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ABSTRACT Oral communication has consistently been ranked as a key skill, with 90 percent of hiring
managers and 80 percent of business executives saying it is very important for college graduates to possess,
according to a recent survey. Consequently, training and evaluating oral presentation skills remains a priority
for educators worldwide, and there are increasing numbers of automated tools developed for providing
feedback and assessment of such skills. However, modeling approaches typically require collecting large
amounts of data and labels, which can be both expensive and laborious. In this paper, we explore the
possibility of transfer learning between two different but related multimodal datasets to benefit the evaluation
of oral presentation performance. We utilize knowledge from a job interview dataset as pretraining material
and adapt the learned knowledge from the pre-trained model to a small amount of presentation data to
improve the learning of the presentation assessment task. We demonstrate the efficacy of our approach,
especially in improving performance for inference on small datasets (< 100 data points), and we report our
findings. Moreover, we give a comparison between the proposed TL approach and a standard TL method
based on a large-scale pre-trained model. Despite the simplicity of our proposed TL approach, the results
show that our approach has promise in application to smaller datasets such as ours.

INDEX TERMS Presentation skills, multimodal, transfer learning.

I. INTRODUCTION
Oral presentation skills, including public speaking and busi-
ness presentation skills, are required for conveying an
intended message clearly from the presenter to the audi-
ence. In fact, such skills are central to many areas, such
as education, business, politics, and leadership. In recent
years, developments in nonverbal behavior detection, natu-
ral language, speech processing, and machine learning have
all contributed to significant progress in multimodal mod-
eling for automated feedback and modeling of presentation
skills [1], [2]. According to findings in social science [3],
a good presentation requires the presence and harmony of
elements related to message production, linguistic articula-
tion, and nonverbal expression. The interplay between these
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elements has led to a suite of presentation corpora collected
from prior research, each with a different focus and emphasis
on presentation constructs.

To date, many studies have focused on the automatic
assessment of oral communication tasks. References [1],
[2], [4] relied on using features from various modalities
to develop automatic assessment models predict the scores
assigned by human expert raters. Most studies to date con-
duct the automatic assessment of presentation skills using
both verbal and nonverbal cues in the whole presenta-
tion or thin slices extracted from a video presentation
using different machine learning algorithms. With a few
exceptions [5], [6], most efforts so far have relied on
traditional machine learning approaches, as deep learning
methods often require large amounts of labeled data for
training, which is expensive and laborious to obtain for
videos.
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Generally, this approach to data collection has many con-
straints. First, it is both laborious and expensive to collect a
large dataset on a specific presentation setting (e.g., public
speaking [1], business presentations [7]). To train such assess-
ment and feedback models, a large amount of data is often
required for the training process to achieve a more robust
and accurate model. Second, the labels collected per data
point are often narrowly restricted to the targeted presentation
construct due to annotation costs. Evidence of this data limi-
tation problem has been shown in other multimodal modeling
settings, such as group discussion analysis [8].

To address the problem of data limitation in presenta-
tion assessment modeling, we present a transfer learning
framework to improve the scoring accuracy of our target pre-
sentation corpus with small-size data. In our work, we exploit
the idea of transfer learning (TL) [9] for modeling pre-
sentation skill assessment using two different but related
presentation corpora. Additionally, we experiment with tak-
ing a holistic presentation as a time-series sequence by
adopting sequential modeling in our presentation assessment
model.

Essentially, TL is a learning strategy that focuses on knowl-
edge storage and transference (e.g., weight parameters in a
trained model) from a source data corpus (or multiple cor-
pora) to a different target data corpus. Specifically, we are
interested in conducting a variant of TL similar to [10]
in which parameters are pretrained and transferred from a
time-series source corpus to another time-series target corpus.
In our study, we utilized two multimodal corpora, namely,
a job interview dataset [11] as our source domain and an
information presentation dataset [12] as our target domain.
While TL for multimodal learning is not in itself a novel idea,
this work makes new contributions, as highlighted below.
Neural transfer learning between two multimodal corpora

with different target labels: We present a TL approach for
multimodal, time-series data by utilizing twomultimodal data
corpora (job interview and presentation data) with completely
different, disjoint sets of construct labels. Specifically, we sit-
uate our work in the context of an impressionistic scoring of
a noncognitive, behavioral task (oral presentation), which is
largely unexplored. The multimodal time-series TL frame-
work we propose affords us an analysis of which modality
is the most effective in the knowledge transfer process, cul-
minating in a set of ideal conditions for maximum benefits we
can recommend. We ask ourselves the first research question
(RQ1), ‘‘Does utilizing the job interview data via model
pretraining and adaptation benefit oral presentation assess-
ment?’’. To answer RQ1, the effectiveness of the proposed
TL method is discussed in Section VI-A.
Investigating an effective TL strategy:We investigate effec-

tive training methods for the multimodal time-series TL
framework and probe the success conditions of multimodal
TL for oral presentation assessment. First, we explore appro-
priate training methods for neural networks by utilizing two
basic strategies used in network adaptation: fine-tuning all
layers and fine-tuning only the last layer of the pretrained

model. This comparison enables us to analyze the impact of
the source domain on the transfer learning process. Second,
we investigate the potential effectiveness of different source
domain tasks to improve the accuracy of the target task
using TL. The second research question (RQ2) is ‘‘In neural
transfer learning for oral presentation assessment, how do
we fine-tune the network with pretrained model parameters,
and which source domain tasks are most beneficial for TL?’’.
Our findings for RQ2 are provided in Section VI-B. In addi-
tion to the findings, proposed transfer learning method is
applicable for few-shot learning with less than 20 samples
in Section VII-B.
Comparison with a large-scale pretrained model: It is

known that using pretrained models with a large-scale corpus
of audio, visual and text data is a promising approach for TL.
Through comparisons between the proposed TL approach
and other popular TL approaches based on a large-scale
pretrained model, we confirm that our simple approach is
efficient and promising for improving the prediction accuracy
of presentation skill scores. To address this concern, the
third research question (RQ3) we ask ourselves is ‘‘Does
the proposed TL method outperform the TL method with
a large-scale pretrained model in terms of the prediction
accuracy of presentation skills for the target domain task?’’.
The comparative results are reported in Section VI-C.

