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ABSTRACT In this paper, a complete operating cycle (OC) description is developed for heavy-duty vehicles
traveling long distances in the region of Västra Götaland, Sweden. Variation amongst road transport missions
is accounted for using a collection of stochastic models. These are parametrized from log data for all the
influential road parameters that may affect the energy performance of heavy trucks, including topography,
curvature, speed limits, and stop signs. The statistical properties of the developed OC description are
investigated numerically by considering some composite variables, condensing the salient information about
the road characteristics, and inspired by two existing classification systems. Two examples are adduced
to illustrate the potential of the OC format, which enables ease of classification and detailed simulation
of energy efficiency for individual vehicles, with application in vehicle design optimization and selection,
production planning, and predictive maintenance. In particular, for the track used in the first example, a Volvo
FH13 equippedwith a diesel engine, simulation results indicatemean CO2 emissions of around 1700 g km−1,
with a standard deviation of 360 g km−1; in the second example, dealing with electrical fleet sizing, the
optimal proportion shows a predominance of tractor-semitrailer vehicles (70%) equipping 4 motors and
11 battery packs.

INDEX TERMS Operating cycle, mission classification, road transport mission, stochastic modeling,
autoregressive models, Markov models.

NOMENCLATURE
Symbol Description
C Random variable for curvature (m−1).
GR Generator matrix for road type.
GV |rk Generator matrix for speed sign.
K Random variable for continuous road curvature

(m−1).
Lh Stochastic mean hill length (m).
Lh|ri Conditional mean hill length (m).
L̃h|ri Conditional stochastic mean hill length (m).
Lm Mission length (km).
L̃m Stochastic mission length (km).
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Ls Sampling length for topography (m).
Ltot Total road length (km).
LR Mean length vector for road type (km).
L̃R Stochastic mean length vector for road type (km).
LRi Mean length for road type (km).
L̃Ri Stochastic mean length for road type (km).
LV |rk Conditional mean length vector for speed sign

(km).
L̃V |rk Conditional stochastic mean length vector for

speed sign (km).
LVi|rk Conditional mean length for speed sign (km).
L̃Vi|rk Conditional stochastic mean length for speed sign

(km).
MC|ri Conditional stochastic mean log-radius (lnm).
ML|ri Conditional stochastic mean log-length (lnm).
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N̄ ′
C Stochastic expected number of curves

(km−1).
N̄s Stochastic expected number of stops

(km−1).
Pκ Stochastic curviness length ratio.
PR Markov matrix for road type.
P̃R Stochastic Markov matrix for road type.
P̃Ri Stochastic Markov row for road type.
P̃V |rk Conditional stochastic Markov matrix for

speed signs.
P̃Vi|rk Conditional stochastic Markov row for

speed signs.
PV |ri Conditional Markov matrix for speed

signs.
Py Stochastic road grade length ratio.
Rt Random variable for road type.
Tmin|ri , Tmax|ri Conditional stochastic minimum and

maximum recommended time (s).
1T|ri Conditional stochastic delta

recommended time (s).
Ts Random variable for recommended time

(s).
V Random variable for speed sign (kmh−1).
XGTA Multivariate random vector for GTA

(km), (km−1).
XUFD Multivariate random vector for UFD

(km), (km−1).
XRs Multivariate random vector of sOC

parameters (lnm), (ln km).
Y Random variable for road grade (%).
5R Stochastic stationary probability vector

for road type.
5Ri Stochastic stationary probability for road

type.
5V |rk Conditional stochastic stationary proba-

bility vector for speed signs.
5Vi|rk Conditional stochastic stationary proba-

bility for speed signs.
3C|ri Conditional stochastic curve intensity

(ln km−1).
3s|ri Conditional stochastic stop signs inten-

sity (ln km−1).
6C|ri Conditional stochastic std log-radius

(lnm).
6L|ri Conditional stochastic std log-length

(lnm).
6Y |ri Conditional stochastic standard deviation

of topography (%).
eY Error term for topography (%).
gRij Entry of the generator matrix for road

type.
gVij|rk Entry of the conditional generator matrix

for speed signs.
n̄′

C|ri
Conditional expected number of curves
(km−1).

pRij Markov matrix entries for road type.
p̃Rij StochasticMarkovmatrix entries for road type.
pVij|rk Conditional Markov matrix entries for speed

signs.
p̃Vij|rk Conditional stochastic Markov matrix entries

for speed signs.
py|ri Conditional road grade length ratio.
pκ|ri Conditional curviness length ratio.
ri Road type.
rturn Minimum radius of curvature (m).
ts Stop time (s).
tmin, tmax Minimum and maximum recommended time

(s).
v̂|rk Conditional mean legal speed (kmh−1).
vi|rk Conditional legal speed (kmh−1).
y Road grade (%).
κ Continuous road curvature (m−1).
λC|ri Conditional mean log-radius (km−1).
λs|ri Conditional stop signs intensity (km−1).
µC|ri Conditional mean log-radius (lnm).
µL|ri Conditional mean log-length (lnm).
µXRs

Vector-valued mean of random sOC parame-
ters (lnm), (ln km).

πR Stationary probability vector for road type.
πRi Stationary probability for road type.
πV |rk Conditional stationary probability vector for

speed signs.
πVi|rk Conditional stationary probability for speed

signs.
φY |ri Conditional autoregressive coefficient for

topography.
σeY |ri Conditional standard deviation for the innova-

tion in the topography (%).
σC|ri Conditional standard deviation of log-radius

(lnm).
σL|ri Conditional standard deviation of log-length

(lnm).
σY |ri Conditional standard deviation of topography

(%).
Dir(·) Dirichlet distribution.
E(·) Exponential distribution.
Ga(·, ·) Gamma distribution.
N (·, ·) Normal distribution.
P(·) Probability.
E(·) Expectation.
Var(·) Variance.
Cov(·) Covariance.

I. INTRODUCTION
The optimal design of both commercial and heavy-duty
vehicles is traditionally supported by the extensive use of
simulations in dedicated virtual environments, which allow
for a preliminary evaluation of energy performance. However,
at early stages, prototypes are typically tested considering a
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reduced number of transport missions, which should ideally
be representative of the overall intended usage. Instead, repro-
ducing the variation amongst road operations in an accurate
way is essential to correctly estimate the energy performance
in real-world scenarios, depending on the characteristics of
the transportation task [1], [2], [3], [4]. Indeed, the inherent
variation amongst road transport missions may excite differ-
ent responses in ground vehicles, implying the need for a
proper understanding of where and how they are operated,
especially in view of the impellent shift of paradigm towards
full automation and electrification [5], [6]. This also implies
the need of evaluating in isolation the contribution of indi-
vidual parameters like road properties, weather, and traffic
conditions.

In this context, the conventional description in terms of a
driving cycle is not suitable, since all the relevant information
about the operating environment is lost in the process of
synthesizing a representative speed profile [7], [8]. On the
contrary, the operating cycle (OC) format, recently pro-
posed in [9] and [10], allows to explicitly account for the
influence of the surroundings on vehicular performance,
allowing for ease of classification of road operations and
detailed assessment of energy efficiency. Previous works on
the OC representation have however been limited to con-
sidering individual transport operations and the variation
within. Instead, this paper deals with the development of a
complete OC description concerning long-haul heavy-duty
vehicles, considering variation amongst transport missions.
More specifically, the spread in road conditions – which is
reflected in those amongst transport operations and, in turn,
energy performance – is captured by modeling the variation
in the influential parameters.

To better highlight the salient differences between the two
types of representation mentioned above, the next Section I-
A recapitulates the work previously done on driving and
operating cycles, along with introducing the three funda-
mental problems identified by Pettersson: the representation,
variation, and classification problems [9].

A. PREVIOUS WORKS ON DRIVING AND OPERATING
CYCLES
This Section summarizes the previous contributions to the
modeling of driving and operating cycles.

1) LITERATURE REVIEW ON THE DRIVING CYCLE
REPRESENTATION
In the past years, a great deal of research has produced a
number of alternative approaches aimed at synthesizing rep-
resentative transient driving cycles. In fact, whilst the initially
proposed rule-basedmethods have been rapidly abandoned in
favour of statistical techniques [11], [12], these have prolifer-
ated, leading to a plethora of variants. Statistical approaches
are typically preferred when synthetically generated speed
profiles are required to correlate with specific operating
conditions. The considered signals may include information
concerning only the vehicle’s state, e.g., cruising, idling,

acceleration or braking [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], or also account for road grade [24], [25].

The scientific literature distinguishes between four differ-
ent techniques to construct synthetic driving cycles: micro-
trip-based, segment-based, pattern classification and modal
cycle construction [26]. The first method initially gener-
ates several candidate cycles by resorting to the so-called
micro-trip decomposition technique. Multiple approaches
to identifying consecutive micro-trips have been proposed,
either involving random processes or based on the definition
of specific criteria that relate to the modal characteristics of
consecutive excursions. Stochastic optimization algorithms
are then employed to optimally select the final driving cycle
from the initial population [27], [28]. Transient driving cycles
synthesized using the micro-trip decomposition include for
example those for the cities of Hong Kong [29], Pune and
Chennai, India, [23], [30] and Singapore [31]. Segment-based
methods synthesize driving cycles mainly starting from the
available speed and acceleration signals. A major advan-
tage of such a technique resides in that, compared to the
micro-trip-based one, it allows to incorporate details about
the surroundings, including road properties and traffic con-
ditions [4]. However, since the trips are segmented based
on different criteria than consecutive stops, additional con-
straints need to be imposed when transitioning from each
segment [32], [33]. Pattern classification methods partition
data into kinematic sequences by resorting to statistical
techniques [34], [35], [36]. After specifying opportune cri-
teria, the kinematic sequences are subsequently classified
into heterogeneous classes. Finally, by combining different
kinematic sequences based on the statistical properties of
each class, an optimal driving cycle is generated. In this
context, two frequent approaches employed to synthesize rep-
resentative cycles from kinematic sequences are the cluster
and principal component analyses [37]. Maximum likelihood
estimation techniques are used to cluster the measured speed
data into snippets in the modal cycle method [18], [24],
[25]. Relying on aMarkov property argument, supported also
theoretically by the analyses conducted in [38], driving cycles
are constructed starting from opportunely selected snip-
pets. Advanced formulations, including multi-dimensional
Markov chains that integrate speed signals with information
concerning the acceleration and road grade, or variable pas-
senger loads, have been proposed for example in [24], [25],
[26]. A summary of these different techniques, with their
advantages and disadvantages, is given in Table 1.
The above mentioned approaches are all aimed at synthe-

sizing a unique representative transient cycle starting from a
large amount of data. In fact, a single driving cycle is usually
sufficient when it comes to apply conventional algorithms and
routines for the purposes of vehicle design optimization and
selection. In this context, the need for an accurate, individual
description is referred in the literature as the representation
problem [9]. On the other hand, reproducing variation in
transport operations may lead to a more accurate prediction
of the energy performance of road vehicles. Ideally, departing
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from a single representation of the usage, driving cycles may
be constructed to be statistically equivalent, so as to produce
a meaningful spread in performance. This line of research has
been pioneered by the authors of [32] and [33], who have
proposed a procedure that allows for the synthesis of multiple
driving cycles, departing from a single trip. More specifically,
it was shown in [32] and [33] that the energy performance of
electric city buses is highly sensitive to fluctuations in both
the number of stops and passenger load. Indeed, by treating
both quantities as random variables, they deduced that the
energy consumption follows approximately a normal distri-
bution. The variability connected to the randomness of the
external surroundings, concerning for example temperature
and rolling resistance, was also investigated in [39], where
the inherent uncertainty was modeled by adding extensive
noise to the assumed nominal value for the quantities in
interest. The fundamental contribution of [32], [33], and [39]
essentially explored the variation problem, as defined in [9].
Concerning specifically the driving cycle description, the
technique introduced in [32] and [33] is renamed stochastic
generation in Table 1.

Along with the representation and variation problems,
however, Pettersson also defines the so-called classifica-
tion problem [9], in conjunction with the need to properly
qualify a road mission (or an entire transport applica-
tion) using a simplified set of metrics and labels. This
is mainly motivated by the fact that, rather than refer-
ring to a certain speed profile, vehicle manufacturers and
operators usually describe the usage concerning the charac-
teristics of the environment, which are easier to interpret.
In this context, whilst the conventional description in terms
of a driving cycle has been successful in addressing the
first two problems indicated in [9], the latter still deserves
particular attention. In fact, a major limitation connected
with the driving cycle representation is that the informa-
tion about the operating environment – including param-
eters that may dramatically impact energy consumption
[1], [2], [3], [4], [40], [41], [42], [43], [44], [45], [46] – is
often lost or accounted for only implicitly during the synthe-
sis of a representative speed profile.

2) LITERATURE REVIEW ON THE OPERATING CYCLE
REPRESENTATION
The OC representation is a relatively novel description devel-
oped in [9], [47], and [48] and further extended in [49] and
[50]. As opposed to a driving cycle, in the OC framework, the
mission properties are modeled separately from those of the
surroundings, without postulating a reference speed profile.
The external stimuli originating from the operating environ-
ment are then converted dynamically into the desired speed
by using a driver model. This expedient allows describing
road transport missions in a way that is, to a large extent,
independent of both driver and vehicle.

