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ABSTRACT Navigation has become an indispensable technology, especially when exploring unfamiliar
environments. However, the existing shortest route-based navigation systems only focus on route effective-
ness, which may deprive users of the opportunity to explore new areas. Hence, there is a need for a new
navigation service that enriches our walking activities and maximizes their benefits in our daily lives by
stimulating our natural tendency to explore. In this paper, we revisit navigation services from two orthogonal
technological perspectives: 1) navigation using non-shortest routes; and 2) navigation across multiple days.
Based on these two perspectives, we explain the relationship among related studies and develop a new
heuristic search-based method to create diverse multiday routes. This could help construct a new navigation
service to increase the graph roaming entropy values on those generated routes.

INDEX TERMS Heuristic search, pedestrian navigation, roaming entropy.

I. INTRODUCTION
We tend to visit unfamiliar landmarks and landscapes in
our lifetime. Previously, tourists traveling to unfamiliar cities
would use printed maps and/or guidebooks. Nowadays,
we can easily utilize navigation functions provided by mobile
devices, such as smartphones and smartwatches, in the form
of mobile applications, which we call pedestrian navigation
services (PNSs). Although such navigation functions were
initially developed for car driving as global positioning sys-
tem (GPS)-based positioning technologies prevailed [1], [2],
[3], we can now access them wherever and whenever using
mobile devices. These functions could increase travel effi-
ciency as they provide the most efficient routes in terms of
some primary measures, such as travel distances and travel
times.

The efficiency of the navigated routes displayed in naviga-
tion does not always coincide with the freedom of personal
exploration and emotional pleasure since walkers have their
subjective purposes for walking. Several researchers inves-
tigated various aspects of navigation and routes and their
connection to our health and well-being. Quercia et al. pro-
posed a method to create beautiful, quiet, and happy travel
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routes rather than just offering efficient routes [4]. Siriaraya et
al. categorized quality-aware route navigation systems from
multiple perspectives using the SWEEP1 taxonomy [5]. Lee
and Buchner discussed the importance of walking in our
lives [6]. Heller et al. experimentally evaluated the rela-
tionship between traveling and happiness [7]. Sharker et al.
studied the intersection of the health-based and routing-based
aspects of navigation services [8]. However, no practical nav-
igation applications have been used in the existing literature
to support the exploring activities (e.g., the use of navigation
in our lives is still limited [9]) despite the importance of these
activities in our daily lives.

A technical backbone supporting PNS is the calculation of
(efficient) routes to explore a target area, such as a sightseeing
district. In this study, we call an exploring activity between
a departure location and a destination location roaming.2

To implement our new PNS, we revisited two aspects of
routing: (1) navigation using non-shortest routes and (2)
navigation across multiple days. Fig. 1 describes the concept
of our roaming navigation, and Fig. 2 highlights our work
and the related studies from the two perspectives. From the

1Acronym for Safety, Well-being, Effort, Exploration, and Pleasure.
2‘Roaming’ was originally used for an activity without any specific desti-

nation, but we use it to express more general exploring walking activities.
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FIGURE 1. Roaming navigation: Different routes supporting users’ exploring activities. (A) Exploring within an unfamiliar environment
using different routes over multiple days is a promising aspect when walking. (B) A heuristic search-based algorithm that performs within
a reasonable time on real road networks.

FIGURE 2. Two technical aspects of navigation: (1) navigation using
non-shortest paths (on the horizontal axis) and (2) navigation across
multiple days (on the vertical axis). We focus on the right-bottom region.

first perspective, most navigation services usually adopt the
most efficient routes according to some primary measures
(e.g., distance and time). However, the use of shortest paths
is not suitable for exploration. Thus, we must focus on
the non-shortest paths (e.g., constrained shortest paths [10],
[11]). From the second perspective, we consider a use case
of PNS for exploring an unfamiliar city during a multiday
sightseeing trip. Users should roam between POIs on diverse
routes daily to make exploring the city and visiting points of
interest (POIs) compatible. Pursuing path diversity on graphs
has also been investigated (e.g., top-k paths [12], [13], [14],
[15], [16]). Users, like tourists, could adopt such varied routes
to explore an unknown city. Although some researchers tack-
led the two aspects separately, combining them to build a PNS
supporting ‘‘exploring activities’’ remains challenging, and
this is the main focus of our study.