The rest of this paper is organized as follows: Section II
describes existing related studies in the literature. Then,
in Section III, we describe the multimodal data corpus
employed. Section IV describes the proposed transfer learn-
ing algorithm. Sections V and VI present the experimental
settings and results, respectively, to answer our three research
questions, followed by a discussion in Section VII and con-
clusion in Section VIII.

II. RELATED WORK
A. MULTIMODAL PRESENTATION ASSESSMENT
Communication skills are one of the deciding factors in
many social situations, and related decision-making has been
widely researched and studied in recent years. In the liter-
ature, many studies have focused on the training, feedback,
and assessment of communication skills, including those
focused on monologue scenarios, such as public speak-
ing [1], [2], [4], business presentations [7] and social meet-
ings [13], as well as those focused on communication skills
in dyadic interaction situations, such as job interviews [11],
[14], group interactions [15], [16] and human-computer
interactions [17], [18], [19].

This study focuses on the modeling of a type of presen-
tation skill. Presentation skills, such as speaking skills, are
generally well studied. Many studies focus on an analysis
of multimodal nonverbal behaviors in public speaking or
presentation. Rosenberg and Hirschberg [20] investigated the
relationship between focused words and acoustic features
and how this relationship contributes to political speakers’
performance. Scherer et al. [21] investigated the effective-
ness of voice quality and pause timing while speaking.
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Wörtwein et al. [1] presented an assessment model of public
speaking skills by using multimodal ensemble tree-trained
audio-visual information. Chollet and Scherer [22] annotated
ratings of full videos and thin slices (short video clips)
in a corpus of public speaking presentations and evaluated
machine learning models for predicting thin-slice and full
video ratings.

The annotations of public speaking skills modeled in [1],
[23], [24], and [25] are mainly related to nonverbal skills,
including eye contact, gesture usage, and voice control in a
presentation. Chen et al. [4] also presented a multimodal
model to predict public speaking skills using both speech con-
tent as verbal information and prosody, hand, body, and head
movements as nonverbal features. Reference [2] proposed
using time-series co-occurrence features of nonverbal aspects
of a presentation to improve the prediction accuracy of
public speaking skills. Lepp et al. [12] collected an informa-
tive oral presentation dataset and described how information
from each specific modality presented to a rater affects her
judgment in the assessment of presentation tasks and then
investigated the automatic assessment of presentation con-
tent using modality-specific machine learning features and
models.

Automatic assessment of presentation skills can be per-
formed using both verbal and nonverbal cues extracted from
a whole video presentation [26]. With a few exceptions [5],
[6], most efforts so far have relied on traditional machine
learning approaches, as deep learning methods often require
large amounts of labeled data for training, which is expensive
and laborious to obtain for videos. To address this problem,
Yagi et al. [7] presented a domain adaptation algorithm using
the instance weighting technique for verbal and nonverbal
presentation skills in a business presentation setting. The
instance weighting algorithm utilized in [7] is based on a lin-
ear model and is not directly applied to deep neural network
architecture.

B. MULTIMODAL TRANSFER LEARNING
TL has been widely applied and used in many computer
vision and natural language processing tasks due to its ability
to leverage valuable knowledge and adapt it from one domain
to another, which helps improve the model. The main idea
of TL is to transfer knowledge learned from one domain to
another and to efficiently utilize the learned knowledge to
improve the performance of the target task. In other words,
TL learns target tasks using the knowledge learned from
the source task. Transfer learning can be classified into
three main categories following the taxonomy of Pan and
Yang et al. [9] and Ruder [10]: transductive transfer, in which
the scenarios of the source and target domain tasks are the
same and labels are only provided in the source domain;
inductive transfer, in which the scenarios of the source and
target domain tasks are different, with labels provided in the
target domain; and unsupervised transfer, in which no labels
are provided for either the source or target domain. Following
Ruder [10], we can further divide inductive transfer into two

learning settings: multitask learning (MTL) and sequential
transfer learning (STL). The difference is that in MTL, the
source and domain tasks are learned concurrently, while in
STL, the two tasks are trained one after the other.

Sequential transfer learning (STL), proposed byRuder [10],
is a popular approach in recent machine learning and natural
language processing tasks due to the simplified nature of
the approach and the ease of distribution of a pretrained
model. The most common scenario of sequential learning
is the two-phase approach called ‘‘pretraining and adapt-
ing’’. In the pretraining phase, the model is trained with
source data, and then the target data are adapted to the
source model. STL is commonly used when the data for the
source and target task are not available together, when the
source task contains more data than the target task, or when
many adaptations are needed for the target task. The use of
pretrained ImageNet [27] in various tasks, such as object
detection and semantic segmentation, in computer vision
has become the primary approach for STL in other areas.
STL has been successfully used in NLP, where pretrained
large-scale models are adopted for various kinds of tasks,
such as language modeling [28], multilingual cross-corpus
tasks [29], and named entity recognition [30]. Howard and
Ruder [31] proposed universal sequential transfer in text
classification tasks, which is successful even for smaller data.