The OC format comprises three levels of representa-
tion and describes a physical quantity via deterministic or

statistical models. More specifically, the bird’s-eye view is
conceived as a high-level representation, where roadmissions
are labeled by resorting to simplified indicators. It is intrinsi-
cally suited to cope with the classification problem [9]. The
stochastic operating cycle (sOC) consists of a more formal
description and collects all the random parameters that are
needed to reproduce the statistical properties of a transport
operation. It is the mathematical tool suggested in [9] to
address the variation problem. Finally, the deterministic oper-
ating cycle (dOC) may be interpreted as a single realization
of an sOC, and includes a detailed representation of the
operating environment. Similar to a driving cycle, it has been
mainly conceived to deal with the representation problem [9].

Stochastic and deterministic models are currently available
for road parameters [47], [48], weather, and traffic condi-
tions [49]. Moreover, the authors of [50] have recently shown
how to build a piece of consistent and cohesive machinery
that connects all three levels of representation, by establishing
a set of formal relationships between the bird’s-eye view
metrics and the statistical models included in the sOC. In [50],
this operation was strongly inspired by two already existing
classification systems, namely the Global Transport Appli-
cation (GTA) [51] and the User Factor Description (UFD)
adopted by Volvo and Scania, respectively.

B. CONTRIBUTION OF THIS PAPER
So far, the application of the OC format has been limited to
individual missions. As alreadymentioned, a single operating
cycle, opportunely selected to be representative of the overall
usage, may be sufficient for the purpose of design optimiza-
tion, whereas the energy efficiency of road vehicles should be
more comprehensively assessed by considering the intended
transport application.

Therefore, from a conceptual and methodological perspec-
tive, the first contribution of this paper consists of exploring
an additional dimension of the OC framework, concerning
the distribution of missions – mainly with respect to the road
characteristics, e.g., topography, curvature, speed limits, and
stop signs1 – over the entire population defining the trans-
port application. The focus is on heavy-duty trucks traveling
distances typically longer than 50 km. The investigation is
systematically conducted by exploiting the statistical and
hierarchical structure of the OC description. In particular,
the sOC parameters (interpreted as realizations for individ-
ual road operations) are modeled in this paper as random
variables when defined on the entire population of missions.
By doing so, it becomes possible to capture variation in usage
due to modifications in the statistical properties of the envi-
ronment, ultimately resulting in the external stimuli affecting

1As explained in Section I-A2, the current OC description does contain
also models for weather and traffic conditions. However, these are not
included in the paper. There are multiple reasons for this, the first being that
the parameters of the weather and traffic models cannot be directly estimated
from log data, and thus cannot provide information about variation within the
transport application. If needed for simulation purposes, traffic and weather
models may eventually be incorporated starting from previous contributions
by the authors [49], [50].
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TABLE 1. Summary of the different driving cycle and operating cycle-based descriptions of a road transport mission, with their advantages and
disadvantages.

the vehicle’s behaviour. The first part of the work is hence
dedicated to the stochastic modeling of the sOC parameters.
As it is traditionally in the spirit of the OC representation,
which fervently endorses the principle of parsimony, these
are assumed to be independent of each other and to follow
simple distributions that allow for ease of interpretation.

A numerical analysis of the resulting OC description is
then conducted. This operation heavily relies on the non-
bijective connection between the sOC and the bird’s-eye
view levels of representation and builds upon some recent
results established in [50]. The abstract problem of properly
classifying an OC model intimately relates to the aspect of
representativeness and, in fact, may specifically be refor-
mulated in question form: ‘‘what type of usage is this OC
representative of, and what can be done with such informa-
tion?’’. In this context, the interrogation is everything but
trivial. Indeed, as opposed to the conventional driving cycle
representation, for an OC, describing a transport mission
directly in terms of the operating environment, the notion of
representativeness should be referred to the characteristics of
the surroundings. To answer this question, the statistical prop-
erties of the parametrized OC are investigated concerning
some composite variables, which, apart from reducing the rel-
atively large dimension of the original problem, condense the

salient features of the individual road missions. In this paper,
the definition of the composite variables is inspired by two
different classification systems in use by Volvo and Scania,
respectively. Moreover, a simple methodology is proposed
to synthesize a single set of representative sOC parameters,
starting from their original distributions.

The second contribution of this paper is to illustrate some
applications of the whole OC machinery to the processes
of virtual design, selection and testing, by taking advan-
tage of all three levels of representation comprised in the
format. To this end, two different examples are adduced.
The first focuses on the single-vehicle perspective and is
aimed at assessing energy efficiency in a simulation environ-
ment. The second example deals with the optimal selection
and production planning, based on the detailed distribu-
tion of the road missions, in the footsteps of [52], [53],
[54]. The methods of data synthesis used in the paper are also
implemented in MATLAB/Simulink® environment.

The remainder of the paper is organized as follows.
Section II provides a general introduction to the OC descrip-
tion, with details about each level of representation and the
relationships between them. In Section III, the fundamental
theory for stochastic road and mission models is recapitu-
lated and extended to account for variability in the transport
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application.Moreover, the parametrization of the roadmodels
is carried out using log data collected from heavy-duty vehi-
cles during real-world operations. Section IV is devoted to the
numerical analysis of the developedOC description, using the
composite variables inspired by the GTA and UFD systems
adopted by Volvo and Scania. An example of application
of the entire OC format for vehicle design, selection, and
testing is then adduced in Section V. A comprehensive dis-
cussion about the methodology presented in this paper, along
with its limitations and possible extensions, is presented in
Section VI. Finally, the main conclusions, together with some
directions for future research, are summarized in Section VII.

II. BACKGROUND ON THE OPERATING CYCLE
The OC format consists of a mathematical framework that
describes road transport missions and applications directly in
terms of the operating environment. As already mentioned,
it comprises three main levels of representation: the bird’s-
eye view, the sOC, and the dOC, arranged in a hierarchical
fashion, as shown in Figure 1. These three different descrip-
tions address the classification, variation and representation
problems, respectively. In turn, each description groups the
corresponding models or parameters into four common cat-
egories: road, weather, traffic and mission [9], [47], [49].
This paper limits itself to consider the road category, whereas
weather and traffic have been discussed extensively in previ-
ous works [10], [49], [50]

A. THE BIRD’s-EYE VIEW
Positioned at the top of the pyramid in Figure 1, the bird’s-eye
view may be regarded as a high-level description of a trans-
port mission. It essentially consists of a collection of labels
and metrics, which target either individual missions or entire
applications, in order to provide an intuitive understanding
of how vehicles are operated on the road. This description is
discrete in nature, meaning that it assigns a countable number
of labels to a given road mission, corresponding to operating
classes that cannot overlap. The bird’s-eye view is the main
tool to address the classification problem [9]. In previous
works, and also in this paper, the metrics and labels for the
bird’s-eye view have been borrowed from existing classifi-
cation systems (see, in particular, [50]). An example with
the topography parameter is adduced below considering the
GTA representation adopted by Volvo, which prescribes four
different levels [51]:

1) FLAT if slopes with a grade of less than 3% occur
during more than 98% of the driving distance.

2) P-FLAT if slopes with a grade of less than 6% occur
during more than 98% of the driving distance.

3) HILLY if slopes with a grade of less than 9% occur
during more than 98% of the driving distance.

4) V-HILLY if the other criteria are not fulfilled.

In this case, the bird’s-eye view labels coincide with the oper-
ating classes FLAT, P-FLAT (predominantly flat), HILLY
and V-HILLY (very hilly), whilst the metrics are the values

imposed on the road grade (3%, 6% and 9%, respectively)
and the probability of occurrence, identically equal to 0.98.
Similarly, the User Factor Description (UFD) proposed by
Scania considers only three levels:

1) FLAT if max 20% of the road section inclines more
than 2%.

2) HILLY if between 20-40% of the road section inclines
more than 2%.

3) V-HILLY if more than 40% of the road section inclines
more than 2%.

Apart from the number of classes, the main difference with
the previous example is that the label is determined by varying
the probability of occurrence and specifying a constant value
for the threshold on the road grade 2%. For completeness,
further details about the GTA and UFD classification systems
may be found in Appendix VII-B.

The bird’s-eye-view description plays a fundamental role
in the processes of optimal design and selection of road
vehicles, depending on the characteristics of the intended
transport application, i.e., the usage. This aspect is discussed
in higher detail in Section V.

B. THE STOCHASTIC OPERATING CYCLE
Being a description with an intermediate level of detail, the
sOC condenses the statistical properties of a road mission and
serves the purpose of investigating the variation problem [8],
[16], [20]. The sOC makes use of a collection of stochastic
models arranged in a hierarchical fashion, which are in turn
equipped with their own set of stochastic parameters (mean,
variance, et cetera). The modularity of the sOC description is
achieved by assuming that its stochastic models are mutually
independent. Some sort of realism is however preserved by
introducing two sets of models: primary and secondary ones
(subordinate). In this way, it becomes possible to build a
composite, highly diversified structure, which guarantees a
certain degree of interaction between the secondary models.
At the same time, any need for considering complicated mul-
tivariate distributions is completely eliminated. Specifically,
in the sOC description, primary models for the road and
weather categories intimately tied in with the notions of road
type and season, as explained more extensively in [50] and in
Section III-A, limited to the road models. For completeness,
Table 2 lists the complete set of stochastic models, plus their
relative categories.

C. THE DETERMINISTIC OPERATING CYCLE
The dOC level represents the most adequate tool to model an
operating cycle when the need is on representing individual
transport missions. It was specifically conceived in [9] as a
virtual environment for optimal vehicle design, virtual testing
and synthesis of control algorithms, with the objective of
addressing the already mentioned representation problem.
Its modular structure permits the addition, modification and
removal of models and parameters in a very straightforward
way.
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FIGURE 1. Schematic representation of the pyramidal structure of an OC. A certain transport application includes all
the missions that are equivalent according to the bird’s-eye-view description (GTA system). The variation within a
transport application is taken instead into account by the sOC level of representation. Finally, the dOC description
reproduces the variability amongst road operations that are statistically similar. In the figure, OCs and OCd denote
the sets of sOC and dOC parameters, respectively. The diagram assumes a single road type, and thus a unique value
for the topography variance σY (the reader is referred to Section III-B1 for clarifications).

TABLE 2. Stochastic models and deterministic parameters (dOC parameters) for the sOC and dOC representations. The definitions linear and constant
refer to the interpolation strategy adopted for each parameter. The mathematical model of Dirac delta is specified when a parameter is interpreted as an
event.

In particular, the dOC regards the sOC models as param-
eters, interpreted as discrete functions of time and position.
Some parameters – like those linked to the road or weather
categories – depend explicitly on either position or time;
others, like the ones marked in the traffic category, on both.
Additionally, the information contained in each parameter
is encoded using a scalar or a vector-valued signal (see

dimensionality in Table 2), and supplemented with a suitable
interpolation model.

D. RELATIONSHIPS BETWEEN DESCRIPTIONS
The three levels of description presented above are intimately
related, and ordered hierarchically, as already illustrated in
Figure 1. The connection existing between the sOC and
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dOC representations is perhaps the most immediate to com-
prehend. Considering a fixed set of stochastic parameters,
a dOC may be interpreted as an individual realization of its
equivalent sOC description. In fact, a dOC may always be
synthesized starting from a fully parametrized sOC. In this
context, it should be emphasized that multiple dOCs gen-
erated starting from the same set of sOC parameters are
statistically identical, but might exhibit significant differ-
ences in practice. On the contrary, considering a specified set
of stochastic models, an sOC parametrized from a given dOC
is always unique. From these reflections, it may be concluded
that the relationship between the dOC and sOC levels is non-
bijective.

Analogous considerations hold when approaching the
higher level of the pyramid, concerning the relationship
between the sOC and bird’s-eye view, which are both statisti-
cal descriptions. The main difference resides in the resolution
of such representations. In fact, the bird’s-eye view generally
encompasses an entire transport application, whereas the sOC
usually targets road operations. In this context, the formal
relationship subsisting between the two levels may be eluci-
dated considering again the topography classes of the GTA
system, whose thresholds are translated by the bird’s-eye
view into a value for the variance of the road grade. Departing
from an individual set of sOC parameters, it is clear that such
value may always be determined uniquely. By contrast, for
a predetermined GTA class, corresponding to a continuous
interval of variances, infinitely many sOCs may exist in
theory. In this context, it has recently been shown in [50]
that analytical relationships may be established between the
sOC parameters and the set of bird’s-eye view metrics and
thresholds, by formulating the connection between the two
representations in terms of probability and expectations. The
existence of such mathematical expressions allows labeling a
given sOC according to the specific classification system.

However, the attention has been restricted so far to consider
individual road missions, whereas, as already explained, the
bird’s-eye view is mainly intended for the classification of
entire transport applications. Therefore, this paper precisely
investigates the distribution of the sOC parameters over the
population of missions that define the application. The new
dimension added to the problem permits both qualitatively
and quantitatively categorizing the usage from the perspective
of energy performance. The analysis is limited to the road
models and focuses principally on heavy-duty trucks operat-
ing on long distances.

