditions
compared to JSSP. First, each operation in the job must be
assigned to only one machine among the available machines.
Second, unlike JSSP, FJSP allows different tasks to be
assigned to the same job. Mathematical programming meth-
ods are considered to be accurate methods for solving prob-
lems. However, when dealing with a large number of tasks
and machines, it can be difficult to solve problems using
only mathematical programming methods. Due to the dif-
ficulty of solving FJSP with traditional algorithms, various
metaheuristic methods have been developed to approach the
problem. The most widely used metaheuristic methods for
solving FJSPs include simulated annealing (SA), tabu search,
genetic algorithm (GA), particle swarm optimization (PSO),
and hybrid algorithms [23].

The concept of FJSP was first introduced by Brucker
and Schlie [24], who developed a polynomial algorithm to
obtain the minimum makespan. Pezzella et al. [25] utilized
a GA to solve FJSP and conducted computational experi-
ments to compare its efficiency with tabu search algorithm.
Chen et al. [26] proposed a self-learning genetic algorithm
(SLGA) to achieve optimal scheduling results. In SLGA,
the Q-learning algorithm was shown to be efficient in
selecting the optimal parameters of the GA. Singh and
Mahapatra [27] proposed quantum-behaved particle swarm
optimization (QPSO) to reduce the makespan. QPSO was
used to minimize the drawbacks of PSO, which is well known
for being trapped in local optima. Yuan et al. [28] proposed
a hybrid harmony search (HHS) algorithm to minimize the
makespan. The HHS algorithm utilized the global and local
search capabilities of harmony search to reduce the search
space and evolve the harmony vector. Jamili et al. [29] pre-
sented a periodic job shop scheduling problem and propose a
particle swarm optimization simulated annealing algorithm
(PSO-SA) to reduce the makespan. To address the limita-
tions of individual algorithms, researchers have begun to use
hybrid approaches. Therefore, we propose a hybrid approach

that combines GA and VNS to improve the global and local
search abilities of the algorithm.

B. PARALLEL MACHINE SCHEDULING
Parallel machine scheduling is a very important aspect
of job shop scheduling for manufacturing in real-world
scenarios. There are three types of machines in parallel
machine scheduling problem: identical machines, uniform
machines, and unrelated machines. Identical machines have
the same processing time due to their similar performance.
Asadpour et al. [30] studied on how to solve the identical
parallel machine scheduling problem by minimizing the
tardiness and total energy consumption. They developed
a simulated annealing algorithm and applied a harmony
search algorithm for large-scale problems. Cohen et al. [31]
also solved parallel machine scheduling under identical
machines conditions. The study aimed to propose a bet-
ter solution and achieve a stable makespan for robust
optimization.

The second type of parallel machines, known as uniform
machines, are defined as machines with separate perfor-
mances, but each machine operates at a constant speed.
Li et al. [32] proposed a fuzzy simplified swarm optimization
algorithm (SSO) to minimize the makespan of uniform paral-
lel machine scheduling. Lin and Ying [33] proposed a particle
swarm optimization meta-heuristic and a lower bound of total
resource consumption for uniform parallel machines.

The unrelated machines have different processing times
for jobs including identical jobs. Fang et al. [34] conducted
a study on an unrelated parallel machine scheduling prob-
lem with the objective of minimizing the makespan. The
study proposed a hybrid meta-heuristic method based on
adaptive large neighborhood search with learning automata
(LA-ALNS) and tabu search with a dynamic perturbation
scheme. Computational results were provided to validate
the proposed method. Moser et al. [35] utilized a mathe-
matical model for small instances and simulated annealing
to solve the large instances. The objective of the study
was to minimize total tardiness and makespan while con-
sidering sequence-dependent setup times, due dates, and
machine eligibility constraints. Maecker et al. [36] imple-
mented a variable neighborhood search algorithm to solve
the unrelated parallel machine scheduling problem in a
distributed manufacturing environment, where consider-
ing job-machine-dependent delivery times and eligibil-
ity constraints. Their study aims to minimize the total
makespan.