TL approaches to the emotion recognition task have been
explored in [32]. Transfer learning in emotion recognition
tasks is used in single-modality (text-based, speech-based,
visual-based) and multimodality settings. In a modality-
specific transfer, most work aims to transfer knowledge under
similar conditions, such as transfer between lab-controlled
or real-life data [33] or transfer between cross-cultural data.
A common approach to TL in emotion recognition tasks is
domain adaptation using deep learning models [34], [35],
using adversarial and generative methods [36] or using a
deep learning model as a feature extractor [37], [38], [39].
Recently, large pretrained deep learning models were used
as feature extractors in recent emotion recognition tasks
instead of using an intermediate feature extractor. A recent
approach includes the extraction of facial features [39], [40]
or acoustic features [37], [38] using pretrained convolu-
tional neural network (CNN) architectures or using pretrained
language models such as BERT [41] to extract linguis-
tic features [38]. Hazarika et al. [42] proposed a sequential
inductive TL approach for emotion recognition tasks in con-
versations, where a hierarchical dialogue model is pretrained
on multiturn conversations and then the contextual param-
eters are transferred to a conversational emotion classifier.
Siriwardhana et al. [43] explored using three self-supervised
pretrained networks to jointly fine-tune an emotion recog-
nition task. Gideon et al. [44] determined how knowledge
can be transferred among three paralinguistic tasks using
pretraining and fine-tuning approaches in the same domain.
Although the findings of these studies for TL-based emo-
tion recognition show that TL is an efficient approach to
improving the accuracy of social signals such as emotion
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TABLE 1. An SI interview question based on teamwork.

type, utilizing TL for communication skill assessment tasks
is largely unexplored. Note that, although the data in this
paper has been utilized in [45], the focus in that effort was
an in-depth comparative evaluation between sequential and
non-sequential models in an oral presentation assessment
task. No TL-based approach was used in their experiments.

III. DATA
Two datasets, each with a different behavioral performance
task, are utilized to explore the effectiveness of TL for
oral presentation assessment. The first dataset comprises
crowd-sourced interview videos, while the second dataset
contains oral presentation videos. While distinct differences
exist between the datasets, there are some commonalities
between them: (1) both are monologue-based performance
tasks, (2) both were collected online using web-based mul-
timodal systems, and (3) both feature participants of diverse
backgrounds in terms of race, ethnicity and L1 language,
as well as variance in lighting, ambient noise and record-
ing environments. That said, we explain the unique aspects
of each dataset below. All participants provided written,
informed consent to participate in the data collection process,
and the study was reviewed and approved by the Institutional
Review Board of Educational Testing Service.

A. JOB INTERVIEW DATA: SOURCE
As the source domain data for the presentation assess-
ment model, we used a job interview dataset collected by
Chen et al. [11]. The job interview dataset contains a total of
1891 monologue job interview videos (with a total duration
of approximately 60 hours) from 256 online participants on
AmazonMechanical Turk. The task required each participant
to answer 8 different behavioral structured interview (SI)
questions, covering five different behavioral aspects of a typ-
ical workplace, i.e., leadership, communication, teamwork,
persuasion, and negotiation. We provide an example of one
such SI question in Table 1. The task workflow consisted of
(i) receiving instructions on how to record responses to the
questions, (ii) 1 minute of preparation time after being shown
a given question, and (iii) 2 minutes of time to provide a
response. Each video response was annotated on a 7-point
Likert scale (1 = Strongly Disagree, 7 = Strongly Agree)
by 5 experts from a major assessment institution for the
‘‘Big Five’’ personality traits, i.e., extroversion, agreeable-
ness, conscientiousness, emotional stability, and openness to
experiences, as well as a ‘‘hiring recommendation’’ score.
In training the models to predict all 6 labels, and for each trait
and hiring recommendation, we followed the same binary

TABLE 2. Score distribution of the interview dataset.

classification settings as [11], where we classified a given
response’s average rating for a trait/recommendation as Low
or High by using the median value of all average ratings in
the entire dataset as a threshold.

B. ORAL PRESENTATION DATA: TARGET
Our target domain data come from an oral presentation
dataset collected by Lepp et al. [12]. This dataset consists
of 81 informative presentation videos by students from the
United States discussing various aspects of applying to col-
leges (i.e., where, when, and how to apply). The participants
were asked to give a presentation concerning information
about the college preparation procedure rather than persuad-
ing the audience to apply (i.e., explaining why). The task
involved (i) generating a checklist to consider when selecting
and applying to colleges, (ii) 5 minutes of preparation for the
presentation, and (iii) giving a 3-minute oral presentation.
The oral presentation scores were annotated by using an
oral communication scoring rubric. Each presentation was
scored using the content dimension of the rubric with a Likert
scale of 1 to 4 (1 = deficient, 2 = weak, 3 = competent,
4 = proficient). Annotation was performed by two experi-
enced assessment developers for each of the three modalities,
i.e., audio, video, and text. If there was a discrepancy in
the score level of more than one point, a third rater was
asked to perform the annotation. The raters provided three
types of modality-based scores (audio, video and text) for
each presentation. Two types of scores were defined for the
presentation assessment task: (1) Overall score, which is
the rounded median of all 3 modality scores (audio, video
and text). (2) Modality-specific score (modality score) for
each presentation, which is derived using only one modality
(audio, video or text). As a walk-through example, assume
that the annotations for a given presentation are 2,2 (text),
3,3 (video), and 1,3 (audio). The overall median score across
all modalities (of 1,2,2,3,3,3) is 2.5, while themodality scores
are 2 (text), 3 (video) and 2 (audio). Due to the small number
of instances of the two lowest classes (i.e., ‘‘weak’’ and
‘‘deficient’’), we combined them into a single class, which
resulted in a three-class distribution of Low, Middle (‘‘com-
petent’’), and High (‘‘proficient’’) scores. Figure 1 shows the
distributions of both the overall score and the modality score
for the presentation assessment model.