III. STOCHASTIC ROAD MODELS
The distribution of the transport missions for long-haul heavy
trucks is analyzed departing from the stochastic road models
included in the sOC representation [47], [49], [50]. As briefly
anticipated in Section II-B, these are divided into primary
and secondary ones. The primary model essentially defines
the road type, whereas the secondary models describe the
spatial evolution of the quantities in interest along the road,
and inherit their parameters from the corresponding road

type [47]. The structure of the model is exemplified in
Figure 2, where only three road types, namely urban, rural,
and highway, have been considered. In this paper, the mod-
els are parametrized starting from log data collected from
33 heavy-duty vehicles operating in the area of Västra Göta-
land, Sweden. Hereinafter, the dataset will be consistently
referred to as the OCEAN dataset. Details about the OCEAN
dataset and the estimation techniques used for the following
analyses are omitted from the current discussion and reported
for completeness in Appendix VII-A. Instead, Sections III-A
and III-B recall the stochastic models for road types, topog-
raphy, curviness, stop signs, and legal speeds. Furthermore,
a novel formulation for the mission length is introduced in
Section III-C.
It is worth clarifying that all the road models discussed in

this paper have already been validated in previous works [9],
[47], [49], [50]. Moreover, whilst the mathematical structure
of such models is very general and not limited to a specifi-
cal geographical area, concerning more precisely the Västra
Götaland region, a comparison between the actual distribu-
tion of the road properties and the parametrized descriptions
is shown in [50].

In the remainder of the paper, the notation is as follows:
for a generic random variable A : �A 7→ SA, its real-
izations are denoted by a, unless specified otherwise. The
probability and expectation operators are denoted as P(·)
and E(·), respectively; variance and covariance as Var(·) and
Cov(·). The set of real numbers is denoted by R; the sets of
positive and negative real numbers are denoted by R≥0, R≤0
when including the zero and by R>0, R<0 when excluding
it. The set of positive integer numbers is denoted by N,
whereas N0 denotes the extended set of positive integers
including zero, i.e., N0 = N ∪ {0}. Sequences of random
variables are denoted by {Ak}k (the subscript k is often
dropped when the clarity allows). Finally, the acronyms PMF,
PDF and CDF stand for probability mass function, proba-
bility density function, and cumulative distribution function,
respectively.

A. ROAD TYPES
The road type represents the primary model for the road cate-
gory. In particular, the sOC description models the sequence
of road types along the vehicle’s route depending on the
value of the legal speed on each road segment. The two
notions are intimately related, based on what was suggested
previously in [55]. The stochastic model presented in this
paper firstly postulates the existence of nr different road types
rt ∈ {r1, . . . , rnr }. These are uniquely defined starting from a
sequence of nr−1 characteristic speeds, ordered in ascending
magnitude (a specific number nv|ri of speed signs is asso-
ciated with each road type). The characteristic speeds mark
the transition between two consecutive road types, which
are in turn treated as random variable Rt, assuming values
rt ∈ SRt = {r1, . . . , rnr }, as a function of the speed sign
V (x) along the road. The resulting description consists of
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FIGURE 2. Structure of the road category in the sOC representation, with the primary (road types) and secondary
(subordinate) road models.

a sequence of positions along the route, marked with the
corresponding road types {Xk ,Rt,k}k∈N.

Since the Markov property is assumed to hold [56], [57],
the conditional probability of transitioning to a specific road
type reads

P
(
Rt,k+1 = ri,k+1

∣∣Rt,1 = ri,1, . . . ,Rt,k = ri,k
)

= P
(
Rt,k+1 = ri,k+1

∣∣Rt,k = ri,k
)
, (1)

where the generic road type ri is an element of the road type
vector Rt = [r1 . . . rnr ]

T. Moreover, by modeling the
locations Xk for the road types as a Poisson process, the com-
plete model is then described by a continuous-time Markov
chain, and parametrized by the entries pRij of the single-step
transition matrix PR ∈ Rnr×nr

≥0 and the nr intensities λRi,
reading

λRi =
1
LRi

, (2)

being LRi the mean length of the road type ri, collected in
a vector LR = [LR1 . . . LRnr ]

T. It should be noticed that,
in the construction above, no self-transitions are allowed,
i.e., pRii = 0, i = 1, . . . , nr , which automatically implies∑

j̸=1 pRij = 1, i = 1, . . . , nr .
Starting from the stochastic model for road types detailed

above, the stationary πR distribution2 of the overall process
may be derived as the solution of the system3 [50]

πRGR = 0, (3a)
nr∑
i=1

πRi = 1, (3b)

2It is supposed that there exists a unique stationary distribution.
3One of the equations in (3a) is dependent on the others, since, by con-

struction, summing the columns of the infinitesimal generator gives the zero
vector.

where the entries gRij = gRij(pRij,LRi) of the generator matrix
GR may be calculated as

gRij
(
pRij,LRi

)
=


λRipRij =

pRij
LRi

, i ̸= j,

−λRi = −
1
LRi

, i = j.
(4)

Equations (3) and (4) describe the stationary distribution of
the road types along a road transport mission, as a function of
the observed number of transitions between road types and
their mean lengths. The analytical expression for the station-
ary vector πR = πR(PR,LR) is reported in Appendix VII-C1
for nr = 3.
For an individual transport mission, the total probability

and expectation of a random variable may be calculated by
weighted summation over the different road types, respec-
tively, using the total laws for probability, expectation and
variance. Indeed, in the sOC representation, road segments
belonging to the same road type are described using the
same values for the sOC parameters of the secondary models.
Denoting with A a generic random variable, the formulae are
hence given as follows:

P(A) =

nr∑
i=1

P(A | Rt = ri)P(Rt = ri)

=

nr∑
i=1

P(A | Rt = ri)πRi(PR,LR), (5a)

E(A) =

nr∑
i=1

E(A | Rt = ri)P(Rt = ri)

=

nr∑
i=1

E(A | Rt = ri)πRi(PR,LR), (5b)
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where the analytical expressions for the probabilities P(A |

Rt = ri) and expectationsE(A | Rt = ri) may be derived start-
ing from the secondary models illustrated in Section III-B.
On the other hand, the sOC parameters for the road type

may also be interpreted as realizations of random variables
describing their distributions amongst transport applications.
Starting with the probabilities pRij of the single-step transi-
tion matrix, it should be observed that they need to satisfy∑

j̸=i pRij = 1, i = 1, . . . , nr , since, by model construction,
there are no self-transitions. Therefore, denoting with P̃Ri
the vector of random variables whose realization PRi collects
the probabilities pRij for each row (with i ̸= j), a Dirichlet
distribution is proposed in this paper, i.e., P̃Ri ∼ Dir(αRi).
The stochastic row vectors P̃Ri may be concisely organized
into a stochastic matrix P̃R.

For a given road mission, the mean lengths LRi, i =

1, . . . , nr , may be analogously interpreted as realizations of
random variables L̃Ri defined over the space of the entire
transport application. In this paper, the stochastic lengths L̃Ri
are assumed to be independently distributed. More specifi-
cally, they are modeled as lognormal distributions, that is,
ln L̃Ri ∼ N (µL̃Ri

, σ 2
L̃Ri

). The stochastic vector of mean hill

lengths is accordingly denoted as L̃R = [L̃R1 . . . L̃Rnr ]
T.

For what follows, it is crucial to understand that treating
the matrix P̃R and the vector of mean hill lengths L̃R as
stochastic variables implies that the stationary distribution
of the road type becomes a function of random variables,
and thus, a random variable itself. Hereinafter, the stochastic
counterpart of the stationary vector πR is denoted by 5R =

5R(P̃R, L̃R) when considering a population of random mis-
sions. In turn, it may be easily realized that the probabilities
and expectations calculated according to (5) may in turn be
interpreted as randomvariables, depending on the distribution
of the primary and secondary road models.

Figure 3 illustrates the distribution of the mean lengths L̃Ri,
i = 1, 2, 3, for the three road types considered in the paper,
namely urban, rural, and highway, along with lognormal
model fitted from the OCEAN dataset.

B. SECONDARY ROAD MODELS
This Section illustrates the secondary road models, which
include road topography, curviness, stop signs, and speed
signs.

1) ROAD TOPOGRAPHY
In the sOC description, the road topography Yk is assumed
to behave as a stationary, first-order autoregressive AR(1)
model [40], [41]:

Yk = φY |riYk−1 + eY ,k , (6a)

eY ,k | Rt = ri ∼ N
(
0, σ 2

eY |ri

)
, (6b)

where φY |ri ∈ (−1, 1) and σeY |ri ∈ (0, ∞) are the two
characteristic parameters that depend on the given road type.
According to (6), on each road type, the road grade itself

follows a normal distribution with zero mean [58], i.e.,

Y | Rt = ri ∼ N
(
0, σ 2

Y |ri

)
. (7)

Note that in the above (7) the subscript k has been dropped
for the sake of notation.

Departing from (6) and (7), the conditional variance of the
process may also be deduced as

σ 2
Y |ri =

σ 2
eY |ri

1 − φ2
Y |ri

, (8)

where the autoregressive coefficient φY |ri may be also reinter-
preted as a function of the mean hill length Lh|ri for the road
type ri:

φY |ri = sin
(

π

2
− 2

Ls
Lh|ri

)
, (9)

being Ls is the sampling length. Owing to these assump-
tions, the conditional standard deviation σY |ri and the mean
hill length Lh|ri condense all the information about the road
topography.

An important indicator that may be used to qualify a road
segment with respect to the topography model is the propor-
tion py|ri between the length of the road for which the absolute
value of the road grade is below a certain specified threshold
y, and the total length. As shown again in [50], this may be
stated mathematically in terms of a conditional probability as
follows:

py|ri
(
y, σY |ri

)
≜ P

(
|Y | ≤ y

∣∣ Rt = ri
)

= 28
(

y
σY |ri

)
− 1, (10)

where 8(·) denotes the CDF of the normal distribution.
Equation (10) is valid for a single road type; however, since
the ratio py|ri may be interpreted as a conditional probability,
the total probability may be calculated with the aid of (5a).
Combining the example in Section II-A with (8), it may be
inferred that, if a single road type is considered (nr = 1),
the standard deviation σY ≡ σY |r1 already incorporates all
the information needed to classify a road segment according
to both the GTA and UFD systems. For this simplified case,
the values of σY ≡ σY |r1 marking the transition between the
different classes have been calculated in [50].

For a fixed road type, the characteristic parameters σY |ri
and Lh|ri are allowed to vary over the entire population of
transport missions.More spefically, in this paper, both param-
eters are modeled statistically using a lognormal distribution.
Denoting with 6Y |ri and L̃h|ri the random variables for the
road topography standard deviation and mean hill length,
ln6Y |ri ∼ N (µ6Y |ri

, σ 2
6Y |ri

), and ln L̃h|ri ∼ N (µL̃h|ri
, σ 2

L̃h|ri
).

Clearly, also in this case, treating the variance of the process
as a random variable, the proportion py|ri in (10) becomes,
in turn, a random variable. Figure 4 shows the distributions of
both quantities for each road type (namely urban, rural, and
highway), together with the fitted lognormal models, whose
parameters were estimated from the OCEAN dataset.
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FIGURE 3. Measured distributions for road type lengths (urban, rural, highway), compared to the fitted lognormal models.

FIGURE 4. Measured and fitted lognormal distributions for the road topography parameters, for
different road types (urban, rural, and highway): (a) topography standard deviation
distributions; (b) mean hill length distributions.

2) ROAD CURVINESS
The sOC representation treats the curves along the road as
isolated events, modeled using a sequence of locations, cur-
vatures, and lengths {Xk ,Ck ,Lk}k∈N. The resulting model –
referred to as the curviness of the road – has been introduced
in [47], and is inspired from the description proposed in [59].
In particular, for each road type, the locations are assumed to
follow a Poisson distribution, i.e.,

Xk+1 − Xk | Rt = ri ∼ E
(
λC|ri

)
, (11)

where the intensity λC|ri ∈ (0, ∞) should be interpreted
as the mean number of curves per unit of distance along a
certain road type. The curvaturesCk is modeled as a modified

lognormal distribution as follows:

1
Ck

= R′
k+rturn, lnR′

k | Rt = ri ∼ N
(
µC|ri , σ

2
C|ri

)
, (12)

where the parameter rturn ∈ (0, ∞) appears because roads
are constructed with a lower bounded radius. In theory, rturn
is not a statistical measure, but rather an inherent property of
the road type. In this paper, the same value of rturn is used
for all the road types. Finally, the lengths of the curve Lk are
modeled using a lognormal distribution:

lnLk | Rt = ri ∼ N
(
µL|ri , σ

2
L|ri

)
. (13)

Two important indicators that may be used to qualify
a road based on the curviness parameter, using a reduced
number of variables, relate to the expected number n̄′

C|ri
of
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curves per unit of length for which the curvature exceeds a
minimum value, and to the proportion of the road pκ|ri for
which the curvature is below a threshold κ . By defining with
N ′
C a Binomial variable describing the number of curves for

which the curvature exceeds a minimum threshold κ , the first
criterion may be formalized mathematically as a conditional
expectation [50]:

n̄′

C|ri

(
κ, λC|ri , µC|ri , σC|ri

)
≜ E

(
N ′
C

Ltot

∣∣∣∣ Rt = ri

)
=

λC|ri

2

[
1 + erf

(
ln(1/κ − rturn) − µC|ri

√
2σC|ri

)]
, (14)

where Ltot denotes the total length of the road segment.
Equation (14) is the same type of relationship prescribed by
the UFD system (see Appendix VII-B). In particular, it may
be observed that the characteristic parameters µL|ri and σL|ri
do not appear in (14), implying that two roads which differ for
the mean length and variance of the curvature are equivalent
according to this criterion.