In the parallel machine scheduling problem, efficient
job-machine assignment is essential to find the optimal
makespan. This problem utilizes the concept of parallel
machines to reflect a real-world scheduling problem. How-
ever, existing parallel machine scheduling research differs
from this study. In this study, multiple machines with varying
velocities are operated on the same operations, which is
similar to the parallel machine scenario.
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III. VARIABLE GROUP PARALLEL FLEXIBLE JOB SHOP
SCHEDULING
The FJSP on parallel machines with variable groups assume
manufacturing scenarios for SMEs.

A. A JOB SHOP SCHEDULING USING GA-VNS
The FJSP on parallel machines with variable groups can
be described as follows. The problem involves scheduling
a set of jobs on a set of machines in order to minimize
the makespan or total completion time of all the jobs. This
problem is classified as a FJSP with the additional constraint
of variable groups. Each product is treated as a single job
on the buyer’s order. Each job i = {1, 2, 3, . . . , n} can have
j = {1, 2, 3, . . . , ni} operations Oi,j, and can be executed on
M = {1, 2, 3, . . . ,m} machines, The processing time Ti,j,m
for each Mi,m varies depending on the Oi,j being processed.
In addition, each Oi,j is assigned a VGi,j,m to group the par-
allel m that is capable to process the Oi,j. This paper utilized
the notations listed in Table 1. The constraints of the proposed
FJSP algorithm are as follows:

1) Jobs are independent and cannot be preempted.
2) No other jobs can be processed simultaneously on any

machine for a given job.
3) All jobs can start at time zero.
4) When a job ends, the machine immediately starts the

next job, but it can be delayed by other jobs.
5) For the identical operations of the same job, pre-

assigned machines can process simultaneously depending on
the size of the VG.

6) Machine setup time and product transfer time are not
considered.

TABLE 1. Notations for FJSP in parallel machine with variable group.

The decision variables and mathematical formulation of
proposed algorithm are as follows:

minT = max(
∑n

i=0
Ti,j) (1)

(Ci,j,m − C(i−1),(j−1),m − (Ti,j,m)) ≥ 0 (2)

(1) is objective function for minimization of makespan.
(2) ensures that one operation can be performed at a time on
any machine.

FJSP on parallel machines with variable groups is based
on a hybrid algorithm that combines GA and VNS. Because

parallel machines with variable groups generate multiple per-
mutations, this algorithm can be highly effective in searching
both the global and local domains simultaneously. Fig. 1
shows the overall procedure of the algorithm, and the
pseudocode of GA-VNS is shown in Algorithm 1.

FIGURE 1. An overall procedure of GA-VNS.

FIGURE 2. Possible datasets with 5 jobs, 2 operations, and VG values for
4 machines.

Fig. 2 shows the FJSP dataset and corresponding VG val-
ues for parallel machines with variable groups considering
five jobs on four machines. Different product types have
different operations. In SMEs manufacturing, the production
process is typically divided into multiple operations depend-
ing on the product type. Moreover, while the machines used
for each operation may vary, their specifications are usually
similar, so they can be treated as parallel machines in this
paper.

This means that when a buyer orders a product, it is divided
into multiple jobs via Oi,j operations and allocated to avail-
able machines based on the VG setting for each job. If the VG
of each job does not exceed the available parallel machines,
the VG setting can be set autonomously. The algorithm starts
by permuting the machines and operations to fully reflect
the VG settings, as shown in Fig. 3. It then encodes the
operation string (OS) and machine string (MS) to generate
the population of GAs.
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FIGURE 3. Permutation of machine lists for each operation according to
VG values.

After generating the OS and MS, the algorithm performs
GA operations such as selection, crossover, and mutation.
In this paper, a dynamic GA approach is required since the
algorithm is based on solving the FJSP. The selection operator
adopts elitist selection to reproduce offspring from parents.
The elitist selection selects the optimal parent population
based on a fitness function, which can be calculated by
multiplying a predefined reproduction probability by 0.005.
Two crossover operators are then applied for each OS and
MS string: precedence operation crossover and job-based
crossover. If there are VGs in the population, the job set needs
to be partitioned by considering the VG size of each job.