C. FEATURE EXTRACTION
Multimodal feature extraction of the source and tar-
get domain datasets was performed automatically using
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FIGURE 1. Distribution of scores by (a) overall score and (b) modality score for presentation assessment.

several feature extractors, as explained below. Specifically,
we extracted acoustic information, facial expressions as a
nonverbal aspect, and word-level features from the spoken
utterances of the users as a verbal aspect. For the word-based
features, we first performed speech-to-text conversion via a
cloud-based automatic speech recognition system. Note that
we validated our proposed TL model using these commonly
used feature set consistent with previous research [45]. The
focus of our work is on the effectiveness of our TL model
by comparing it with algorithms utilizing pre-trained models
trained on larger datasets than our own, rather than comparing
TL models with different feature sets.

1) LINGUISTIC FEATURES
The features were extracted from the transcriptions.
We extracted word embedding features for the text computed
using the word2vec [46] method. First, we tokenized the
words from the transcriptions and removed stop words using
the Natural Language Toolkit library (NLTK) [47], and then
we trained a word embedding model using the tokenized
words via the Genism [48] modeling toolkit. For language
model training, we used separate vocabularies for the source
and target domains. The word2vec model projected our
corpus with the vocabulary into the embedded vector space
(embedding size of 200-D word2vec features). We converted
each word in the transcription file into 200-D word2vec
features and aggregated the whole word embedding from
each transcription into a single embedding input.

2) ACOUSTIC FEATURES
For the audio modality, each audio file is first segmented
into 5-second segments with an overlap of 1.5 seconds, and
speech-based features are extracted using COVAREP [49].
The acoustic feature set contains prosodic features, voice
quality information, and spectral information. Then, we com-
pute the statistical values—mean, maximum, minimum,

median, standard deviation, variance, kurtosis, skewness and
percentile values—for each feature and use them as acoustic
features. Last, we combine all the segments of a given audio
file into one feature vector, and feature selection is performed
on the targeted training dataset via a correlation matrix to
select the top 100 features as the feature set for the model.

3) VISUAL FEATURES
For the video modality, each video file is first segmented into
5-second segments with an overlap of 1.5 seconds.We extract
time-series features at a sampling rate of 10 FPS using the
OpenFace [50] Toolkit. We then use the 2D facial landmark
data of the eyes,mouth, and eyebrows to calculate the velocity
and acceleration of each data point and the mean value of
the 18 facial AU features. The landmarks used for each data
point are described in Figure 3. Finally, we combine all the
segments of a given video file into one feature vector.

Note that since the transcription is annotated with times-
tamps at the utterance level instead of the word level,
we cannot align the audio and video frames with words in
the transcriptions. Table 3 describes the details of the features
used in the experiments.

IV. METHODS
In this section, we cover the notation used in our TL network
architectures and the proposed network architecture for the
implementation of transfer learning scenarios. Figure 2 below
describes the implementation of transfer learning in our oral
presentation assessment system.

A. NOTATION
We mostly follow the discussion and notation adopted in [9],
[10], and [51]. We have a domain D = {X, P(X)}, where
X is the feature space and P(X) is the marginal probability
distribution of the feature space X. We define a task T =
{Y, P(Y|X)}, where Y is the label space and P(Y|X) is the
predictive objective function. Suppose that we have a source
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FIGURE 2. Overview of oral presentation assessment.

FIGURE 3. Landmarks used for extracting visual features (orange circled
marks).

domain DS with a corresponding source task TS and a target
domain DT with a corresponding task TT . We define transfer
learning as a process of improving the objective function of
P(Y|X) of TT by using related information from DS and TS ,
where DS ̸= DT and TS ̸= TT .
In our presentation assessment scenario, where the job

interview dataset is in our source domain (DS ) and the oral
presentation dataset is in our target domain (DT ), we observe
the following when performing TL between the two corpora:
• XS ̸= XT : the source domain is job interviews while the
target domain is presentations for college preparation

• TS ̸= TT : the source domain task is to predict job
interview outcomes, while the target domain task is to
predict oral presentation skills

TABLE 3. Summary of multimodal feature sets.

• YS ̸= YT : the source domain contains six label classes
for job interviews, while the target domain contains two
label classes for presentation assessment

• P(YS |XS ) ̸= P(YT |XT ): the outcome for the source
domain is binary classification, while the target is
three-class classification

Model: Suppose we have a model M that is a deep neural
network model with a parameter set θ and a number of
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Algorithm 1 TransferPretrainW

Input : A set of parameters θ (S) = (θ (S)h , θ
(S)
c ) of a

pretrained source modelM (S)

Output: A set of parameters w
Set θ (T )h ← θ

(S)
h

Set θ (T )c to randomly initialize
w← (θ (T )h , θ (T )c )

return w

layers L. The parameter set θ contains two components, θh
and θc, where θh is the representation of each of the L hidden
layers and θc is the representation of the output classifier.