On the other hand, describing a segment in terms of curva-
ture distribution along the road, as done by the GTA system,
provides a more general relationship, involving all the char-
acteristic parameters of the model. To this end, the curvature
may be regarded as a continuous functionK (X ) of the coordi-
nate along the road, interpreted in turn as a stochastic variable.
Accordingly, the conditional distribution of the curvaturemay
be derived approximately as follows [50]:

pκ|ri

(
κ, λC|ri , µC|ri , σC|ri , µL|ri , σL|ri

)
≜ P (K ≤ κ | Rt = ri)

= 1 −
λC|ri

2
exp

(
µL|ri +

σ 2
L|ri

2

)
×

[
1 + erf

(
ln(1/κ − rturn) − µC|ri

√
2σC|ri

)]
. (15)

Equations (14) and (15) correspond again to a conditional
expectation and probability, respectively, and thus the total
expectation and probability may be calculated using (5). The
resulting formulae would completely qualify a single trans-
port mission with respect to the curviness model.

However, all the characteristic parameters also vary over
the set of missions defining the transport application. Starting
with the curve intensity, it is assumed that, for each indi-
vidual road type, the corresponding stochastic variable is
lognormally distributed, that is, ln3C|ri ∼ N (µ3C|ri

, σ 2
3C|ri

).
The comparison between the measured distributions and the
models fitted from the OCEAN dataset is shown in Figure 5.

When the log-radius described by (12) is allowed to vary
over the population of missions, the corresponding random
variables MC|ri and 6C|ri are modeled using a normal and
lognormal distribution, respectively. In formulae: MC|ri ∼

N (µMC|ri
, σ 2

MC|ri
), and ln6C|ri ∼ N (µ6C|ri

, σ 2
6C|ri

). Figure 6

illustrates the comparison between the measured distribution
and the fitted models for both quantities, according to the
three road types considered in the paper.

Similar models are also employed to describe the variation
of the parameters for the curve length modeled as in (13).
Indeed, the following ditributions are assumed: ML|ri ∼

N (µML|ri
, σ 2

ML|ri
), and ln6L|ri ∼ N (µ6L|ri

, σ 2
6L|ri

). The ana-
lytical pdf, together with the distribution extracted from the
OCEAN dataset, is plotted in Figure 7 for both quantities.

Generally speaking, it may be noticed that the agreement
is satisfactory for the variables relating to the urban and rural
roads, whereas the data collected on highways exhibit larger
discrepancies with the fitted model, and more skewed distri-
bution. The reason for that, which partially legitimates the
assumptions on the chosen distribution, should be ascribed to
the method applied in estimating the curvature from log data,
which relies on measurements of the yaw rate. In this context,
the reaction of the driver to very large values of the curvature
radius may not be captured by such measurements, implying
that small curvatures are automatically filtered out.

It is worth observing that, since all the characteristic
parameters of the model are regarded as random variables
when considering a population of missions, the quantities
n̄′

C|ri
and pκ|ri in (14) and (15) also become random variables.

3) STOP SIGNS
In the sOC representation, stop signs4 are treated as inde-
pendent events and described by the sequence {Xk ,Ts,k}k∈N,
where Xk is again the location, and Ts,k is interpreted as
a recommended time. A Poisson model similar to that in
(11), but with intensity λs|ri , is used to model the distance
between two consecutive stops. Moreover, for each road type,
the recommended time Ts,k is supposed to be uniformly
distributed between a minimum and maximum value, i.e.,
Ts,k | Rt = ri ∼ U(tmin|ri , tmax|ri ). Usually, the conditional
intensities λs|ri are sufficient to completely qualify a road
mission with respect to the stop signs model, whereas the stop
times are not involved in the reduced description.

Considering the entire population of missions spanning the
transport application, the corresponding random variables for
the intensity of the event, and the minimum and maximum
times are denoted by 3s|ri , Tmin|ri and Tmax|ri , respectively.
As usual, the conditional intensity 3s|ri is modeled using a
lognormal distribution, that is, ln3s|ri ∼ N (µ3s|ri

, σ 2
3s|ri

).
The minimum and maximum values for the recommended

waiting time are instead modeled using a Gamma and modi-
fied Gamma distribution, respectively. In particular, it is first
assumed that the minimum time is Gamma distributed with
shape and rate parameters αTmin|ri , βTmin|ri ∈ (0, ∞), i.e.,
Tmin|ri ∼ Ga(αTmin|ri

, βTmin|ri
). Then, the stochastic model

for the maximum time is constructed by adding a positive
increment, that is, Tmax|ri = Tmin|ri + 1T|ri , where 1T|ri ∼

Ga(α1T|ri
, β1T|ri

). This approach ensures that any realization

4Actually, a similar model is also used for speed bumps, which are not
considered in the present paper.
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FIGURE 5. Measured and fitted lognormal distributions for the curve intensity, for different road types (urban, rural, highway).

FIGURE 6. Distributions of curve log-radius parameters for different road types (urban, rural, and
highway): (a) curve mean log-radius; (b) curve std log-radius.

tmax|ri will always be greater than the corresponding lower
limit tmin|ri . Apart from obvious advantages connected with
its support, the Gamma distribution is chosen in this paper
for two additional reasons, the first being that it represents a
generalization of the exponential distribution, and the second
that, if the rate parameters βTmin|ri and β1T|ri

accidentally
coincide, then the maximum time Tmax|ri becomes itself
Gamma distributed.

The distributions for the stop signs parameters are com-
pared to the proposed stochastic models in Figures 8 and 9.

4) SPEED SIGNS
Similarly as for the model introduced in Section III-A, for a
given road type5 rk , the speed signs are regarded as piecewise

5In this section, the index k is used for the road type to avoid confusion
with the indexing of the speed sign probabilities.

constant, right-side continuous functions of the position [47].
In particular, speed signs are modeled as a random process
V = V (x) along with the position on the road. Accordingly,
the variable V (x) assumes discrete values in the state space
SV |rk = {v1|rk , . . . , vnv|rk |rk }, where nv|rk denotes the finite
number of possible speed limits for the road type rk . Also in
this case, the completemodel collects a sequence of positions,
marked with the corresponding values for the legal speed,
i.e., {Xk ,Vk}k∈N. More specifically, the sequence of speed
limits is approximated by using a Markov chain [56], [57],
and assumes discrete values vi|rk organized into the speed
vector v|rk = [v1|rk . . . vnv|rk |rk ]

T.
Accordingly, the entries of the conditional Markov

probability matrix PV |rk ∈ R
nv|rk×nv|rk
≥0 fully character-

ize the discrete chain, with pVij|rk modeling the condi-
tional probability of transitioning from state i to state j.
Since no self-transition are allowed, as usual, they satisfy
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FIGURE 7. Distributions of curve log-length parameters for different road types (urban, rural, and
highway): (a) curve mean log-length; (b) curve std log-length.

FIGURE 8. Measured and fitted lognormal distributions for the stop intensity, for different road types (urban, rural, highway).

∑nv|rk
j̸=i pVij|rk = 1, i = 1, . . . , nv|rk . The speed sign locations

are again modeled as in (11). For each road type, the nv|rk
intensities λV1|rk , . . . , λVnv|rk |rk may be deduced from the
corresponding mean lengths LVi|rk :

λVi|rk =
1

LVi|rk
, (16)

collected into a vector LV |rk = [LV1|rk . . . LVnv|rk |rk ]
T.

The resulting model is completely parametrized by the
conditional probabilities pVij|rk and the nv|rk mean lengths
LVi|rk (or, alternatively, the intensities λVi|rk ). Additionally,
it should be observed that the speed V (x) itself behaves
as continuous-time Markov chain [56], since the distance
between consecutive transitions is modeled using a Poisson
process. In particular, the stationary distribution πV |rk of the
overall process may be derived departing from its generator

matrix GV |rk , and satisfies the usual set of equations

πV |rkGV |rk = 0, (17a)
nv|rk∑
i=1

πVi|rk = 1, (17b)

where the entries gVij|rk = gVij|rk (pVij|rk ,LVi|rk ) of GV |rk are
given by

gVij|rk
(
pVij|rk ,LVi|rk

)
=


pVij|rk
LVi|rk

, i ̸= j,

−
1

LVi|rk
, i = j.

(18)

Closed-form expressions for πV |rk = πV |rk (PV |rk ,LV |rk ) are
reported in Appendix VII-C2 for the cases nv|rk = 2 and 3,
respectively.
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FIGURE 9. Measured and fitted gamma distributions for the stop time, for different road types (urban, rural, highway).

A parameter of fundamental importance for what follows
is the conditional expectation of the legal speed over a sege-
ment. For a given road type, this may be computed as in [50]:

v̂|rk
(
PV |rk ,LV |rk

)
≜ E

(
V

∣∣ Rt = rk
)

=

nv|rk∑
i=1

vi|rkπVi|rk
(
PV |rk ,LV |rk

)
. (19)

It should be emphasized that, for an individual transport
mission, the expected value v̂|rk = v̂|rk (PV |rk ,LV |rk ) derived
in Eq.(19) may be expressed as a function of the single-step
transition probabilities, and mean speed lengths.

Similar to what done for the road type model in Section III-
A, for a given road type, each row of the transition matrix
PV |rk is assumed to follow a Dirichlet distribution, that is
P̃Vi|rk ∼ Dir(αVi|rk ), where P̃Vi|rk is a vector of random
variables for the conditional transition probabilities from state
i and for a given road type, and αVi|rk ∈ R

nv|rk−1
>0 a vector of

parameters. For ease of notation, the row vectors P̃Vi|rk may
be organized into the stochastic matrix P̃V |rk .

As usual, for each road type rk , when interpreted as
random variables over the entire population of missions,
the mean speed lengths L̃Vi|rk are supposed to be lognor-
mally distributed, i.e., ln L̃Vi|rk ∼ N (µL̃Vi|rk

, σ 2
L̃Vi|rk

), i =

1, . . . , nv|rk . Figure 10 illustrates the distributions of themean
speed lenghts for each speed and road type, according to
the OCEAN dataset. It should be noticed that parameters
for the random variable L̃V3|r3 (corresponding to a speed
of 110 kmh−1) could not be estimated from the available
measurements. In fact, the single-step transition matrix PV |r3
for the highway road reduced to a deterministic two-by-two
matrix.

When regarding the single-step transition probabilities
and the mean speed lengths as random variables defined

over the space of transport missions, the generic station-
ary distribution vector πV |rk becomes a random vector
5V |rk (P̃V |rk , L̃V |rk ) collecting the stochastic stationary dis-
tributions for the speed limits, conditioned to the road type
rk . The analytical expression for the random vector 5V |rk as
a function of P̃V |rk and L̃V |rk may be derived immediately
from (17) and (18), by considering the single-step transi-
tion probabilities and the mean lengths, and are reported in
Appendix VII-C2 for completeness. Accordingly, the condi-
tionalmean speed derived as in (19) should also be interpreted
as a random variable.

All the stochastic models presented so far, together with
the values for the corresponding parameters extracted from
the OCEAN dataset, are summarized in Table 3.

C. MISSION LENGTH
The mission length is not technically a road parameter;
nonetheless, it plays a fundamental role in the classification
of a road transport mission, according to both the GTA and
UFD representations. Therefore, it is included in the present
paper.

In this context, it should be mentioned that daily driving
distances are traditionally modeled as lognormal, Gamma,
or Weibull distributions [60]. In the present paper, the focus
is not actually on the distance travelled during the entire day,
but rather on the individual mission length. For the sake of
simplicity, a Gamma variable L̃m ∼ Ga(αL̃m , βL̃m

), assuming
values Lm ∈ SL̃m ≡ R>0, is used. This specific choice is also
motivated again by the fact that the sum of Gamma variables
with the same rate parameter is still a Gamma variable. For the
case of mission length, all the realizations are generated from
a unique distribution, and thus any sequence of consecutive
missions will also obey the same law. This introduces some
freedom in the definition of a mission itself, which could be
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FIGURE 10. Measured and fitted lognormal distributions for the speed mean length, for different road types (urban, rural,
highway).

interpreted as a single trip associated to a specific task, as well
as a collection of trips or subtasks.

The comparison between the empirical and analytical dis-
tributions is shown in Fig. 11 for αL̃m

= 1.31 and βL̃m
=

0.016 km−1. Accordingly, the mean value and the variance
of the distribution amount approximately to 81.72 km and
4.69 · 103 km2, respectively.

IV. ANALYSIS AND CLASSIFICATION
The present Section attempts to answer the very fundamental
question about the representativeness of the OC, already
formulated in Section I-B. More specifically, the basic idea
behind the following investigation is to understand what type
of usage the parametrized OC is representative of – con-
cerning the road properties and their distributions – and how
to exploit this knowledge to design and test more energy-
efficient vehicles. In this context, the question is formalized
in terms of a classification problem and addressed from the
perspective of two already existing descriptions, namely the
GTA and UFD systems. To this end, new stochastic variables,
condensing the salient information about a road transport
mission according to the models detailed in Section III,
are introduced and analyzed in terms of distributions and
moments. These new variables may be deduced directly from
the GTA and UFD descriptions, and are henceforth referred
to as composite variables, since they may be expressed as a
function of the simple random variables introduced before.

A. COMPOSITE RANDOM VARIABLES
For a given mission, the statistical indicators used by the
GTA and UFD description target road properties that may

be reasonably anticipated to have a substantial impact on
energy performance. Considering a whole population of
transport missions, these indicators will eventually behave
as random variables. Their distribution and moments may
be determined, analytically (where and whether possible) or
numerically, starting from those of the stochastic variables
introduced in Section III.