Algorithm 1 GA-VNS Algorithm
begin
generate initial population by encoding procedure;
gen← 1
while (not termination criteria)

generate offspring population from selection, crossover, and
mutation operators;
evaluate;
take best solutions by decoding procedure;
update best solutions list using VNS;
evaluate;
if best solution < new best solution then
best solution← new best solution

end
gen← gen + 1

end
output:best solution with minimum makespan

end

TheMS string used two-point crossover to impart variation
to the offspring populations. The two-point crossover ran-
domly selects two points in the MS string and swaps the two
parent and offspring strings, i.e., P1 and O1 and P2 and O2.
The remaining positions in the two offspring are then filled
with two parent strings. If a VG value exists, the process must
also take it into account.

The last operator in the GA operation is a mutation that
swaps specified positions in the OS string using a swapping
mutation. Similar to the two-point crossover, a swapping
mutation randomly selects two positions in the parent string
and swaps the elements in the selected positions to generate

FIGURE 4. (a) Precedence operation crossover (b) job-based crossover of
OS string.

FIGURE 5. MS string two-point crossover according to each VG.

FIGURE 6. OS swapping mutation.

offspring. Once the mutation operation is complete, the
decoding procedure begins as the final step in GA.

For crossover, Fig. 4(a) shows a precedence operation
crossover and Fig. 4(b) shows a job-based crossover of the
OS string. Fig. 5 illustrates a two-point crossover of the MS
string when a VG value is present. Fig. 6 shows an OS string
swapping mutation. In all operations, the OS and MS strings
are divided into operation points due to parallel machines
with variable group conditions.

The decoding procedure calculates the processing time of
each population so that the algorithm can choose the opti-
mal solution. It takes into account the OS string to interpret
the sequence of each job by considering the OS string and
matches it with the MS string to obtain the processing time.
Meanwhile, there are constraints that need to be considered
during the decoding process.

First, regardless of the priority of the job, if the machine
is idle, the job should be assigned to time zero. Second,
if multiple operations of the same job on parallel machines do
not end simultaneously, the next operations of the job cannot
be processed by other machines. In this way, the decoding
result is shown as follows: [[(’2-1’, 0, 21), (’0-1’, 21, 31)],
[(’2-1’, 0, 10)], [(’2-1’, 0, 11)], [(’1-1’, 0, 28)], [(’1-1’, 0,
13)]]. The decoding result is formatted as lists, with each
sub list indicating job with operation number, start processing
time, an end processing time. Besides, the large lists are indi-
cating each machine. The makespan of the decoded example
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Algorithm 2 VNS Algorithm
input: kmax = number of neighborhood structure

genmax = number of iterations
begin
k← 1
while k < kmax

gen← 1
generate initial population by encoding procedure;
while gen < genmax
randomly select n in [0, 1];
if n == 0 then
apply swap MS string to generate new solution;

else
apply iterative best improvement algorithm to MS and OS
string to generate new solution;

end
if best solution < new best solution then
best solution← new best solution
k← 1
gen← gen + 1
if gen = genmax then

k← k + 1
end

else
k← k + 1, gen← genmax

end
end

end
output: best solution with minimum makespan

end

TABLE 2. Results of parameters comparison.

population is determined by the maximum of the processing
time value, 31.

VNS is a metaheuristic optimization method that itera-
tively explores the solution space of a problem by exploring

FIGURE 7. The Min-Max normalization value of four parameters in the
orthogonal experiment.

FIGURE 8. (a) VW06 and (b) VW34 dataset minimum makespan result of
GA, VNS, and GA-VNS.

the neighborhood of the current solution. The algorithm starts
with an initial solution and then iteratively explores the solu-
tion space by examining the neighborhood of the current
solution. The neighborhood is defined as the set of move
operators used to generate new solutions from the current
solution.

A key feature of the VNS algorithm is that it can use
different neighbors at different stages of the search process.
During the local search, the VNS algorithm swapsMS strings
to find a better solution. By performing transformations on
theMS strings without changing the OS strings, the algorithm
can move beyond local optimization and explore other parts
of the solution space. In addition, the novel approach of the
proposed algorithm is based on multiple parallel machine
allocation, so it is robust even if many transitions occur in
theMS string during scheduling. The pseudocode of the VNS
algorithm is shown in Algorithm 2.