M : F(x; θ ) = Fc(. . . ,Fl2 (Fl1 (x, θ
(l1)
h ), θ (l2)h ), . . . , θc) (1)

where Fl(.) is the objective output function of the l-th layer.
Parameter Sharing: Because we share the same model

architecture for the source and target domains except for the
output classifier, we have a target model M(T ) with param-
eters θ (T ) = (θ (T )h , θ

(T )
c ). Separately, a source model M(S) is

trained from scratch on a source task T(S) with labeled data in
the source domain DS . The objective of parameter sharing is
to improve F(T ) with the learned knowledge from M(S). Our
parameter sharing procedure is described in Algorithm 1.
Fine-tuning: For fine-tuning on the target model, given that

we have a pretrained source model M(S) with θ (S) parameters
and L(S) layers, the Adam [52] optimizer is updated with the
learning rate in the target task so that:

η
(l)
t > 0, l ∈ [1,L(S)] , η

(l)
t (T ) < η

(l)
t (S) (2)

where η
(l)
t (T ) is the learning rate of the target model’s

l-th layer at iteration timestep t and the learning rate is lower
than the source model learning rate.

B. PROPOSED NETWORK
Our main idea is to transfer knowledge from personality
traits and hiring decision models to potentially improve the
performance of the target model for predicting oral presenta-
tion performance. For this purpose, we apply TL via model
pretraining and adaptation. The proposed approach is to first
train a model on the job interview dataset and then fit the
pretrained model to the oral presentation dataset. The nota-
tion for our proposed algorithm is described in the previous
section. The main step of sequential transfer between the job
interview dataset and presentation data is described below.
• Pretraining: Train a source model M(S) from scratch
with data in the source domain DS

• Parameter Transfer: A parameter set θ (S) from M(S) is
transferred to the parameters θ (T ) of M(T ), where θ

(T )
h =

θ
(S)
h but θ (T )c is randomly initialized.

• Adaptation (Fine-tuning): Update the layers in M (T )

with the lower learning rate from L(S)

Next, we define the input sequence for each modality as Xa
= {X1

a, . . . ,X
n
a}, Xv = {X

1
v, . . . ,X

n
v} and Xt = {X

1
t , . . . ,X

n
t },

Algorithm 2 Transfer Learning for Multimodal
Presentation Assessment
Input :Multimodal model for the training source

domain: M(S)
mm, Multimodal training dataset

of the source and target domain:
{X (S),tr ,Y (S),tr

}, {X (T ),tr ,Y (T ),tr
},

Multimodal test dataset: X te

Output:Model parameters: {θmm}
Train a multimodal model as pretrained model M(T )

mm
X (S),tr

= {X (S)
a ,X (S)

t ,X (S)
v }

θ
(S)
mm← Pretrain(X (S),tr ,Y (S),tr ,M (S)

mm)
Transfer weights θ

(S)
mm of M(S) to M(T ) (Algorithm 1)

w(T )
← TransferPretrainW (θ (S)mm)

Set late-fusion model with pretrained weights
M (T )
mm ← F({xa, xt , xv};w(T ))

Fine-tune the modelM (T )
mm (Equation 2)

X (T ),tr
= {X (T )

a ,X (T )
t ,X (T )

v }

θmm← Fine-tune(X (T ),tr ,Y (T ),tr ,M (T )
mm)

return θmm

which correspond to the sequences of audio, video and text
data, respectively. Each input sequence data value, i.e., Xa,
Xv and Xt , is mapped to the same ground-truth label Y. Each
modality is trained with a separate model, such as Ma: Xa→
Y, where model M is trained with audio data Xa and Y is the
final output of the model. For modality fusion, late fusion is
performed by concatenating all three unimodal models Ma,
Mv and Mt , each of which is trained using the overall score
labels.

Algorithm 2 shows how the transfer learning settings
are applied in the oral presentation assessment task. First,
we train a source model M(S) using X (S)

a , X (S)
v , and X (S)

t from
source domain DS . Next, let X (T ),tr denote the multimodal
training dataset in our target domain DT . The initial weights
w(T ) are transferred from the pretrained model M(S) using
Algorithm 1. Fusion is performed for multimodal model
M (T )
mm by concatenating the outputs of the models for each

modality before final score prediction. Then, the model is
fine-tuned via the backpropagation algorithm and learning
rate described in Equation 2. Finally, the multimodal model
is used to infer a score for each data point in the multimodal
test data X te.

V. EXPERIMENTS
In this section, we formulate several research questions
related to the efficacy of TL by applying knowledge learned
from the source domain (video interview) to the target domain
(oral presentation). Specifically, as mentioned previously,
we seek to answer the following questions:
• Research Question (RQ1):Does utilizing the job inter-
view data via model pretraining and adaptation benefit
oral presentation assessment?

• Research Question (RQ2): In neural transfer learning
for oral presentation assessment, how do we fine-tune
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the network with pretrained model parameters, and
which source domain tasks are most beneficial for TL?

• Research Question (RQ3): Does the proposed TL
method outperform the TL method with a large-scale
pretrained model in terms of the prediction accuracy of
presentation skills for the target domain task?