This study proposes a navigation service to facilitate pedes-
trian exploratory activities beyond the shortest path-based
PNSs. We develop a new heuristic search method for non-
shortest path-based, multiday PNSs. The displayed routes
should be adaptive according to the previously navigated
ones for multiday use. We measure the diversity of computed
routes based on previously computed ones and thus enable the

user to explore other new routes daily. We apply our method
to navigation tasks on synthetic graphs and real road networks
to demonstrate our approach.

In summary, we tackle the following task to depict a new
pedestrian navigation service.

• We formulate a new navigation task named multiday
explorable non-shortest navigation. This task is based
on two orthogonal technical perspectives: (1) navigation
using shortest or non-shortest paths and (2) navigation
for a single day or multiple days. We discuss the rela-
tionship between our task and existing studies, clarifying
the computational difficulty of the task.

The contributions of this study are summarized as follows:
• We propose a new measure called GraphRE (graph
roaming entropy), which evaluates the diversity of daily
activities by users based on an existing measure [7].
We discuss our navigation task as the problem involving
increasing GraphRE values.

• We show that a simple heuristic search procedure could
create diverse explorable paths with time constraints.

• The experiments demonstrate our method regarding
GraphRE values; the proposed approach can enhance
the GraphRE values. Furthermore, we compare our
heuristic-based method with baselines designed for the
targeting task. We confirm that our method generates
more explorable routes.

II. RELATED WORK
Using navigation systems is common in exploratory activ-
ities. The widespread use of mobile devices with GPS
raises various research questions for both navigation sys-
tems and human beings: how to display navigation infor-
mation (e.g., [17], [18], [19], [20]), how to navigate
users (e.g., [21]), and how navigation relates to (public) health
and happiness (e.g., [4], [6], [8], [22]). We herein clarify the
two aspects of our study.

A. NAVIGATION AND WELL-BEING
Promoting exploration instead of just navigating the most
efficient routes is promising for the human-computer inter-
action (HCI) community. ‘I did it my way’ by Robinson et al.

75618 VOLUME 11, 2023



K. Otaki et al.: Roaming Navigation: Diverse Constrained Paths Using Heuristic Search

allows users to select their routes and arrive at their destina-
tions in an exploratory manner by providing haptic vibrations
to guide them toward the direction of their destination [23].
Using the haptic stimulus as a cue, this navigationmethod sat-
isfies the user’s desire to explore without disturbing the user’s
exploratory behavior, such as sightseeing. Devices supporting
explorative activities have been an emerging topic in the HCI
community for decades. Examples are vibrotactile navigation
with smartphone [24], smartwatches [25], bicycles [26], and
auditory navigation [27], [28].

Recommending quality-aware routes, such as beautiful
routes, rather than just providing the shortest paths is chal-
lenging since it depends on subjective measurements [4].
Besides, it has been shown that exploring unfamiliar cities
by walking has health benefits. As mentioned earlier,
Heller et al. [7] adopted roaming entropy (RE) values to mea-
sure the diversity of participants’ locations and evaluate
its association with their happiness. In addition, well-being
is known to be an important measure of pedestrian routes
as in [6], [8], and [5]. We can conjecture that explorable
routes–based PNSs efficiently enrich users’ experience as
pedestrians.

B. ROUTE PLANNING FOR NAVIGATION
Our navigation task, multiday explorable non-shortest nav-
igation (formally defined in Sec. III-C), is related to two
orthogonal research fields: (1) computing (most efficient)
paths on graphs and (2) computing multiple paths for navi-
gation across multiple days, corresponding to the two axes in
Fig. 2.

Computing paths on graphs is a fundamental task. The
shortest path problem is a fundamental combinatorial prob-
lem studied in graph theory and algorithms (e.g., [29]). Many
researchers have made contributions concerning engineer-
ing to efficiently compute shortest paths on large-scale road
networks (e.g., [30], [31], [32], [33]). Other studies involve
heuristic search (e.g., [34], [35]), which focuses on building
a generic search procedure on search spaces. Together with
additional (resource) constraints beyond the primary ones,
constrained shortest path problems (CSP problems) have
been studied as a variant of shortest path problems (e.g., [10],
[11], [36], [37], [38], [39]). An example of CSP problems is
the problem of finding the cheapest travel path using public
transportation under total travel time constraints. We can
model non-shortest routes for PNSs by imposing constraints
on resources (e.g., minimum travel distances, as used in
Sec. III-B1),

Another research topic is pursuing the diversity of multi-
ple paths. For shortest paths, two well-known algorithms by
Yen [12] and by Eppstein [13] are recognized as fundamental
approaches to computing top-k shortest paths. Evaluating k
solutions as a set (e.g., the diversity of solutions) is also
a critical issue (e.g., [14]). Moreover, computing diverse
top-k shortest paths is an active research topic (e.g., [15],
[16], [40]). User studies on alternatives have also been

discussed (e.g., [41]). However, few studies have addressed
the problem of computing a set of non-shortest paths because
of its computational intractability, an essential aspect of our
roaming navigation application.