1) ROAD TOPOGRAPHY
Starting with the model for topography discussed in
Section III-B1, the road may be qualified considering
two main indicators. The first, as already mentioned in
Section III-B1, consists of the proportion between the road
length for which the grade is lower than a specified threshold
y and the total length of the segment. The second relates
to the hill mean length. In the first case, the analytical
expression for the new random variable as functions of the
conditional random variances 6Y |ri , i = 1, . . . , nr , may be
deduced by combining (5) with (10). The final formula is as
follows:

Py
(
y, 6Y , P̃R, L̃R

)
≜

nr∑
i=1

[
28

(
y

6Y |ri

)
− 1

]
× 5Ri

(
P̃R, L̃R

)
, (20)

where the vector 6Y ≜ [6Y |r1 . . . 6Y |rnr ]
T collects the

conditional stochastic standard deviations. The relationship
for the random mean hill length may be instead derived by
noticing that the generic Lh|ri can already be interpreted as a
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TABLE 3. Stochastic models for road parameters.

conditional expectation, yielding

L̃h
(
L̃h, P̃R, L̃R

)
≜

nr∑
i=1

L̃h|ri5Ri

(
P̃R, L̃R

)
, (21)

in which L̃h ≜ [L̃h|r1 . . . L̃h|rnr ]
T is a vector collecting the

stochastic mean hill lengths. As already shown previously,
both the GTA and UFD classification systems resort to an
expression of the same type as in (20), whereas the mean hill

lenght is disregarded.6 Nevertheless, the latter parameter is
integrated in the analysis, since the influence of the hill length
on vehicular performance may be in general non-negligible,
as pointed out in [9].

6It is worth noticing that the GTA and UFD use (20) in relation to the
topography, whereas this paper distinguishes more specifically between road
grade length ratio for (20) and mean hill length for (21).
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FIGURE 11. Measured distribution and the analytical PDF and CDF of the mission length: (a) probability density; (b) cumulative
distribution. Model parameters: αL̃m

= 1.31 and βL̃m
= 0.016 km−1.

2) ROAD CURVINESS
For the curviness model, two different relationships may be
derived based on (14) and (15), respectively. These would
correspond to the criterion imposed by the UFD and GTA
representations, in turn. For the expected number of curves,
the stochastic variable describing the variation over the mis-
sion population may be expressed as a function of the other
random parameters according to being this time 3C ≜
[3C|r1 . . . 3C|rnr ]

T, MC ≜ [MC|r1 . . . MC|rnr ]
T, 6C ≜

[6C|r1 . . . 6C|rnr ]
T. It is worth observing that the analytical

expression for N̄ ′
C = N̄ ′

C (3C ,MC , 6C , P̃R, L̃R) in (22), as
shown at the bottom of the next page, does not depend upon
the stochastic mean lenghts ML|ri and standard deviations
6L|ri , i = 1, . . . , nr . On the other hand, combining (5) and
(15) yields (23) with, as usual, ML ≜ [ML|r1 . . . ML|rnr ]

T,
and 6L ≜ [6L|r1 . . . 6L|rnr ]

T. Comparing (23), as shown at
the bottom of the next page, to (22), it may be clearly noticed
that the former relationship is more complete, and involves
all the characteristic parameters of the curviness model.

3) STOP SIGNS
With respect to the stop signs model, only the conditional
intensities are assumed to play a role in the qualification of
the transport mission, whereas the contribution of the mini-
mum and maximum stop times is disregarded. This criterion,
relating to the expected number of stops along the road,
is present in the UFD classification system, but completely
absent in the GTA representation. In particular, since the
conditional intensities λs|ri , i = 1, . . . , nr , may be interpreted
as expected number of events per unit of length, the following
relationship may be derived directly from the law of total
expectation:

N̄s

(
3s, P̃R, L̃R

)
≜

nr∑
i=1

3s|ri5Ri

(
P̃R, L̃R

)
, (24)

where it has been defined 3s ≜ [3s|r1 . . . 3s|rnr ]
T.

4) SPEED SIGNS
Concerning the distribution of the legal speed along the
road, the GTA and UFD propose different criteria, based
on the expected number of transitions between speeds and
the predominant speed value along the mission, respectively.
Whilst the first approach leads to a rather complicated ana-
lytical expression that does not involve the values vi|rk of
the speed itself, the second one cannot be consistently used
to uniquely qualify a road transport mission, as discussed
more extensively in [50]. Therefore, in this paper, an alter-
native criterion, based on the mean legal speed and borrowed
from [54], is used. The latter allows for ease of classification
and interpretation, since directly relates to the values vi|rk of
the speed limits. Owing to the premises above, the analytical
expression for the mean speed may be derived starting from
(19), and reads

V̂
(
P̃V |r1 , . . . , P̃V |rnr , L̃V |r1 , . . . , L̃V |rnr , P̃R, L̃R

)
≜

nr∑
i=1

nv|ri∑
j=1

vj|ri5Vj|ri

(
P̃V |ri , L̃V |ri

)
5Ri

(
P̃R, L̃R

)
, (25)

where the stochastic variables 5Vj|ri have been introduced in
Section III-B4.
Equations (20), (21), (22), (23), (24), and (25) provide the

analytical expressions for the stochastic variables involved in
the classification of an entire transport application. The latter
may be conveniently classified by considering the expecta-
tion of each variable over the population of road missions.
The composite variables, together with their interpretation
in terms of expectations or probability, are summarized in
Table 4.
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TABLE 4. Composite variables and their interpretation.

B. NUMERICAL ANALYSIS AND CLASSIFICATION
The composite variables introduced in Section IV-A permit to
easily classify both individual road missions and entire trans-
port applications. In particular, the latter may be qualified
depending on the mean value assumed by the quantities in
(20), (21), (22), (23), (24), and (25), computed over the whole
population of missions (Section IV-B1). This is the approach
followed by both the GTA and UFD systems. On the other
hand, whilst a single indicator may be sufficient to classify
the transport application, more detailed information about the
multivariate distribution of the composite variables may be
useful for production planning and predictive maintenance
(Section IV-B2).

1) CLASSIFICATION USING NUMERICAL EXPECTATIONS
Since the distributions for the simple random variables are
known from Section III (Table 3), those for the compos-
ite variables may be calculated numerically, or generated
by simulation. It should be emphasized that, as opposed
to the simple variables, the composite variables are corre-
lated through the stationary probabilities 5Ri(P̃R, L̃R), i =

1, . . . , nr , which implies the need to describe an entire
transport application using a multivariate random vector,
whose definition would, in turn, depend upon the specific
choice of classification system.7 Specifically, taking inspi-
ration from the GTA and UFD representations, respectively,
this paper considers the random vectors XGTA and XUFD,

7It is worth emphasizing that the mission length L̃m is independent of the
road models, and also from the composite variables.

defined as

XGTA(XRs ) ≜



Py
(
3, 6Y , P̃R, L̃R

)
Py

(
6, 6Y , P̃R, L̃R

)
Py

(
9, 6Y , P̃R, L̃R

)
L̃h

(
L̃h, P̃R, L̃R

)
Pκ

(
0.008, 3C , . . . , P̃R, L̃R

)
N̄s

(
3s, P̃R, L̃R

)
V̂

(
P̃V |r1 , . . . , P̃R, L̃R

)
L̃m



, (26)

and

XUFD(XRs ) ≜



Py
(
2, 6Y , P̃R, L̃R

)
L̃h

(
L̃h, P̃R, L̃R

)
N̄ ′
C

(
0.008, 3C , . . . , P̃R, L̃R

)
N̄s

(
3s, P̃R, L̃R

)
V̂

(
P̃V |r1 , . . . , P̃R, L̃R

)
L̃m


, (27)

where the vector XRs has been defined collecting all the
simple stochastic random variables for the models presented
in Section III, i.e., XRs ≜ [P̃R L̃R 6y . . . P̃V |r1 . . . P̃V |rnr
L̃V |r1 . . . L̃V |rnr L̃m]

T.
In (26), the first three stochastic components of the vector

XGTA = XGTA(XRs ) are used to classify the road in respect to
the topography parameter (more specifically, the road grade
length ratio). Indeed, referring to the example reported in

N̄ ′
C

(
κ, 3C ,MC , 6C , P̃R, L̃R

)
≜

nr∑
i=1

3C|ri

2

[
1 + erf

(
ln(1/κ − rturn

)
−MC|ri

√
26C|ri

)]
5Ri

(
P̃R, L̃R

)
, (22)

Pκ

(
κ, 3C ,MC , 6C ,ML , 6L , P̃R, L̃R

)
≜ 1 −

nr∑
i=1

3C|ri

2
exp

(
ML|ri +

62
L|ri

2

)

×

[
1 + erf

(
ln(1/κ − rturn) −MC|ri

√
26C|ri

)]
5Ri

(
P̃R, L̃R

)
, (23)
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Section II-A, an individual mission is labeled as FLAT if
Py(3, 6Y , P̃R, L̃R) > 0.98, P-FLAT if the previous condition
is not met but Py(6, 6Y , P̃R, L̃R) > 0.98, HILLY if both the
previous criteria are not satisfied but Py(9, 6Y , P̃R, L̃R) >

0.98, and V-HILLY otherwise. In this context, it should
be observed that, for a given road transport mission, y1 ≤

y2 H⇒ Py(y1, 6Y , P̃R, L̃R) ≤ Py(y2, 6Y , P̃R, L̃R),
which follows from the fact that Py(y, 6Y , P̃R, L̃R) is actually
a cumulative distribution function. Therefore, the criterion
imposed on the topography according to the GTA classifica-
tion system is always well-defined. The fourth component of
XGTA also relates to the topographymodel, but targets instead
the mean hill length. Finally, the last four components are
used to label the mission with respect to the curviness (for
which the criterion is expressed again in terms of probabil-
ity), stop signs, speed signs, and mission length parameters.
As opposed to the multivariate random variable XGTA, the
stochastic vector XUFD = XUFD(XRs ) includes only one
relationship for the road grade length ratio. In fact, according
to the example adduced in Section II-A, the label is directly
assigned considering the value assumed by the probability
Py(2, 6Y , P̃R, L̃R) appearing in (27). The remaining compo-
nents of XUFD relate to the mean hill length, curviness (for
which the condition is formulated in terms of expectation),
stop signs, speed signs, and mission length.

The difficulty of analyzing the multivariate random vari-
ables XGTA and XUFD resides in the fact that all the
composite variables are correlated. Whereas a rigorous treat-
ment may be prohibitive, and out of the scope of the
present paper, approximated results may be derived follow-
ing the method of propagation of uncertainty (the reader
may refer to Section VII-D for further details). For the
sake of brevity, the discussion is here restricted to consid-
erations about the expected values for the vectors. Indeed,
the transport application may be labeled by considering
the expected values E(XGTA(XRs )) and E(XUFD(XRs )),
respectively. The computation of the mean clearly yields
E(XGTA(XRs )) = [E(Py(3, 6Y , P̃R, L̃R)) . . . E(L̃m)]T, and
analogously E(XUFD(XRs )) = [E(Py(2, 6Y , P̃R, L̃R)) . . .

E(L̃m)]T, which implies that a transport application may be
simply classified by determining the marginal distributions
and the expectations of each individual random variable con-
tained in the vectors XGTA and XUFD. In this paper, the
marginal distributions for the composite variables presented
in Section IV-A were estimated numerically by generating
a population of 10000 synthetic sOCs (whose stochastic
parameters are reported in a separate file). The results of such
a process are illustrated in Figure 12, where the marginal
PDFs are plotted, along with the estimated mean value (solid
grey lines), and the analytical expectation computed using
a first-order approximation (dashed yellow lines), as better
explained in the following Section IV-C. In Figure 12, the
cumulative distribution for the road grade length ratio is only
plotted for y = 2 in Py(y, 6Y , P̃R, L̃R), i.e., according to
the UFD description. In particular, it is interesting to observe

how both the realizations py and pκ range between zero and
one: this could already be anticipated, since the composite
variables Py and Pκ denote a probability.8 The mean val-
ues of the composite variables are listed in Table 5, where
the corresponding GTA and UFD classes are also reported.
As a general observation, it should be noticed that the notion
of representativeness for the parametrized OC, evaluated in
terms of composite variables, is heavily dependent on the
choice of the classification system.
As a concluding remark, it is worth observing that using

a single road type, i.e., nr = 1, implies that the composite
variables are independent,9 and, thus, the joint PMF becomes
the product of the individual PMFs, at least for the vector
XUFD (a more exhaustive discussion is reported in Section
VII-D). This would enormously simplify the mathematical
treatment.10

2) MULTIVARIATE PMF ESTIMATION
Relying on more detailed information concerning the actual
distribution of the road missions, according to some specified
classification system, may facilitate the processes of produc-
tion planning and predictive maintenance. In this context,
the joint PMF for a given transport application, opportunely
parametrized in terms of sOCs, may be estimated numerically
using the relationships established for the composite variables
of Section IV-A, and prescribing a set of thresholds on each
model in isolation. In this operation, the combinatorial nature
of the problem and the resolution of the chosen classification
system represent two key factors in determining the total
number of possible combinations of classes. For what fol-
lows, it is worth emphasizing that estimating the joint PMF
for the discrete case is, in fact, different from estimating
the continuous multivariate PDF for the composite variables
of Section IV-A. Specifically, in this paper, the joint PMF
was estimated for the GTA and UFD classification systems
considering a population of 10000 sOCs synthesized using
the stochastic models detailed in Section III. The theoret-
ical number of possible combinations may be calculated
as 2304 for both the GTA and UFD descriptions, whereas
the generated sOC yielded a total of 325 and 344 possible
combinations, respectively. Using the GTA description, the
predominant combination is classified as HIGH for legal
speed, P-FLAT for road grade, MEDIUM for mean hill
length, LOW for curviness, RESIDENTIAL for stop signs,
and L-DISTANCE for mission length, with a probability of
occurrence close to 9.8%. Instead, the corresponding labels
assigned by the UFD representation are HIGH for speed,

8In reality, the expression for the generic probability pκ|ri in (15) is
approximated (see [50] for further details). Therefore, the extremely rare
event of generating negative curviness length ratios might actually happen.
By simulation, the probability of such an occurrence was estimated to be
around 1/1000.