After generating the initial population, the VNS algorithm
randomly selects one number from the set {0, 1}. If the
number is 0, the swapping operator is applied to the MS
string. The swapping operator selects a neighboring MS
string and swaps it with the first MS string. If the number
is 1, an iterative best improvement algorithm is applied to
both the OS and MS strings. This algorithm is based on
greedy descent, where the evaluation function calculates the
makespan, scores the minimum makespan, and then com-
pares it to other makespans. In this sense, the iterative best
improvement algorithm finds the optimal solution at each
iteration and exchanges the current string with the new
string.

79536 VOLUME 11, 2023



Y. Choi et al.: Variable Group Parallel Flexible Job Shop Scheduling in a SMEs Manufacturing Platform

FIGURE 9. Boxplot of the distribution of deviations of the algorithms.

FIGURE 10. VW34 dataset result of (a) GA (b) VNS (c) GA-VNS decoded in
gantt chart.

IV. COMPARISON EXPERIMENTS AND DISCUSSION
The proposed algorithm was implemented in a Jupyter note-
book and executed on a PC equipped with an Intel(R)
Core(TM) i7-10700 CPU@2.90GHz, Windows 10, and
32GBRAM. Since there are no benchmark instances for FJSP
on parallel machines with variable groups, we compared
our proposed algorithm without the variable group condi-
tion to nineteen benchmark instances from Fattahi et al. [37],
which include small size flexible job shop scheduling prob-
lems (SFJS1:10) and the medium size flexible job shop
scheduling problems (MFJS 1:9, 10). GA-VNS is compared

to artificial immune algorithm (AIA) [26], hybrid harmony
search (HHS) [26], SA [18], and genetic algorithm and tabu
search (GA-TS) [15]. The additional ten FJSP benchmarks
(MK01:10) [38] were chosen for comparing the proposed
algorithm with enhanced genetic algorithm (EGA) [39],
improved JAYA algorithm (IJA) [40], improved genetic
algorithm (IGA) [41], and grey wolf optimization algorithm
(GWO) [42]. In addition, we formulated thirty-nine instances
to test the proposed algorithm. Even though the instances
were manually formulated, the datasets were based on the
benchmark dataset of the large size flexible job shop schedul-
ing problems (LFJS 1:5) from Brandimarte [38], and the
VW (1:34) instances are generated randomly by setting the
number of jobs, number of operations, number of machines,
and processing times, and variable groups.

For the GA algorithm to run, key parameters must be deter-
mined. Depending on the parameter settings, the makespan
may vary. Therefore, a comparative approach was used
to determine the optimal parameter settings for GA and
GA-VNS. For the comparison experiment, each parameter
was organized into four levels: a population size group (PS)
consisting of [50, 100, 150, 200, 300], a crossover rate
group (CR) consisting of [0.5, 0.6, 0.7, 0.8, 0.9], a muta-
tion rate group (MR) consisting of [0.1, 0.2, 0.3, 0.4, 0.5],
and a neighborhood search size group (NS) consisting of
[50, 100, 150, 200, 300]. To validate the parameter com-
binations, Min-Max normalization was used as shown in
Equation (3).

x − xmin
xmax − xmin

(3)

The comparison results depend on the Min-Max nor-
malization value of the makespan, using VW 34 dataset.
According to Table 2, the optimal parameter combination
is PS = 200, CR = 0.8, MR = 0.4, and NS = 100. How-
ever, to consider the value range of individual parameters,
the orthogonal experiment was conducted. Fig. 1 shows the
Min-Max normalization values of the four parameters in the
orthogonal experiment. The average of each parameter was
calculated as the Min-Max value. Therefore, the orthogo-
nal experiment allowed the proposed algorithm to identify
a reasonable value range for each factor, and the final best
parameter combination is PS = 200, CR = 0.5, MR = 0.4,
and NS = 150.
Table 3, Table 4, and Table 5 present comparison of the

GA-VNS approach with other algorithms. Cmax refers to
the makespan of each instance, which CPU(s) indicate the
CPU time per second with the RAM memory usage. Addi-
tionally, in Table 5, VGmax refers to the maximum size of
the VG across all jobs in each instance. In the small-size
instances, AIA, HHS, SA, and GA-TS produce the iden-
tical makespan results as GA-VNS due to the small scale
of jobs and machines. Meanwhile, this trend decreases as
the instance size of the increases. GA-VNS achieved the
minimum makespan in most of the experiments except for
one. Despite remarkable results of the proposed method, the
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TABLE 3. Results of VGPFJSP scheduling with SJFS, MJFS, and LJFS.