A. EXPERIMENTAL SETTINGS
1) BASELINE AND MODEL VARIANTS
Baseline: For the baseline model, we use two sequential
models: LSTM and Stacked-LSTM. The LSTM model is
composed of a single LSTM layer with 128 units and is
used to extract the features from the input sequence data,
followed by a fully connected output layer, which is used for
predicting the three class labels (i.e., Low, Medium, High).
The Stacked-LSTMmodel is composed of two LSTM hidden
layers stacked together, each with 128 units, and is used to
extract the features from the input sequence data, followed
by a dropout layer (rate=0.5) [53]. The LSTM layers are
followed by 3 time-distributed, wrapped dense layers for
learning the output with 64, 32 and 16 units per layer. The
time-distributed layer is flattened before the output layer,
which is used for predicting the same three class labels.
Modality fusion: We opt for a late fusion method to com-

bine all three modality outputs by concatenating all unimodal
models into a fully connected layer. The concatenated layer
is followed by another fully connected layer with 16 units for
learning. During inferencing, this output layer generates three
class labels.
Pretrained Models: For pretraining models in the source

domain, the entire video interview dataset is split into training
(n = 1,519) and validation (n = 371) partitions. Addition-
ally, we ensure that no participants end up in two different
partitions during the split. We use the same baseline models
outlined above as our architecture for training in the source
domain, except for the output layer, where a binary prediction
is made for each label class. Recall that a binary classification
is made for hiring recommendations and predicting the Big
Five personalities. During pretraining, we first train the mod-
els using each of the six class labels. In each training loop,
the model with the maximum validation accuracy is chosen
as the model to be transferred.

2) MODEL HYPERPARAMETERS
We keep the features and model architectures constant except
for the input layer and classifier for both the source and
target domains. For supervised model pretraining, we use the
Adam [52] optimizer with a learning rate of 0.001. Binary
cross-entropy loss is used as the loss function, with sigmoid
activation for the source domain classifier. We set the batch
size to 16 and the number of epochs to 200. The model with
the maximum validation accuracy is chosen as the transferred
model. For source-target combination, we remove the input
layer and classifier from the source domain models and add
the new input layer and classifier for the target domain,

TABLE 4. Overview of large-scale data and models.

i.e., oral presentation assessment. For this task, we again use
the Adam [52] optimizer with a lower learning rate of 0.0001.
For the target domain classifier, sparse cross-entropy loss is
used as the loss function, with softmax activation. Again,
we set the batch size to 16 and the number of epochs to 100.
The model with the maximum validation accuracy is chosen
as the best model for evaluation. For the baseline model,
we use the same optimizer with a learning rate of 0.001, and
the classifier is the same as that used in the target domain.
The batch size is 16, and the number of epochs is 100. We use
Keras with a TensorFlow backend for implementing models
in both the source and target domains.

3) EVALUATION METRIC
We use the balanced accuracy score as the main evaluation
metric because the target domain dataset is highly imbalanced
as a result of label bias [12]. For a more robust evalua-
tion, we report the average balanced accuracy score for each
model using 10-fold cross-validation, and data normalization
is performed using Z-normalization. On the three-class clas-
sification task, the majority baseline of the balanced accuracy
is 0.333.

B. COMPARISON WITH A LARGE-SCALE MODEL
We compared the proposed TL method with a standard TL
method based on a large-scale pretrained model to evaluate
the efficacy of the proposed method. The performance of a
model trained with limited data can be improved by using a
large-scale pretrained model as the feature extractor, and we
used this method to validate our approach.We used pretrained
CNN models to extract acoustic features and visual features
and used a pretrained language model to extract linguistic
features.We trained and evaluated the models on each modal-
ity. For the classification tasks, we replaced the classification
(last) layer of the pretrained model with the sequential model
layer mentioned in Section V-A1. Finally, we report the com-
parison results with the proposed TL approach. The overview
of the pretrained models and the datasets used to train them
are described in Table 4.

Acoustic Models We used two pretrained models for
the acoustic features. First, the audio was downsampled to
16 kHz, and spectrograms were extracted as the input for
a pretrained CNN to extract acoustic embedding features.
Each spectrogram was computed as 64-channel, 96-time-
frame log-mel-spectrogram patches (window length = 0.96 s
with a hop of 0.48 s), which resulted in 2D data of
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size 96 × 64 for each second that were used as data points
for the model. The following two CNN models were used as
feature extractors:

• YAMNet: a pretrained acoustic detection model that
uses the MobileNet [59] architecture and was pretrained
on the AudioSet [54] dataset to predict 512 audio event
classes.

• VGGish: a pretrained CNN based on the VGG [57]
architecture that was pretrained on the YouTube 8-M
dataset [56].

The last layer of both models was replaced with sequential
models and an output layer for presentation assessment.

VisualModelsWe used two pretrainedmodels for analysis
of the visual features. First, each presentation video was
transformed into image sequences at 10 FPS. The image
sequences were then preprocessed into 224× 224x3 patches.
The pretrained CNN used the image sequences to extract
visual embedding features, and then classification was per-
formed. The following two CNNmodels were used as feature
extractors:

• VGG: a pretrained object recognition model that con-
tains up to 19 layers and was pretrained on the Ima-
geNet [58] dataset.

• MobileNet: a lightweight pretrained model that uses
depthwise separable convolution to reduce the model
size and complexity and is mostly used in mobile and
embedded vision applications.

The last layer of both models was replaced with sequential
models and an output layer for presentation assessment.

Linguistic Models We used BERT [41] to extract a
768-dimensional embedding vector for each transcription.
BERT is a pretrained transformer language model that has
achieved state-of-the-art results in many NLP tasks. The
BERT we used is uncased and was pretrained using the
English Wikipedia and Books Corpus. As we describe in
the feature extraction of linguistic features (Section III-C),
we first tokenized each word from the transcriptions and
removed stop words. Note that the maximum length of tokens
that BERT can accept is 512, so we ignored subsequent words
in transcripts that exceeded the maximum length. The tokens
were used as input for BERT to extract 768-dimensional
embedding vectors. We used the last hidden layer of BERT
as the embedding for linguistic models.