9Except for the road grade length ratios in (26).
10It should be noticed that joint PDFs for the composite variables relating

to the curviness model would still be very complicated to determine analyt-
ically.
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FIGURE 12. Distributions of the composite variables, with estimated (solid grey lines) and approximated
(dashed yellow lines) mean values.

TABLE 5. Estimated mean values for the composite variables of Section IV-A, plus the mission length, along with the corresponding GTA and UFD classes.

FLAT for road grade, MEDIUM for mean hill length, HIGH
for curviness, FLUID for stop signs, and L-DISTANCE
for mission length, with a maximum probability of 9.4%.
Again, the other probability values are reported in a sep-
arate file, and not discussed in this paper for the sake of
brevity.

Instead, Figure 13 illustrates some joint PMFs obtained by
only considering two variables at a time, that is, marginaliz-
ing over all the remaining dimensions of the problem. The
resulting bivariate distributions are easier to visualize, given
the reduced number of involved parameters, and may be
used to elucidate some interesting differences between the
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two classification systems. Starting with the first set of his-
tograms in Figure 13, showing the PMF for themission length
and road grade, most of the missions, representing nearly
41.9% of the total, are labeled as L-DISTANCE/P-FLAT
using the GTA criteria, with the second most populated
combination of classes being the REGIONAL/P-FLAT, cov-
ering an additional 27.7%. On the other hand, the UFD
description collocates the majority of the missions in the
L-DISTANCE/HILLY and L-DISTANCE/FLAT combina-
tions (27.6 and 24.6%, respectively). In both cases, the
combinations with STOP&GO are extremely rare. Similar
proportions could already be expected from the analyses
preliminarily conducted in Sections IV-B1 and IV-C, and
align with the results obtained by considering the individual
expectations of the composite variables. Generally speaking,
it may also be observed that, excluding the P-FLAT class,
the missions are more homogeneously distributed according
to the UFD representation. This may be explained by noticing
that the UFD system is actually deficient in the P-FLAT
class. As a consequence, the missions labeled P-FLAT by
the GTA description are divided almost equally between the
FLAT and HILLY classes. Moreover, some of the missions
qualified as HILLY using the GTA metrics belong instead
to the V-HILLY class according to the UFD representation.
A similar effect, also due to the different resolution of the
two classification systems, may be observed by looking at
the bivariate PMF of the mission length and legal speed
parameters. Indeed, with respect to the latter, the majority of
the missions is labeled either MODERATE or HIGH using the
thresholds prescribed by the GTA description, which misses
the V-HIGH class. The UFD representation also distributes
the transport missions mainly between the MODERATE and
HIGH classes, but with an opposite tendency. The predomi-
nant combinations are the L-DISTANCE/MODERATE for the
GTA system andL-DISTANCE/HIGH for the UFD (41.5 and
43.0% of the total number of missions, respectively). Finally,
concerning the bivariate PMF for the mission length and
curviness parameters, the resolution is the same for both
classification systems. In this case, the substantial discrep-
ancy between the two distributions should be ascribed to
the different criteria used: whilst the GTA imposes a limit
on the portion of the road for which the curvature exceeds
a certain value, the UFD prescribes a sequence of thresh-
olds on the expected number of curves, without specifying
anything about the covered length. As a result, the predom-
inant combinations are the L-DISTANCE/LOW for the GTA
description (40.4%) and L-DISTANCE/HIGH for the UFD
representation (38.0%). In any case, the general consideration
is again as in Section IV-B1: the representativeness of the OC
should be evaluated case-by-case according to the specific
choice of the classification system. Additional details about
the distributions plotted in Figure 13 are provided in Table 6.

C. BUILDING A SINGLE REPRESENTATIVE sOC
A single representative sOCmay be derived that embodies the
salient properties of the entire transport application, using a

reduced number of parameters. The intuitive approach pro-
posed in this paper is to consider the sOC resulting from
selecting the mean values of the sOC parameters, interpreted
as random variables over the population of missions. Accord-
ingly, the resulting reference sOC may be parametrized
using the vector-valued mean µXRs

= E(XRs ) ≜

[E(P̃R) E(L̃R) E(6y) . . . E(P̃V |r1 ) . . . E(L̃V |rnr ) E(L̃m)]T.
There are several reasons that legitimate such a choice. The
first is that such a parametrized sOCwould obviously be inde-
pendent of the assumed classification system. In fact, if a rep-
resentative sOCwere constructed starting from the composite
variables introduced in Section IV-A, it would be inherently
and heavily conditioned by the structure of a specific bird’s-
eye-view description, which may however vary amongst
vehicle manufacturers and road operators. Therefore, its prac-
tical relevance would be potentially limited to some specific
application. Besides, it should be observed that the composite
variables of Section IV-A incorporate many different sOC
parameters. Therefore, defining a single reference sOC in
terms of composite variables would ultimately determine
the feasible combinations of sOC parameters, but would not
provide their value explicitly. This aspect inherently relates
to the non-bijective relationship between the different levels
of the OC description. Finally, there is another advantage,
more theoretical in nature, connected with constructing a rep-
resentative sOC according to the outlined approach: the real-
izations for the composite variables may be interpreted as a
zeroth-order approximation of their expected values over the
population of road missions.11 This last consideration allows
to easily evaluate the representativeness of the reference sOC
also in terms of a specific bird’s-eye view description.

As an example, the expectations determined analytically
using the zeroth-order approximation are plotted in Figure 12
(dashed yellow lines) for all the composite variables con-
sidered in this paper. Accordingly, the dashed yellow lines
provide an intuitive understanding of how the reference sOC
is collocated in the distribution of possible missions, and
how distant it is from the mean sOC described in terms
of composite variables. By looking at Figure 12, it may
be generally concluded that, for the specific set of sOC
parameters under consideration, the match between the two
sOCs is quite satisfactory. Indeed, excluding the number of
stops, the approximated expectations exhibit negligible rela-
tive errors (usually below 5%) compared to those estimated
numerically. Moreover, classifying the transport application
using the approximated values for the expectations yields
the same combination of classes as in Section IV-B, the
unique exception concerning the stop signs, for which the
label FLUID is assigned.

V. APPLICATIONS
The present Section discusses some practical applications of
the whole OC edifice. The examples adduced in the following

11Since, for a generic vector-valued function f (·) of random variablesX =

[X1 . . . Xn]T, its expectation may be approximated as E(f (X)) ≈ f (E(X))
using the propagation of the uncertainty technique.
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FIGURE 13. Joint PMFs for different combination of parameters according to the GTA (left) and UFD
(right) representations. (a) Mission length and road grade; (b) Mission length and legal speed; (c)
Mission length and curviness. The distributions refer to a population of 10000 missions generated
using the sOCs extracted from the OCEAN dataset.

should be intended as illustrative, and mainly serve the pur-
pose of demonstrating the potential of the OC format. Two
problems, of different nature, are considered in this paper: the
first concerns accurate simulation of vehicular performance,
in the contexts of certification or early design; the second
deals with the process of optimal production planning.

A. ASSESSING VARIATION IN ENERGY PERFORMANCE
Departing from a fully parametrized transport application,
vehicular performance may be easily assessed in a virtual
environment by combining the OC with vehicle and driver

models. If a detailed study is required, a large population
of road missions may be generated directly by simulating
(in a statistical sense) the stochastic models introduced in
Section III, permitting to accurately represent variation in
usage and road characteristics. This type of analysis would
be more suited when referring to a certain usage in terms
of energy efficiency, relating for example to a specific geo-
graphical area. Moreover, since the stochastic parameters
are allowed to vary over the population of missions that
define the transport application, the influence of different
road parameters – including, e.g., the composite variables
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TABLE 6. Distribution of the road transport missions for different combinations of parameters.

TABLE 7. Parameters for a single representative sOC, parametrized by the vector-valued mean µXRs
.

introduced in Section IV-A –may be investigated comprehen-
sively. Such an investigation is deliberately omitted from the
present paper, but may be carried out as done in [47] and [49].
On the other hand, considering a single reference sOC may
be sufficient when dealing with certification and preliminary
assessments of new vehicle designs. In this context, it should
be clarified that a unique sOC may still describe variation in
usage, and actually, multiple dOCs need to be synthesized

starting from the same sOC to accurately predict spread in
performance.

Figure 14 compares the CO2 emissions estimated by gen-
erating and then simulating multiple dOCs in the VehProp
environment (the reader may refer to Appendix VII-E for
further details about the implementation and computational
aspects). More specifically, the blue histogram shows the
distribution of pollutant emissions obtained by simulating
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10000 dOCs, randomly synthesized from the same population
of 10000 sOCs as in Section IV. On the contrary, the orange
histogram refers to a population of 30012 dOCs generated
from the same reference sOC parametrized in Section IV-C.
In both cases, the missions were mirrored to ensure a balance
in the potential (gravitational) energy. Coherently with the
scope of the paper, Figure 14 has been produced considering
a Volvo FH13 vehicle model, equipped with a diesel engine,
an actuated, stepped gearboxwith 12 forward gears and a kerb
weight of 7540 kg. These specifications are, in fact, typical
of heavy-duty trucks of the kind commonly used for long-
haul missions. Additional information about the vehicle’s
configuration can be found in the Volvo datasheets.13

Along with the actual distributions of CO2 emissions,
the mean values are also reported in Figure 14, evaluated
concerning both the entire population of stochastically gen-
erated sOCs (solid grey line), and the representative sOC
parametrized in Section IV-C (dashed yellow line). The val-
ues computed numerically amount to 1708 and 1729 g km−1,
respectively. The difference between the two estimates is
negligible, which may be explained informally as follows.
First, the existence of a function fCO2 (·) may be postulated
describing the mean CO2 emissions calculated over a popula-
tion of dOCs, synthesized from the same sOC. In general, the
analytical expression for such a function may not be known
a priori but, for a fixed set of sOC parameters, it would be
deterministic, and dependent solely upon the sOC param-
eters, the vehicle’s specifications, and possibly the driver’s
behaviour. Then, treating the sOC parameters as random
variables, and with a similar rationale as in Section IV-C, its
expectation over the population of missions may be approx-
imated as E(fCO2 (XRs )) ≈ fCO2 (E(XRs )) ≡ fCO2 (µXRs

).
This result, which may perhaps appear trivial, asserts that
the average emissions may be estimated simply by simu-
lating an adequately large number of dOCs generated from
the representative sOC, parametrized by the vector-valued
mean parameters µXRs

. This observation allows to consid-
erably reduce the number of needed simulations, compared
to synthesizing a larger population of missions that explicitly
consider the variation of sOC parameters.Moreover, since the
above approximation is valid for any other function, it may
be conjectured that, in order to estimate the mean value of a
quantity in interest, simulating a number of dOCs originat-
ing from the representative sOC defined as in Section IV-C
should always be sufficient. Clearly, it is quite evident from
Figure 14 that a similar argument does not apply concerning
the variances and standard deviations. Indeed, accounting for
variation between road transport missions, which mathemat-
ically translates into the variation of the sOC parameters,
produces a much larger spread in performance than con-
sidering a single representative sOC. In fact, the standard

12This number of dOCswas empirically found already to yield sufficiently
good estimates for the mean energy consumption and CO2 emissions in [47]
and [49].

13https://www.volvotrucks.se/sv-se/trucks/trucks/volvo-fh16/
specifications/data-sheets.html

FIGURE 14. Distribution of CO2 emissions estimated in simulation by
generating dOCs according to both the entire transport application (blue
histogram) and the reference sOC (orange histogram).

FIGURE 15. Distribution of road transport missions according to the
reduced GTA description of Section V-B.

deviations estimated from simulating the complete trans-
port application and the reference sOC amount to 360 and
117 g km−1, respectively.

B. OPTIMAL SELECTION AND PRODUCTION PLANNING
The second example discussed in this Section elucidates the
application of the OC format for the purposes of optimal
design selection and production planning. The idea is to
exploit the information about the distribution of the road
transport missions, concerning, e.g., a specific geographical
area, to estimate the proportion of vehicles to be delivered to
that market. The assessment would clearly be only prelimi-
nary but may provide important indications on the required
volumes, with obvious advantages in the planning for the
setting of the production lines. For example, Volvo aims
at replacing its current fleet of trucks with battery-electric
vehicles (BEVs), integrated with automated driving systems,
by 2040. In this context, the sOC parametrized in this paper
may be thought of as representative of the usage for the region
of Västra Götaland, concerning heavy-duty rigid and tractor-
semitrailer vehicles.
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By labeling the missions based on the internal GTA
description, an optimal configuration may thus be found
using ad-hoc algorithms for every combination of classes.
Typically, this operation would involve the selection of a
number of representative sOCs, the synthesis of dOCs, and
their simulation in virtual environments, in conjunction with
appropriatemodels for vehicle dynamics. Once the design has
been optimized, the proportions of vehicles to be produced
may subsequentially be deduced from the distribution of
missions, provided that the total volume has been estimated
in advance, based, for example, on already placed orders or
historical data. The spread in performance within the entire
transport application may then be evaluated a posteriori,
as done before in Section V-A. To simplify the problem, this
paper only considers three parameters, namely the mission
length, road grade, mean legal speed, and two vehicle con-
figurations,14 that is, rigid truck (RT) and tractor-semitrailer
(TS). These are the same vehicle types as those in Appendix
VII-A. Figure 15 illustrates the actual distribution of missions
for the same population of 10000 road operations synthesized
in Section IV. Owing to the premises above, optimal solutions
for each combination of classes have been derived in [54]
and [61] using a particle swarm optimization algorithm.
Concerning the predominant combinations of classes, the cor-
responding proportions are listed in Table 8 for both variants,
along with the number and type of electric motors (EMs), and
battery packs (BPs). The interpretation for the EM and BP
types in Table 8 is the same as in [54]. Exhaustive information
about the optimal configurations and propulsion systems for
the considered combinations of classes may be found in [61],
where the results of a comprehensive sensitivity analysis are
also presented.