III. HEURISTIC SEARCH ON GRAPHS FOR ROAMING
NAVIGATION
A. GRAPHS AND SHORTEST PATHS
Let G = (V ,E,w) be an undirected weighted simple graph
representing a target service area. The set V is a set of vertices
corresponding to intersections and/or intermediate points on
road segments. The set E ⊆ {{u, v} | u, v ∈ V } is a set of
(undirected) edges representing walkable road segments for
pedestrians. The function w : E → R≥0 defines the cost
w(e) of traveling e ∈ E . Herein, we assume that an undi-
rected graph models an area, but our study can be generalized
to models using directed graphs (e.g., areas with one-way
streets). A path between two vertices s and t is a sequence of
distinct vertices, denoted by p = ⟨p1 = s, p2, . . . , p|p| = t⟩,
where |p| is the length of p. Herein, we assume that all paths
are simple .3 Such a path, starting from s and ending at t
for given two vertices s and t , is called an s-t path. Note
that the terms path and route will be used interchangeably
hereafter. For convenience, 5(v1, v2) represents the set of
all paths starting from v1 ∈ V and ending at v2 ∈ V if
v1 ̸= v2. The travel cost cost(p) along with p is defined
by cost(p) :=

∑|p|−1
j=1 w({pj, pj+1}). For a shortest path π ∈

5(v1, v2) between two vertices v1 and v2, we denote by
d(v1, v2) = cost(π ) the shortest path distance from v1 to v2.
Providing the shortest path to pedestrians is a fundamental
approach for PNSs.

From an application viewpoint, letw(e) represent the travel
distance, and cost(p) indicates the total travel distance along
path p. Similarly, let w(e) represent the required walking
time, and cost(p) indicates the total walking time. Therefore,
assuming some fixed walking speed (e.g., 4[km/h]), time
does not require to be distinguished from a distance. Con-
versely, we can independently set distance and time (e.g.,
assuming slopes and travel times per direction). In such a
case, multi-objective functions to evaluate paths are defined
according to problem formulations. This study implicitly
assumes some walking speed and discusses the feasibility of
using only travel distances. In another approach similar to
CSP problems, we can use either the distance or time as the
primary objective function and adopt another as a defining
constraint. As explained earlier and in Sec. III-B1, this study
adopts CSP problems to model non-shortest paths.

B. EXISTING NAVIGATION TASKS
We explain our two perspectives: (1) non-shortest paths
(Sec III-B1) and (2) multiday navigation (Sec III-B2).

3A simple path is a path on G, which does not possess repeating vertices.
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FIGURE 3. Comparison of shortest paths and feasible paths on 5 × 5 grid
graphs: (3a) shortest path with travel time of 4 minutes. (3b) three
feasible paths with travel time of 6 minutes with additional ϵ = 2 minutes
to explore areas.

1) FEASIBLE AND NON-SHORTEST PATHS
This paper adopts CSP formulations to formulate the feasi-
bility while computing non-shortest paths. Without loss of
generality, an s-t path p ∈ 5(s, t) is feasible if and only if
p satisfies user-designed constraints on a navigation applica-
tion. An example of such constraints regarding travel times is
as follows.

Time-constrained path (start s, goal t): A user on
s ∈ V at time Ts has his/her desired arrival time
on t ∈ V , i.e., until Tt . If w(e) represents the travel
time required on edge e ∈ E ; we need to find a path
p ∈ 5(s, t) such that Ts + cost(p) ≈ Tt . With any
tolerance parameter ϵ > 0, we can define the above
arrival time constraint as |Ts + cost(p) − Tt | ≤ ϵ,
which is an example of user-designed constraints in
terms of travel time.