VI. RESULTS
In this section, we discuss the experimental results that pro-
vide the foundation for answering the research questions
posed in the previous section.

A. EFFICACY of TRANSFER LEARNING for ORAL
PRESENTATION ASSESSMENT (ANSWER TO RQ1)
To answer this research question, we adopted the sequential
transfer learning we proposed in Algorithm 2. First, we pre-
trained supervised models using the job interview dataset and
then adapted (or fine-tuned) these pretrainedmodels using the

oral presentation dataset in the target domain.We evaluate the
efficacy of this approach in an incremental manner, first using
unimodal, then bimodal, and finally multimodal approaches.

We first perform a comparative evaluation between the
LSTM and Stacked-LSTM baseline models, with the results
shown in Table 5. Assuming no preference for overall or
modality score labels, we evaluate both models with four
criteria: (1) audio modality score, (2) video modality score,
(3) text modality score, and (4) overall score prediction from
the multimodal features. We also compute the average score
across the four criteria for eachmodel. On average, the LSTM
model performed better than the Stacked-LSTM model, with
an average balanced accuracy score of 0.462. Consequently,
we selected the LSTM model as the better model for further
analysis.

Using LSTM as the base model, we compare the out-
comes of using a traditional supervised model and one that
is enhanced with TL. Table 6 provides the results of this
comparative evaluation. Table 6 compares the average bal-
anced accuracy score between the baselinemodel, which is an
LSTM model trained using the dataset in the target domain,
and the same LSTM model enhanced with TL and fine-
tuning. Except for the text modality score, all scores using
TL exceed the scores of the baseline LSTM without TL.

The balanced accuracies of the unimodal approaches for
modeling the overall score using LSTM are 0.350 (audio
modality), 0.443 (video modality), and 0.376 (text modality),
while the corresponding balanced accuracy numbers using
TL are 0.481, 0.449, and 0.478, respectively. This consistency
in improvement demonstrates the efficacy of TL for uni-
modal modeling approaches. Although bimodal approaches
do not always result in an improvement for modeling the
overall score (e.g., A+V (0.381) < video (0.443)), the A+V
approach obtains a significant improvement when TL is
performed (i.e., A+V (0.527)). This increase in balanced
accuracy is again consistent across all bimodal combinations.
Finally, the multimodal fusion approach (A+V+T) to mod-
eling the overall score is again better when TL is used than
when it is not, yielding an improvement of 0.066 when TL is
used. For modeling the modality scores of the presentations,
using TL yields an improvement of 0.025 and 0.001 for the
audio and video modalities. In view of this evidence, we con-
clude that the utilization of knowledge from a source domain
dataset can potentially lead to significant improvements in the
performance of task modeling in a related but different target
domain.

B. INVESTIGATING EFFECTIVE TL STRATEGIES (ANSWER
TO RQ2)
To address the second research question, first, we explore
appropriate fine-tuning methods in Section VI-B1. Second,
we investigate the types of source domain tasks to improve
the accuracy of the target task with TL in Section VI-B2.

1) COMPARISON OF FINE-TUNING METHODS
We utilized two basic strategies used in network adaptation:
fine-tuning all layers and fine-tuning only the last layer of the
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TABLE 5. Comparative evaluation of LSTM and Stacked-LSTM using a
pretrained model in the source domain that is trained on the hiring
recommendation label, applied to the target domain.

pretrained model. In the former, the pretrained model is used
as a weight initializer, and the parameters are trained from
scratch using the target domain dataset. In the latter (‘‘freeze’’
strategy), the weights of the pretrained model are kept frozen
except in the last few layers, which are retrained using the
target data. In our work, we focus only on fine-tuning the last
layer, which is commonly known as the feature extractor.

Table 7 shows a comparative evaluation of the LSTM
model using different combinations of modality features and
the two network adaptation strategies. All performances are
reported using the average balanced accuracy. As seen pre-
viously, there is a clear trend that indicates that fine-tuning
on all layers achieves consistently better performance than
fine-tuning on simply the last layer, except for themultimodal
(A+V+T) approach to modeling the overall score, where
fine-tuning using the ‘‘freeze’’ strategy gains a balanced
accuracy score of 0.059 over fine-tuning all layers. The same
outlier can be seen when using only the video modality for
modeling modality scores, with a gain of 0.034 for PT/Freeze
over PT/FT.

A plausible reason for these performance differences is
that by fine-tuning all layers, the gradients are allowed to
back-propagate to the pretrained parameters and help cap-
ture task-specific adjustments. However, there are still cases
in which fine-tuning all layers leads to a degradation in
performance, as noted above, possibly due to catastrophic
forgetting. Furthermore, deeper analysis is needed to estimate
when and what to transfer in TL, with the goal of finding a
good initialization that facilitates task learning in the target
domain [10].

2) IMPACT OF SOURCE DOMAIN TASKS
Similarity in both the domain and task between the source
and target is an important consideration in sequential TL
settings [10]. The more similar the tasks and domains are to
each other, the greater the improvement that can be expected
in the TL scenario. In this work, we investigate the impact
of our source domain on task learning in the target domain.
Specifically, the incongruity in the label space between the
source and target domains deserves a deeper look regarding
the efficacy of each type of label in the source domain and
its impact on the pretraining and fine-tuning processes in
the target domain. More concretely, we pretrained six LSTM
models using each of the hiring recommendation and person-
ality label classes to see how they affected the ability of the
model to evaluate the overall score of oral presentations.