VI. DISCUSSION
The present paper has constituted a first attempt at a com-
plete parametrization – concerning the road models – of an
entire transport application, within the theoretical framework
provided by the OC representation. The contribution is artic-
ulated in three main moments. The first coincides with the
development of a set of stochastic models to describe the
variation in usage amongst the road missions. The focus is
on heavy-duty trucks, traveling long distances in the region
of Västra Götaland, Sweden. The second is represented by the
numerical analysis of the resulting OC, and its classification,
according to two other simplified descriptions, namely the
GTA and UFD systems. Finally, the third contribution resides
in the exemplification of the potential of the OC format,
relatively to the processes of vehicle design optimization,
virtual testing, and production.

The present Section pauses to reflect upon the fundamental
questions raised by the manuscript, along with their contex-
tual interpretations and implications.

14It is also assumed that the volumes are known for both configurations,
since the choice of a specific design may depend upon different factors other
than the road properties, mission length, and mean legal speed.

A. OC DEVELOPMENT AND PARAMETRIZATION, AND
RELATED LIMITATIONS
In this paper, an OC has been developed and parametrized
limited to long-haul heavy-duty vehicles. Concerning the
parametrization process, data have been collected from trucks
operating in the region of Västra Götaland, combining
available measurements with ad-hoc estimation techniques.
Moreover, weather and traffic models have not been consid-
ered in the present work, mainly because of the difficulties
connected with the estimation of the related quantities. How-
ever, a complete OC description should opportunely be
integrated with information regarding also weather and traf-
fic, similar to what was done in [49]. Also, road parameters
may be more accurately parametrized by collecting infor-
mation from open-source databases, like OpenStreetMap,15

in conjunction with GPS measurements. This possibility
has been deliberately disregarded in the paper. Generally,
it should be acknowledged that the proposed OC is only
representative of a certain usage – i.e., that of heavy trucks
traveling long distances –, whereas extensions may always be
possible, as corroborated by the flourishing research dealing
with the synthesis of conventional driving cycles.

In the very same context, it is worth recalling some obser-
vations from the introduction of this paper, to better highlight
the advantages of the OC over the conventional driving
cycle representation. More specifically, it appears that the
OC format currently qualifies the only description capable
of satisfactorily addressing all the three problems enounced
in Section I, namely the representation, variation, and clas-
sification problems. Indeed, concerning the micro-trip and
pattern classification methods [23], [26], [27], [28], [29],
[30], [31], [34], [35], [36], [37], it is clear that the variation
and classification aspects cannot be covered, since details
about the operating environment are usually not included in
the generated driving cycles. On the other hand, whereas
some of the techniques listed in Table 1 – in particular, the
modal construction and segment-based approaches [4], [18],
[24], [25], [32], [33], [38] – permit the synthesis of driving
cycles that account for the effect from the surroundings, these
do not respond to the need for an easily interpretable descrip-
tion of the vehicle’s usage. In fact, the influence of external
factors like road grade, traffic density, and weather conditions
is considered only implicitly by such driving cycles. In turn,
this implies the impossibility of classifying a road transport
mission based on the characteristics of the environment where
it takes place. Moreover, even the segmentation and modal
construction methods, which qualify perhaps amongst the
most sophisticated techniques, do not allow for stochastic
generation of equivalent driving cycles. As observed in [32],
[33], and [39], this aspect becomes crucial when assess-
ing variation in performance caused by fluctuations in the
operating conditions, whilst also being a fundamental prereq-
uisite to ensure robustness. From this perspective, whilst the
approach pioneered in [32] and [33] seems to have addressed

15https://www.openstreetmap.org/#map=5/62.912/17.385
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TABLE 8. Optimal vehicles’ design and proportion based on the mission distribution.

both the representation and variation problems adequately,
again it does not seem compatible with the necessity for the
classification of road missions.

Therefore, in spite of the present limitations, from a con-
ceptual perspective, claiming that the OC format has come to
maturity does not seem an incautious statement. The stochas-
tic models introduced in this paper, in particular, have been
motivated, wherever possible, based on their implications and
ease of interpretation. In all the other cases, the principle
of parsimony has been invoked, in line with the philosophy
behind the whole OC machinery. It is also in the authors’
intention to clarify that the models proposed here are nothing
definitive, and other formulations may work equally well or
even better on different datasets. With similar arguments, the
format itself is not necessarily complete, and may always be
improved or modified to accommodate needs that have not
been identified so far.Whilst the possibility of building an all-
embracing theory for the OC description might undoubtedly
be seductive, such a colossal venture is not attempted in
this paper. Besides, modularity and replaceability have been
inspiring qualities since the very early conception of the OC
framework.

B. ON THE NOTION OF REPRESENTATIVENESS, AND ITS
IMPLICATIONS
Since an OC describes a road transport mission directly con-
cerning the operating environment, in this paper, the notion
of representativeness has been discussed in relation to the
characteristics of the surroundings. The fundamental ques-
tion motivating the investigation has been formulated in the
introductory Section I-B and phrased as: ‘‘What type of usage
is a certain OC representative of?’’. For the problem under
consideration, the interrogation should be clearly interpreted
in the sense of road characteristics and mission length. In this
paper, an answer to the previous question has been sought
by considering two existing bird’s-eye view descriptions: the
GTA and UFD classification systems developed by Volvo and
Scania. The differences and similarities between these two
representations have highlighted the circumstantial nature of
the notion of representativeness, and perhaps the need for a
unified approach.

Adducing again the example of Volvo and Scania, the
construction of their classification systems was presumably
instrumental to the processes of optimal design and selection

of energy-efficient vehicles. In this context, the notion of
representativeness is clearly evaluated based on an underlying
metric, that is, the energy performance of road vehicles. Even
so, the GTA and UFD labeled the OC parametrized in this
paper differently. In Sections IV-B1 and IV-B2, this discrep-
ancy has been ascribed to the different criteria specified by
both descriptions concerning, for example, road grade and
curvature. In this context, the disagreement between the two
representations may reveal particularly problematic when
considering the interaction with other entities (for exam-
ple, for certification and urban planning purposes [62]). The
wish is that vehiclemanufacturers and governmental agencies
could team to concord on the building of a unique description
that would allow no room for misunderstanding. Scientists
and academic scholars should also be aware of such a delicate
aspect, and could actively participate in the process.

Such considerations about the notion of representativeness
are not restricted to the scope of the operating cycle. Tran-
sient driving cycles should also be developed considering the
internal systems adopted by vehicle manufacturers, to facil-
itate the integration with their development and production
processes.

C. CERTIFICATION AND PERFORMANCE EVALUATION
In this paper, two methods to assess the energy consump-
tion and pollutant emissions of road vehicles have been
investigated, based on the OC description. The first includes
detailed information about the distribution of road missions,
accounting for variation occurring over the entire population
of transport operations. The second is based on a simplified
approach and only considers a single representative sOC,
selected opportunely and independently of the chosen clas-
sification system.

A specific method may be more suited for a certain appli-
cation. For example, concerning the certification process, the
simplified approach could certainly replace the conventional
representation in terms of a driving cycle, if the focus is on
mean quantities. This conclusion was supported in Section V
by both the numerical and informal mathematical analyses
conducted with respect to the pollutant emissions. More-
over, since a single sOC would still be able to reproduce
variation in performance, information about the expected
energy consumption and CO2 emissions could be integrated
more convenientlywith additional indicators, e.g., variance or
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standard deviation. However, considering the entire transport
application would yield more accurate results in this case.
In this context, it should be observed that the same result may
also be achieved by considering the stochastic driving cycles
proposed in [32], [33], and [39].

On the other hand, vehicle manufacturers may prefer
testing vehicles considering the actual distribution of sOCs
within a transport application, especially if log data are
collected and stored in internal databases. To ensure consis-
tency between the two approaches, however, a fundamental
prerequisite would be the absence of any ambiguity in the
translation between the corresponding descriptions. This
happens again to relate to the notion of representativeness
discussed previously.

D. CHALLENGES AND ADVANTAGES RELATING TO
OC-BASED VEHICLE DESIGN OPTIMIZATION,
PRODUCTION PLANNING, AND PREDICTIVE
MAINTENANCE
The aspect of vehicle design optimization, albeit mentioned
in the paper, has not been explored fully in the present
study. In this context, compared to employing the conven-
tional description in terms of driving cycles, the process of
design optimization conducted using the OC format would be
intuitively more robust, since it would explicitly account for
variation in the operating conditions. Considering only a few
missions, the computational effort would also be comparable
to that of resorting to a common driving cycle (see discussion
in [54]), with the additional advantage of the OC being a
more accurate and reliable description of vehicle usage [63].
However, it is worth mentioning that the need for increas-
ing robustness would imply simulating a larger population
of dOCs. With these premises, a main drawback connected
with using a large number of dOCs certainly consists in
the fact that several road transport missions would need to
be simulated whilst running an optimization routine, with
high computational cost. Whereas this may be prohibitive
with the current technologies, the imminent revolution of
quantum computing could enable fast optimization in the next
few years, possibly rendering the conventional driving-cycle-
based approaches obsolete.

Concerning instead production planning and predictive
maintenance, the problem is much simpler, since simulat-
ing a large number of dOCs is not particularly expensive.16

Therefore, once the number of possible configurations is set,
applying similar rationales as those discussed in the present
paper becomes relatively straightforward when it comes to
production planning. Analogously, predictive maintenance
and control algorithms may be easily run and tested using
the OC description, as done again in [54], where the number
of stochastic models was however limited compared to the
present study.

16Simulating a single dOC of 250 km takes around 1 min on a personal
computer.

VII. CONCLUSION
In this paper, an OC for long-haul heavy-duty vehicles, com-
plete with stochastic road models, has been developed using
log data collected from trucks operating in the region of
Västra Götaland, Sweden. The proposed description allows
for the representation of energy usage in a realistic manner
and captures variation between road transport missions by
resorting to a statistical approach.

The representativeness of the fully parametrized OC has
been evaluated and discussed concerning two existing clas-
sification systems in use by Volvo and Scania, respectively.
According to both descriptions, the considered transport
application is labeled as long distance, but other parameters
are judged differently. Amethodology has also been proposed
to synthesize a single representative sOC, described in terms
of mean parameters, starting from the complete population of
road missions.

As an application of the developedOC, two different exam-
ples have been adduced in the paper. The first was aimed
at assessing energy efficiency in simulation, considering
both the actual distribution of road missions determin-
ing the application and the mean representative operation.
Concerning specifically the Volvo FH13 employed in the
study, it was demonstrated in simulation that the mean
CO2 emissions computed numerically according to the two
different approaches were similar (amounting to 1708 and
1729 g km−1, respectively), whereas a large discrepancy
could be observed with respect to the predicted values for
the standard deviation (360 and 117 g km−1). The second
example dealt instead with the process of optimal design
and selection for future battery-electric vehicles, depending
on the characteristics of the intended usage. The optimal
proportion was characterized by a predominance of tractor-
semitrailer trucks (70%), equipping 4 motors and 11 battery
packs.
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APPENDIX
A. THE OCEAN DATASET
The stochastic models presented in this paper were
parametrized using the OCEAN database. The database was
created as part of the OCEAN project, and contains data from
33 different long-haul heavy-vehicle configurations, mainly
operating in the region of Västra Götaland, Sweden. The
properties of each truck, including its identifier, maximum
torque and axle configuration are listed in Table 9.

The database is organized into different directories. Each
directory contains the data corresponding to every single
truck (A1, A2, . . . , D2). In each folder, the data are organized
by log files, which correspond to the routes traveled by the
trucks. In total, the database contains 1872 log files, each
counting 34 signals, including GPS coordinates, yaw rate
measurements, brake pedal position, et cetera. The number
of files is quite heterogeneously distributed amongst the dif-
ferent vehicles and covers a period of time corresponding to
a typical quarter.

The quantities required to fit the models presented in
Section III were estimated from the available measurements
using different techniques. For example, whilst the total
distance could be deduced immediately from log data, the
topography parameters needed to be recovered using statis-
tical tools, like the Wafo package implemented in [64] and
[65]. The road curviness was also inferred from the yaw
rate, by postulating simple equilibrium equations relating the
local curvature to the acceleration. Finally, the legal speed
was estimated by filtering out the influence of the previous
parameters from the resulting speed profiles, using ad-hoc
algorithms. A viable alternative would be to retrive the infor-
mation about the speed signs directly from an open source
database, like OpenStreetMap, using GPS signals.