We write a set of all feasible paths by 5feasible(s, t). For some
infeasible path p ∈ 5(s, t) \ 5feasible(s, t), traveling along
with p is too fast or late for arriving t on time for users.

a: EXAMPLES
Let us assume that an edge in the grid graphs requires unit
time (1 min.) to travel. The shortest travel time is 4 minutes,
as shown in Fig. 3a, whereas the non-shortest paths require
6 minutes, as shown in Fig. 3b. Based on the time-constrained
paths, the path of travel time of 6 mins. (Fig. 3c) is feasible
if ϵ = 2. Users can set ϵ according to their willingness to
explore on G. They can utilize the non-shortest paths if they
have an additional 2 minutes to walk.

b: CHALLENGES
Computing non-shortest paths is computationally challeng-
ing. For example, computing a time-constrained shortest-
distance path argminp̂∈5feasible(s,t) cost(p̂) is known to be
NP-hard. This computational intractability can be shown
from the relationship between the well-known knapsack
problems and CSP problems having upper bounds of
resource consumption (e.g., Chapter 3 in [11]). We can gen-
eralize such constrained shortest path problems having both
lower bounds and upper bounds of resource consumption.

This means computing roaming routes with time constraints
(e.g., 30 minutes non-shortest walking) is challenging.

2) MULTIDAY NAVIGATION TASK
Beyond single day navigation tasks, we are interested in a
scenario where users access our PNS for multiple days (e.g.,
every day in a month). Herein, just computing a feasible
path p ∈ 5feasible(s, t) is insufficient because following the
same path p daily is unpleasant for exploring unknown cities.
We then study a multiday navigation task with a route set
evaluation function for this scenario. We use pj to index daily
routes, meaning that the route pj was navigated on the day j,
and denote by Rk = {p1, . . . , pk} the route set until day k .
The function m : Rk 7→ R≥0 evaluates the set Rk , where a
higher value is more pleasant to users.

Our multiday navigation task is described as follows: On
each day k ∈ {1, . . . ,M}, the task involves navigating a user
with a feasible route pk maximizing m(Rk ). Defining m(·)
should depend on the purpose of the PNS. Liu et al. described
the dissimilarity based on given similarity functions and dis-
cussed top-k shortest diversified paths [14]. Chondrogiannis
et al. [15] adopted the minimum collective length based on
the Jaccard index for top-k shortest paths.
From the connection between roaming activity and well-

being, we focus on roaming entropy (RE), which was origi-
nally used in [42] to evaluate the GPS log traces and adopted
in previous study [7]. In their setting, the authors measured n
GPS traces of all participants and evaluated the RE value as

RE :=

∑K
j=1 pij log2 pij

logK , where pij is the empirical probability
that a participant i visits a point j ∈ {1, . . . ,K }, and K is the
total number of points by discretizing GPS traces. Dividing
the Shannon entropy by the factor log(K ) scales the value
from zero to one. The challenge of adopting RE values for
our task is that we need to model multiday activities.

C. OUR TARGETING TASK
We define our navigation task, named multiday explorable
non-shortest navigation. Our motivation for the PNS is to
provide pedestrians with enjoyable and explorable routes
when navigating between two locations. Our task inher-
its features from (1) non-shortest paths in the form of
resource-constrained paths (Sec. III-B1) and (2) multi-
day navigation (Sec. III-B2). In other words, we assume
that a user uses our PNS daily with different navigation
search settings. Based on the multiday navigation setting in
Sec. III-B2, we write pj to be the j-th day navigated route.
Following the previous study by Heller et al. [7], we adopt

roaming entropy values with minor updates. Our formulation,
namedGraphRE, is evaluated on paths according tomultiple
M days. Owing to the computational intractability from (1),
we aim to approximately computing routes for multiple days.
To increase pedestrian exploration, our navigation task on day
j is defined as follows:

Multiday explorable non-shortest navigation (across
M days): With any tolerance parameter ϵ > 0 on
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FIGURE 4. Multiday navigation using non-shortest explorable paths and
visited vertices are illustrated in (4a–4c) and (4e–4g). (4d) and (4h) show
visited vertices. Note that (4h) is more diverse than (4d); in (4h), all edges
are distinct, but in (4d) edges are visited multiple times.

time-constrained paths, on the day j ∈ {1, . . . ,M},
the task is to offer the user with a feasible route pj
that maximizes GraphRE({p1, . . . , pj}) computed
on the navigated routesRj := {p1, . . . , pj}:

GraphRE(Rj) := −

∑
v∈V

pv log2 pv, (1)

pv := |{pi ∈ {p1, . . . , pj} | v ∈ pi}|/j. (2)

Computing such a route set {p1, . . . , pj} is challenging
for the following reasons. First, computing a feasible route
pj (1 ≤ j ≤ k) remains intractable, i.e., NP-hard. Sec-
ond, we could have multiple route sets for maximizing
Eq. (1) as the evaluation of GraphRE only depends on
(empirical) probabilities pv at each v ∈ V on G. The dif-
ficulty of such diversity issues has been proven (e.g., [43]).
Therefore, we develop a heuristic search method in the fol-
lowing section to approximately solve the above problem.
As shown in Fig. 4, it illustrates two route sets with dif-
ferent visited vertices, meaning they have different entropy
values. Hereafter, computed routes are called explorable
routes.