TABLE 4. Results of VGPFJSP scheduling with EGA, IJA, IGA, and GWO.

computation time is longer than other algorithms. In real
factory scheduling, the speed issue can be regarded as a disad-
vantage that needs to be addressed to lower the computation
time of GA-VNS.

After conducting the several trials with small-sized
instances, Table 3, Table 4, and Table 5 show that GA-VNS
only utilizes the local search algorithm when the number of
jobs is less than 6, as VNS requires less computation time
than GA or the proposed algorithm. Therefore, based on these
results, we conclude that GA-VNS effectively solves the
FJSP in the parallel machines with variable groups in large-
scale problems. SMEs using the algorithm can schedule their
entire production while saving an average of 26% in produc-
tion time compared to other scheduling methods, as demon-
strated by the GAP results in Table 3. Fig. 8 (a) and (b) depict
the computational experiment results of finding the mini-
mum makespan of GA, VNS, and GA-VNS depending on
each population size. Each experiment was conducted by
utilizing the VW06 and VW 34 datasets with a max VG

size of 3 and 4. The results of EGA, IJA, IGA, GWO,
and GA-VNS comparison is shown in Table 4. In the table,
MK01:10 instances are in large-scale problems. While the
GWO has few minimum makespan results, the GA-VNS
outperforms other algorithms. Fig. 9 shows a boxplot of
the deviation distribution of the algorithm results. Since the
proposed algorithm maintains minimum makespan among
other algorithms in the experiments, the proposed algorithm
has a consistent deviation result of 0. In addition, to test
the global searching and local searching abilities of GA and
VNS, we evaluated each algorithm with GA-VNS, as shown
in Table 5.
Utilizing parallel machines in FJSP demonstrates effi-

ciency throughout the makespan. Although the GA-VNS has
a significant difference in minimum makespan compared to
the other algorithms, it takes much time to execute. Nev-
ertheless, the new approach is expected to benefit SMEs
in achieving optimal job shop scheduling and effectiveness.
Fig. 10 shows the computational experiment results of finding
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TABLE 5. Results of VGPFJSP scheduling with VW.

the minimum makespan of GA, VNS, and GA-VNS with the
VW34 dataset with a max VG size of 4.

V. CONCLUSION
In this study, we proposed a job shop scheduling engine
for SMEs. We have devised a platform to apply the pro-
posed a hybrid genetic algorithm and variable neighborhood
search (GA-VNS) to solve the variable group parallel flexi-
ble job shop scheduling problem. Efficient and optimal job
shop scheduling is essential in the manufacturing industry to
reduce production cost and time. To address the real-world
scheduling problems, we propose a new approach of FJSP
on parallel machines with variable groups, which is a com-
plex optimization problem that aims to process the same
job on multiple parallel machines and obtain the minimum
manufacturing period.

In this paper, we design and build a GA-VNS to solve FJSP
on parallel machines with variable groups. Three experiments

were conducted to select the optimal parameters of GA-VNS.
To better validate the robustness of the proposed algorithm,
we demonstrated that it is effective in minimizing the average
makespan through multiple experiments. We used total of
twenty-nine benchmark instances to test the efficiency of
the proposed algorithm. Although the proposed algorithm
outperforms other algorithms, most of the existing FJSP
approaches does not consider the parallel machines with vari-
able groups. Therefore, it is hard to compare with the existing
approaches with the proposed algorithm. These experiments
demonstrated that GA-VNS has excellent performance in
solving FJSP on parallel machines with variable groups.
In order to discover the suitable combination of parame-
ters for GA-VNS, thirty-nine existing benchmark instances
for traditional FJSP instances were modified. In the exper-
iments, we compared the efficiency of global and local
search algorithms and validated the effectiveness of a hybrid
algorithm.
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Overall, the main features of our platform are expected
to bring economic and relational benefits to SMEs. In the
future, we plan to extend the functionality of our flexible job
shop scheduling platform by collecting various manufactur-
ing scheduling cases. Future works are as follows: (1) a new
start time variation algorithm is needed to consider the differ-
ent start times of each operation, and (2) a large scheduling
dataset collection is needed to extend the proposed algorithm
to other domains.
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