B. THE GTA AND UFD CLASSIFICATION SYSTEMS
TheGTA andUFD classification systems developed byVolvo
and Scania are conceived as high-level representations tar-
geting individual road missions, as well as entire transport
applications. They have been refined over the years dur-
ing an iterative process, and are intended to facilitate the
interaction with the customer during the selection and sales
stages. To this end, they describe the operating environments
using colloquial tones and statements, which may however
be reformulated in terms of statistical indicators, including
mathematical expectations and probabilities. Imposing limits
and thresholds on these, the GTA and UFD systems build
a discrete representation of the usage. Consequently, a road
transport mission may be qualified by resorting to a count-
able number of labels, each of them relating to a specific
operating class. More specifically, the formalization of both
descriptions has been worked out in [50], where the analytical

expressions for the operating classes have been deduced for
all the road models presented in this paper.

For the sake of brevity, the original formulation of each
operating class is not discussed in this paper, whereas
Table 10 lists the classes specified by both the GTA and
UFD representations in mathematical form, with respect to
the different stochastic models discussed in the paper. The
quantities appearing in Table 10 represent the realizations
of the composite variables introduced in Section IV-A, with
an obvious convention for the notation. It is worth men-
tioning that the original classification systems are actually
deficient in the mean hill length parameter and, concerning
the topography, completely qualify a mission depending on
the value of the road grade length ratio. Moreover, the GTA
description does not include any indication about the mean
speed. However, in this paper, the latter parameters have been
added to allow for a fair comparison with the UFD system.
In this context, the values for the speed limits have been
inspired by the stochastic model for the road type. Finally,
the value κ = 0.008 m−1 appearing in both the expressions
for the expected number of curves and the curviness length
ratio corresponds to a speed reduction of nearly 20% when
driving at 70 kmh−1 [50].

C. ANALYTICAL EXPRESSIONS FOR THE STATIONARY
DISTRIBUTIONS OF ROAD TYPES AND SPEED SIGNS
This Section provides the analytical expressions for the sta-
tionary distributions for road types and speed signs, together
with the corresponding random versions.

1) STATIONARY DISTRIBUTIONS FOR ROAD TYPES
Starting with (3a) and (4), for nr = 3, the stationary distri-
bution πR = πR(PR,LR) may be derived in components as
in (28), shown at the bottom of the next page. From (28), the
stochastic stationary distribution 5R = 5R(P̃R, L̃R), defined
over the entire population of missions, is thus given by, as in
(29), shown at the bottom of the next page.

2) STATIONARY DISTRIBUTIONS FOR SPEED SIGNS
For a given road type rk , the stationary distribution πV |rk for
the speed signs may be found from (17) and (18). For nr = 3,
the stationary distribution πR = πR(PR,LR) may be derived
in components as in (30), shown at the bottom of the next
page, and

πV1|rk

(
LV |rk

)
=

LV1|rk
LV1|rk + LV2|rk

, (31a)

πV2|rk

(
LV |rk

)
=

LV2|rk
LV1|rk + LV2|rk

, (31b)

for nv|rk = 2. Accordingly, the stochastic counterparts read
as in (32), as shown at the bottom of page 31, and

5V1|rk

(
L̃V |rk

)
=

L̃V1|rk
L̃V1|rk + L̃V2|rk

, (33a)

5V2|rk

(
L̃V |rk

)
=

L̃V2|rk
L̃V1|rk + L̃V2|rk

. (33b)

73296 VOLUME 11, 2023



L. Romano et al.: Development of the Västra Götaland OC for Long-Haul Heavy-Duty Vehicles

TABLE 9. Truck vehicle configurations included in the OCEAN database.

D. APPROXIMATED ANALYSIS FOR VARIANCE
The correlation between the composite variables introduced
in Section IV, may be studied by resorting to approximated

analytical approaches. In particular, using the propagation of
uncertainty technique, the covariance matrix 6XGTAXGTA for
the GTA vector XGTA = XGTA(XRs ) of composite random

πR1(PR,LR) =
LR1(pR21pR32 + pR31)

LR1(pR21pR32 + pR31) + LR2(pR12pR31 + pR32) + LR3(1 − pR12pR21)
, (28a)

πR2(PR,LR) =
LR2(pR12pR31 + pR32)

LR1(pR21pR32 + pR31) + LR2(pR12pR31 + pR32) + LR3(1 − pR12pR21)
, (28b)

πR3(PR,LR) =
LR3(1 − pR12pR21)

LR1(pR21pR32 + pR31) + LR2(pR12pR31 + pR32) + LR3(1 − pR12pR21)
. (28c)

5R1

(
P̃R, L̃R

)
=

L̃R1(p̃R21p̃R32 + p̃R31)

L̃R1(p̃R21p̃R32 + p̃R31) + L̃R2(p̃R12p̃R31 + p̃R32) + L̃R3(1 − p̃R12p̃R21)
, (29a)

5R2

(
P̃R, L̃R

)
=

L̃R2(p̃R12p̃R31 + p̃R32)

L̃R1(p̃R21p̃R32 + p̃R31) + L̃R2(p̃R12p̃R31 + p̃R32) + L̃R3(1 − p̃R12p̃R21)
, (29b)

5R3

(
P̃R, L̃R

)
=

L̃R3(1 − p̃R12p̃R21)

L̃R1(p̃R21p̃R32 + p̃R31) + L̃R2(p̃R12p̃R31 + p̃R32) + L̃R3(1 − p̃R12p̃R21)
. (29c)

πV1|rk

(
PV |rk ,LV |rk

)
= LV1|rk

(
pV21|rkpV32|rk + pV31|rk

)[
LV1|rk

(
pV21|rkpV32|rk + pV31|rk

)
+ LV2|rk

(
pV12|rkpV31|rk + pV32|rk

)
+ LV3|rk

(
1 − pV12|rkpV21|rk

)]−1

, (30a)

πV2|rk

(
PV |rk ,LV |rk

)
= LV2|rk

(
pV12|rkpV31|rk + pV32|rk

)[
LV1|rk

(
pV21|rkpV32|rk + pV31|rk

)
+ LV2|rk

(
pV12|rkpV31|rk + pV32|rk

)
+ LV3|rk

(
1 − pV12|rkpV21|rk

)]−1

, (30b)

πV3|rk

(
PV |rk ,LV |rk

)
= LV3|rk

(
1 − pV12|rkpV21|rk

)[
LV1|rk

(
pV21|rkpV32|rk + pV31|rk

)
+ LV2|rk

(
pV12|rkpV31|rk + pV32|rk

)
+ LV3|rk

(
1 − pV12|rkpV21|rk

)]−1

. (30c)
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TABLE 10. Operating classes according to the GTA and UFD classification system. The limits on the mean hill length Lh are expressed in m; those for the
expected number of curves and stop signs n̄′

C and n̄s, respectively, in km−1; the thresholds on the mean legal speed v̂ are prescribed in kmh−1; finally, the
limits on the mission length Lm are specified in km.

variables may be deduced approximately as

6XGTAXGTA ≈ JXGTA

(
E(XRs )

)
6XRsXRs

JTXGTA

(
E(XRs )

)
,

(34)

where JXGTA is the Jacobian of the vector function XGTA(·)
with respect to the set of simple sOC random variables XRs ,
and 6XRsXRs

denotes the covariance matrix of the simple
variables. The expression for the UFD system is analogous

6XUFDXUFD ≈ JXUFD

(
E(XRs )

)
6XRsXRs

JTXUFD

(
E(XRs )

)
,

(35)

with a similar notation for the Jacobian matrix. It should
be observed that, whilst the Jacobians appearing in (34) and
(35) are different, the matrix 6XRsXRs

is the same for both
relationships. In particular, thematrix6XRsXRs

may be put in
diagonal form as in (36), shown at the bottom of the next page,

where all the matrices are diagonal by model construction,
except those for the stochastic transition matrices for the
road types and conditional speed signs, which may be in turn
decomposed in diagonal form as

6P̃RP̃R
=

6P̃R1P̃R1
. . . 0

...
. . .

...

0 . . . 6P̃Rnr P̃Rnr

 , (37)

and

6P̃V |rk P̃V |rk
=


6P̃V1|rk P̃V1|rk

. . . 0
...

. . .
...

0 . . . 6P̃Vnv|rk |rk P̃Vnv|rk |rk

 ,

k = 1, . . . nr , (38)

5V1|rk

(
P̃V |rk , L̃V |rk

)
= L̃V1|rk

(
p̃V21|rk p̃V32|rk + p̃V31|rk

)[
L̃V1|rk

(
p̃V21|rk p̃V32|rk + p̃V31|rk

)
+ L̃V2|rk

(
p̃V12|rk p̃V31|rk + p̃V32|rk

)
+ L̃V3|rk

(
1 − p̃V12|rk p̃V21|rk

)]−1

, (32a)

5V2|rk

(
P̃V |rk , L̃V |rk

)
= L̃V2|rk

(
p̃V12|rk p̃V31|rk + p̃V32|rk

)[
L̃V1|rk

(
p̃V21|rk p̃V32|rk + p̃V31|rk

)
+ L̃V2|rk

(
p̃V12|rk p̃V31|rk + p̃V32|rk

)
+ L̃V3|rk

(
1 − p̃V12|rk p̃V21|rk

)]−1

, (32b)

5V3|rk

(
P̃V |rk , L̃V |rk

)
= L̃V3|rk

(
1 − p̃V12|rk p̃V21|rk

)[
L̃V1|rk

(
p̃V21|rk p̃V32|rk + p̃V31|rk

)
+ L̃V2|rk

(
p̃V12|rk p̃V31|rk + p̃V32|rk

)
+ L̃V3|rk

(
1 − p̃V12|rk p̃V21|rk

)]−1

. (32c)
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FIGURE 16. Generation process of a deterministic operating cycle (dOC) from a stochastic one (sOC). All the
secondary models are generated stochastically departing from the sequences of primary ones (in this paper,
only the road properties are considered). A conversion is needed between the sOC and dOC formalisms.

being6P̃RiP̃Ri
, i = 1, . . . , nr and6P̃Vi|rk P̃Vi|rk

, i = 1, . . . , nv|rk ,
k = 1, . . . , nr the covariance matrices for the Dirichlet distri-
butions of Sections III-A and III-B4, respectively. Since the
diagonal elements are always zero, i.e., p̃Rii = 0 for the road
types and p̃Vii|rk = 0 for the speed signs, the matrices 6P̃RiP̃Ri
and 6P̃Vi|rk P̃Vi|rk

have no elements on the principal diagonal.
The nondiagonal entries may be instead evaluated as

Cov(p̃Ril, p̃Rim) = −
αRilαRim∑

l ̸=m αRil

(
αRil +

∑
l ̸=m αRil

) ,

i = 1, . . . , nr , (39)

and

Cov(p̃Vil|rk , p̃Vim|rk )= −
αVil|rkαVim|rk∑

l ̸=mαVil|rk

(
αil|rk+

∑
l ̸=mαVil|rk

) ,

i = 1, . . . , nv|rk , k = 1, . . . , nr .

(40)

According to (36), (37) and (38), only the stochastic
variables relating to the same Dirichlet distributions are

correlated. On the other hand, the composite variables are
correlated via the stationary distributions for the road types.
In (34) and (34), this correlation is accounted for by the
Jacobian matrices JXGTA and JXUFD , respectively. It should
be remarked that assuming a single road type r1 implies
that the composite variables in the UFD vector XUFD are
all independent, and thus uncorrelated. This happens because
none of the original simple random variables appears in more
than one scalar function in (27). The same is not true for the
GTA vector XGTA, since its first three components would all
be functions of the stochastic standard deviation6Y ≡ 6Y |r1 .

E. IMPLEMENTATION AND COMPUTATIONAL DETAILS
The present Section describes the practical implementation
of a dOC, starting from the corresponding sOC description,
along with details concerning the simulation of longitudinal
vehicle dynamics in VehProp. In particular, Figure 16 is
a schematic illustration of the typical workflow needed to
synthesize a reference dOC starting from an equivalent sOC.
First, the primary models are generated over a specific mis-

6XRsXRs
=



6P̃RP̃R
. . . . . . . . . . . . . . . 0

... 6L̃RL̃R

...

...
. . .

...
... 6P̃V |r1 P̃V |r1

...

...
. . .

...
... 6L̃V |rnr L̃V |rnr

...

0 . . . . . . . . . . . . . . . Var
(
L̃m

)


, (36)
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sion distance, which may either be prescribed or simulated
using an opportune distribution, as done in the present paper.
The primary models are also simulated simultaneously, since
they do not interact explicitly, owing to the principles of
independence and parsimony upon which the OC is built.
The secondary sOCmodels are then derived from the primary
ones.More specifically, the simulation of road propertiesmay
be carried out using the ad-hocWAFO package implemented
in MATLAB® [64], [65]. The sequences obtained using this
procedure need to be converted into the dOC formalism. For
example, curvature and topography are translated into curvi-
ness and altitude.17 From the signed curvature, the actual
road profile and the tangent vector to the trajectory are also
deduced numerically using Fresnel integrals [49]. The dOC
parameters, plus their location in either space or time (or both
for the traffic density), are then encoded in the dOC descrip-
tion and tabulated. Finally, a longitudinal vehicle model is
simulated in the VehProp environment, consisting of a stan-
dard set of equations implemented in MATLAB/Simulink®,
similar to those that may be found in any reference text-
book [7]. At each time step, the dOC parameters are used as
input to the governing equations of motion, and intermediate
values are calculated by using a suitable interpolation law
(as explained more extensively in [9]). Concerning a dOC of
250 km, a simulation in VehProp typically takes 1 min on a
standard personal computer to be completed.
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