D. HEURISTIC SEARCH
1) OVERVIEW
We develop a (heuristic) search method to find approxi-
mate non-shortest routes efficiently. Our method then iter-
atively searches non-shortest paths for multiple M days.
Search is a fundamental but effective methodology for solv-
ing state-space search problems. A search task involves
finding a sequence of transitions from a start state to a
goal state. Heuristic search algorithms employ a heuristic
function f (·) to evaluate search states and decide which
states should be expanded next using f (·) until goal states
are found. Intuitively, values f (·) represent priorities of
investigating states. Heuristic search algorithms expand
states with higher heuristic values earlier than those with
lower values using data structures, such as a priority
queue.

2) PROPOSED IDEA
Our idea is to introduce customized priorities when com-
puting feasible routes. We compute explorable routes that
implicitly have large GraphRE values instead of directly
optimizing them.

For our multiday explorable non-shortest navigation,
we introduce the count c(n) representing the number of previ-
ously navigated paths containing n for each n ∈ V . Formally,
c(n) := |{pi ∈ {p1, . . . , pj−1} | n ∈ pi}| on the day
j ≥ 2. To define a state space S, we adopt the pair of vertices
and travel times required. That is, each state has the form
n = (n,T (n)) ∈ V × R≥0 meaning that a user is at vertex
n ∈ V and he/she needs a travel time T (n) from his/her
departure from the start vertex s ∈ V . From the definition
of feasibility (see Sec III-B1), for each navigation task of
finding s-t path on G, we have the unique start state sstart :=

(s, 0). However, we have multiple goal states sgoal. That is,
in any state (t,T (t)), if a feasible path p travels from s to
t , we have multiple goal states with |cost(p) − T (t)| < ϵ

for given ϵ > 0 in the case of using time-constraint paths.
Recall that we would like to select a path p that maximizes
GraphRE({p1, . . . , pj−1, p}) on day j out of multiple feasible
paths. Let d(n) be the depth value of n, i.e., the minimum step
from sstart to n. Using c(n) and heuristic search algorithms
(e.g., [35]) with d(n), we proposed the function in Eq. (3)
with a single weight parameter γ > 0 for search state n =

(n,T (n)) at vertex n ∈ V :

f (n) = g(sstart,n) + h(n, sgoal) := d(n) − γ × c(n), (3)

where the first term in Eq. (3) inherits from DFS (Depth-First
Search) in terms of steps from s to make our search process
forward to the goal vertex t , and the second term in Eq. (3)
is introduced to indicate that we would like to maximize
GraphRE value in our multiday navigation task. To achieve
larger RE, we need to generate pv uniformly at random on the
set V . This objective can be indirectly achieved by ensuring
as uniform the counts, c(n), as possible after computing M
paths. To consider this idea, when computing each path on
the day j, the priority of nmust be decreased by −γ × c(n) to
support our objective approximately but efficiently.

3) SUMMARY
We summarize our proposed heuristic method and baseline
search algorithms. We prepared the methods for computing
each route pj on the day j.

• (Baseline 1) DFS(F): The depth first search (γ = 0 in
Eq. (3)) without any tie-breaking strategy.

• (Baseline 2) DFS(T): The depth first search like DFS(F)
with a random selection-based tie-breaking of f (n).

• (Proposed) Heuristic Search: The priority-based
heuristic search using Eq. (3).

To determine routes for M days, we repeatedly use the
selected baseline method from the three above-mentioned
search methods, as our method does not compute optimal
feasible paths. In the CSP literature, recent algorithms,
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TABLE 1. Grid graphs. Degrees are averages on all vertices and
w(e) = 1 for e ∈ E .

TABLE 2. Real graphs. distances and degrees are averages on all edges
and vertices.

including the Pulse algorithm (e.g., [36]), are known to
perform efficiently with pruning techniques from numerical
experimental results. By adopting the pruning techniques
used in those algorithms, we expect our algorithms to perform
reasonably well for PNSs.

The worst time complexity of our solver can be estimated
using the results of DFS/BFS search methods. The worst
time complexity of traditional DFS/BFS search methods is
O(|V | + |E|). Furthermore, our heuristic search follows the
same strategy of DFS by using the priority value defined in
Eq. (3), and our exportable paths remain simple. Therefore,
after computingM explorable paths, the worst time complex-
ity of all computations should be O(M (|V | + |E |)).

IV. EXPERIMENTS
The experimental results demonstrate our heuristic search
functions for multiday and explorable route navigation. Some
of the results are illustrated through the figures in the
appendix.

A. SETUP
For evaluating our heuristic search method to generate routes
for pedestrians, we prepared synthetic grid graphs and real
graphs obtained from OpenStreetMap (OSM).4 For synthetic
graphs, we let N ∈ {10, 20} and generate N × N grid
graphs on the 2D space, where distances and times are equiv-
alent; one edge requires one unit of distance and time. For
real graphs, we selected shinjuku and nihonbashi,
two representative urban tourism areas in Tokyo, Japan. The
details of the extracted graphs are summarized in Table 1
for synthetic grid graphs with sizes of N = 10 and
N = 20 and Table 2 for real graphs of shinjuku and
nihonbashi. In shinjuku, latitudes and longitudes are
[35.660, 35.730] and [139.684, 139.750]. In nihonbashi,
they are [35.654, 35.707] and [139.742, 139.835].

1) PRE-PROCESSING OF ROAD NETWORK DATA
After downloading an XML file from OSM, we pre-process
the XML file to extract a graph G = (V ,E,w) as follows.

4https://www.openstreetmap.org/. Road networks can be downloaded
from the web page or APIs, such as https://overpass-api.de/

TABLE 3. Target OSM highway tags.

FIGURE 5. Results in nihonbashi using naive DFS-based enumeration of
all feasible routes when varying k , i.e., the ratio regarding the shortest
path distance.

First, we extract all vertices (<node> tags) from the file
and prepare the superset Ṽ ⊃ V ofG, where Ṽ should contain
redundant nodes such as the borders of buildings.

Second, to only represent walkable ways for our navigation
task by filtering Ṽ , we extract all edges (<way> tags) if
(1) the way contains some references to nodes (<nd ref>
tags) and (2) the way has an attribute highway tag with
the values summarized in Table 3. From each way having a
node reference sequence such as v1, v2, . . . , vk with k nodes,
we prepare a set of edges as {{vi, vi+1} | 1 ≤ i ≤ k − 1}.
Collecting all sets, we compute the set E of undirected edges.

Third, we build the set V using E as V = {v ∈ Ṽ |

∃{u1, u2} ∈ E s.t. u1 = v or u2 = v}, where each v has
latitude latv and longitude lonv extracted from the XML file.
Moreover, we incrementally modify V and E by removing
degree 2 vertices to simplify the output graph structure.

Fourth, we compute the weight w(e) for each edge e =

{u1, u2} ∈ E by the haversine formula to compute the dis-
tance between two vertices u1 and u2.
Last, we build a graph G̃ = (V ,E,w), compute a largest

connected component C ⊆ V of G, and obtain the induced
subgraph G = G̃[C] as a targeting graph for navigation.

2) TWO SCENARIOS
We applied our method to the multiday navigation task using
two scenarios: (Scenario 1) the same start-goal setting and
(Scenario 2) different start-goal settings. In scenario (Sce-
nario 1), we randomly sample a start-goal pair and compute
routes for 30 days. Here, we expect the user explores some
POIs and roads in a familiar city with available travel time.
In scenario (Scenario 2), we randomly sample 30 start-goal
pairs and generate a route for each pair. Here, we assume the
user enjoys roaming an unfamiliar city for multiple days.

B. PRELIMINARY EXPERIMENTS
Before diving into roaming navigation, we observe the
number of feasible paths on some navigation instances on
nihonbashi. For a randomly sampled start vertex s and
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FIGURE 6. Possible edges included in feasible routes with three factors
(k = 1.01, 1.05, and 1.09) in nihonbashi.

goal vertex t , we prepare the factor k ∈ [1.01, 1.09] in
steps of 0.01. Here, k indicates that a route p ∈ 5(s, t) is
feasible if and only if its distance is almost up to k× cost(π ).
By counting feasible routes up to k , we can estimate the
hardness of our targeting routing problems according to the
upper bounds of the size of feasible routes.

Figure 5a represents the number of feasible solutions in
the logarithmic scale in the y axis, and Fig. 5b represents
computational times required to enumerate all feasible routes.
These results suggest that (1) computing a feasible solu-
tion is practically possible, although the problem itself is
computationally intractable. Additionally, (2) the number of
feasible solutions increases when the feasibility condition is
expanded by k . Moreover, Fig. 6 illustrates edges possibly
included in feasible solutions. Complex combinations across
roads and intersections should enhance the number of feasible
solutions. These phenomena could increase exponentially
with the additional travel time or distance based on k . These
results indicate the difficulty of naive optimal solutions by
enumerating all feasible solutions and selectingM day routes
to maximize GraphRE values.

We can conclude that a DFS-based search for our task
works efficiently. As shown in Fig. 5b, explorable paths
(i.e., non-shortest paths) can be efficiently computed. The
parameter γ did not influence the results drastically during
our preliminary experiments when using the current method.

C. RESULTS
Here we show experimental results. In visualized routes, red
and blue circles (best viewed in color) represent the start
and goal vertices on the graphs, although our graph G is
undirected, and we do not need to distinguish them explicitly.

1) SYNTHETIC GRID GRAPHS
For grid graphs with sizes of N = 10 and N = 20,
we compared the baseline methods and our heuristic method
following the two scenarios. The results of N = 10 are illus-
trated in Fig. 7 and Fig. 8. In Fig. 7, the above row corresponds
to scenario (1), and the lower row corresponds to scenario
(2). Graph RE values are demonstrated in Fig. 8. Fig. 7a and
7e correspond to the shortest path-based navigation without
considering multiday navigation. Other routes represent the
non-shortest paths. Similarly, the results of GraphRE values

FIGURE 7. Visualized routes on N10grid by competitors for (Scenario 1,
above) and (Scenario 2, below).

FIGURE 8. GraphRE values in N10grid.

FIGURE 9. GraphRE values in N20grid. For more results, please see our
appendix and Fig. 14.

on N = 20 graphs are illustrated in Fig. 9. For readability,
individual routes are depicted in Fig. 14 in the appendix.

2) REAL OSM GRAPHS
We conducted the same experiments on extracted real road
graphs. Fig. 10 and Fig. 11 show the experimental results
of GraphRE values in shinjuku and nihonbashi,
respectively. Again, individual routes in shinjuku and
nihonbashi are provided in the appendix section.

The figures indicate that the results of the real graphs are
similar to those of the synthetic grid graphs. Note that the
required computational time for each route is a few seconds,
so our heuristic non-optimal search is effective in building
mobile navigation applications.

D. QUANTITATIVE ANALYSIS
Here, we used our proposed method along with DFS(T)
for (Scenario 1) because we are interested in the case
where users access our PNS in their daily lives. We applied
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FIGURE 10. GraphRE values in nihonbashi. For more results, please see
our appendix and Fig. 15.

FIGURE 11. GraphRE values in shinjuku. For more results, please see
our appendix and Fig. 16.

these methods to OSM graphs and evaluate the computed
routes frommultiple aspects. Furthermore, experiments using
DFS(T) were repeated as the results displayed random-
ness. Moreover, we measured the number of visited vertices
and edges to observe generated routes. We also computed
entropy values according to the number of visited vertices and
edges.

Results in nihonbashi and shijuku are illustrated in
Fig. 12 and Fig. 13, respectively. Notably, our heuristic search
method does not directly optimize GraphRE values. How-
ever, our routes can provide diversity in users’ explorations.
Regarding the number of visited nodes and edges, our heuris-
tic method is better than the mean values of randomized DFS.
Similar results can be observed for the entropy values. These
results confirm that our method can create more explorable
routes for our target scenario.

E. DISCUSSION AND FUTURE DIRECTIONS
1) EXPERIMENTAL RESULTS
Compared with shortest path-based routes, multiday
explorable routes described in Fig. 7d and Fig. 7h cover
wider areas on grid graphs. Similar results can be observed
in N20grid (Fig. 14d and Fig. 14h), and real OSM graphs
of nihonbashi (Fig. 15d and Fig. 15h) and shinjuku
(Fig. 16d and Fig. 16h). In most cases, our heuristics achieved
better GraphRE values than those by DFSs. Only in a few
cases (as in Fig. 7c, Fig. 7d, and Fig. 8a), our method achieved
lower values than those by baseline methods; we conjecture
that these are due to tie-breaking issues as many nodes in
grid graphs have the same priority values. Further, due to
their symmetry, many routes in grid graphs have the same
distances.

FIGURE 12. Additional evaluations in nihonbashi.

FIGURE 13. Additional evaluations in shinjuku.

2) SEARCH METHODS AND FUTURE DIRECTIONS
The experiments demonstrate the effectiveness of our
approach regarding the extent of the explored area via navi-
gation. Particularly, heuristic search-basedmethods are effec-
tive in terms of computational time. Moreover, our explorable
navigation can find exploration routes in a few seconds, even
in realistic conditions, and therefore can be integrated with
mobile applications and personal mobility vehicles. We have
diverse routes even if the same constraints are given when
computing feasible paths by using baseline methods.

Specifically, the results of GraphRE (e.g., in Fig. 8) con-
firm that our method can provide users with more explorable
routes, similar to the other metrics discussed in Sec. IV-D.
The increments of GraphRE can be visually confirmed as
well. These results are also supported by additional evalu-
ations illustrated in Fig. 12 and Fig. 13. We conclude that
people can explore larger areas using our roaming-oriented
navigation method. Our GraphRE measure, as defined in
Eq. (1), is now the proxy of this expansion; higher values
mean users could walk wider areas.

As mentioned in Sec. III-D3, our method is a non-optimal
heuristic search-based one because it does not aim to find
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FIGURE 14. Visualized routes from N20grid for (Scenario 1, above) and
(Scenario 2, below).

FIGURE 15. Visualized routes from nihonbashi for (Scenario 1, above)
and (Scenario 2, below).

most efficient routes under constraints. Therefore, we could
construct a navigation system for explorable routes across
multiple days by developing more sophisticated search-based
methods (e.g., [39] for constrained shortest path problems
and [40] for computing alternative paths). Another possible
future direction of our study from the computational perspec-
tive is determining the optimal solution of our provided routes
regarding graph roaming entropy, although the upper bound
is not estimated in the current status.

3) ROUTE QUALITIES AND FUTURE DIRECTIONS
Our approach focuses on the GraphRE value and non-optimal
feasible routes. We believe that explorable navigation is
promising for various applications, including pedestrian nav-
igation and services in smart cities. Therefore, other metrics
(e.g., beautiful routes like [4]) must be considered when
selecting multiple routes. Researchers must also conduct user
studies to assess the characteristics of human behaviors when
exploring unfamiliar cities, which is also an important topic.
Only a few works (e.g., [41]) have explored this direction
in a limited region using limited methods. Our future work
will include such developments associated with engineering
involving users.

FIGURE 16. Visualized routes from shinjuku for (Scenario 1, above) and
(Scenario 2, below).

FIGURE 17. GraphRE values by our method and multiple trials of DFS(T)
in nihonbashi and shinjuku on (Scenario 1, above) and (Scenario 2,
below).

V. CONCLUSION
Navigation is an essential technology, particularly for users
exploring unfamiliar environments. We revisited navigation
services from two orthogonal perspectives: (1) navigation
using non-shortest routes and (2) navigation across multi-
ple days. Using graph roaming entropy, we also formulated
a navigation task called multiday explorable route naviga-
tion. We then developed a heuristic search-based approach
to generate diverse multiday routes for implementing a new
navigation service. Our experimental results clearly show the
functioning of the proposed method and how our multiple
routes support walkers in exploring cities. The proposed
simple heuristic method is a starting point for the following
studies on multiple aspects.

In our future work, we could develop more sophisticated
methods considering multiple objective aspects (e.g., beau-
tiful routes). From a computational perspective, a possible
future direction of our study is to estimate the optimal
solution for our routes in terms of GraphRE. Additionally,
analyzing the upper bound of the GraphRE value could be
valuable in designing efficient heuristic search methods. Fur-
thermore, we plan to evaluate the physical and psychological
effects of exploring (unfamiliar) cities through navigation
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services. In conclusion, we believe that our roaming naviga-
tion approach, albeit technically simple, may open up new
avenues for examining the causal role of urban exploration in
real-life settings.

APPENDIX. ADDITIONAL RESULTS
A. VISUALIZED ROUTES
We provide visualized routes for other settings. Figure 14
shows computed routes on N20grid. Figure 15 shows com-
puted routes on nihonbashi. Figure 16 shows computed
routes on shinjuku.

B. MULTIPLE TRIALS ON GraphRE VALUES
Section IV-D presents additional evaluation metrics using
DFS(T) and our method in nihonbashi. In this appendix,
we provide results on GraphRE values through multiple tri-
als, as shown in Fig. 17. Our approach is more effective in
(Scenario 1). We conjecture these results because when the
start and goal are randomly sampled from V , many unvisited
nodes remain. If we use our roaming navigation continuously
over a longer period, ourmethod could becomemore effective
in city exploration.
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