TABLE 6. Comparative evaluation of LSTM models (1) without pretraining
and (2) pretrained with fine-tuning. Pretraining was performed using the
hiring recommendation label. PT indicates pretraining, and PT/FT
indicates pretraining and fine-tuning.

We present our results in Table 8, where we compare
bimodal and multimodal approaches to modeling the overall
score using different variants of the source domain label class
during pretraining. Additionally, we note the performance of
the pretrained LSTM model over a version without pretrain-
ing for each modality combination. The balanced accuracy
scores indicate yet another clear trend, that pretraining on
any of the six label classes in the source domain yields an
improvement over the corresponding version without pre-
training, regardless of the modality combination.

In the audio+video bimodal model, the model pretrained
on conscientiousness achieved the highest balanced accuracy
score of 0.561 among all the pretrained models. In mul-
timodal scenarios, the model pretrained on extraversion
achieved the highest score of 0.539 among all models.
The model pretrained on hiring recommendation showed an
improvement of 0.146, followed by the normal supervised
model without TL. Meanwhile, the models pretrained on
agreeableness, emotional stability, extraversion, and open-
ness showed improvements in the score of 0.052, 0.077,
0.034, and 0.107, respectively. Since the model results
changed depending on the source domain labels, we conclude
that the stability of the models depends on the pretrained
domain and labels. Therefore, choosing related and similar
domains or tasks is important for further downstream tasks.
In total, in both models (audio+visual and multimodal), the
second-best accuracy was obtained by the model pretrained
on hiring recommendation, so using the source domain task
that estimated the hiring recommendation yielded stable clas-
sification performance in this experiment.

C. RESULTS OF THE LARGE-SCALE MODEL (ANSWER
TO RQ3)
The results in Table 9 provide a comparative evaluation
between our proposed TL model and the model using the
pretrained CNN/language model as a feature extractor. The
proposed TL methods used the word2vec features for lin-
guistic features, COVARAP features for audio features, and
OpenFace features for visual features. Table 9 compares the
average balanced accuracy between the proposed TL mod-
els trained on the Hiring Recommendation label using the
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TABLE 7. Comparative evaluation of LSTM models that were fine-tuned
using two strategies: (1) fine-tuning all layers (PT/FT) and (2) fine-tuning
on only the last layer (PT/Freeze). Pretraining was performed using the
hiring recommendation label.

TABLE 8. Comparative evaluation of LSTM models that were fine-tuned
using different source domain labels.

intermediate features and the model trained with the features
extracted from the pretrained CNN/language model for each
modality. The proposed TL acoustic model outperformed the
pretrained CNNmodel on both scores. For the visual models,
the overall score of the proposed TL model performed better,
but in terms of the modality score, the pretrained CNN mod-
els were better. Last, in the text modality, the proposed TL
model trained on LSTM outperformed the pretrained model,
which also used the LSTM layer, but when using Stacked-
LSTM, the results were reversed. However, in the modality
score of the text modality, the proposed TL model clearly
outperformed the BERTmodel. In that case, we can conclude
that our proposed TL model performed better in most of the
cases than the models using the pretrained CNN/language
model. Therefore, using different but similar data to improve
the accuracy assessment can be said to be feasible, but we
need deeper and more detailed analysis to reach certainty in
that case.

VII. DISCUSSION
A. VALIDATION OF THE IMPROVEMENT BY TL
In this section, we confirm that our proposed TL models
do not improve the results merely by chance by using sta-
tistical hypothesis testing. The hypothesis testing is based
on statistical significance, which shows that the observed
data are strong evidence against the presumed hypothesis by
rejecting the null hypothesis. For hypothesis testing, we use
Student’s paired t-test to determine the statistical significance
of our model. We perform the test on the cases that showed

TABLE 9. Comparison results with the large-scale feature extractor and
intermediate features. Pretraining was performed using the hiring
recommendation label for intermediate features. ‘‘St-LSTM’’ denotes
Stacked-LSTM.

TABLE 10. Results of a paired t-test (‘‘(HR)’’ denotes that the model is
pretrained on the hiring recommendation label. ‘‘(CO)’’ denotes that the
model is pretrained on the conscientiousness label.‘‘(EX)’’ denotes that
the model is pretrained on the extraversion label).

the greatest improvement in accuracy when we adopted our
TL techniques. For a given pair of models (before and after
applying TL), we determine whether there is a significant
difference between the mean balanced accuracy of the same
10 folds used in the cross-validation in the paper. The null
hypothesis (that the mean balanced accuracy between a pair
of models is the same) is rejected if p<0.05. Furthermore,
all experiments are conducted with the same random seed
to ensure reproducibility. Specifically, we conduct the paired
t-test for the modeling scenarios in Table 10. The results
show that there are significant differences between the mod-
els before and after applying TL for 4 out of 5 modeling
scenarios. From the results, we can conclude that our models
are statistically significant.

B. TARGET DOMAIN DATA SIZE
To investigate the performance of the proposed transfer learn-
ing method with further limited training data samples akin to
few-shot learning scenarios, we design experiments to verify
the robustness of our TL models under a size constraint.
To limit the amount of available training data, we choose
20%, 50%, and 70% of the samples from among all data
samples of the target domain. After that, we train the model
with a subset of the data and observe the performance on a
held-out test split that is unchanged. We limit the training to
each training fold of cross-validation, but the test fold of the
data remains unchanged.We perform these experiments using
a full multimodal model (A+V+T) and LSTM pretrained
on a hiring recommendation model. Table 11 shows the
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TABLE 11. Investigation of the effect of the target data size on the
classification accuracy of LSTM models trained with data subsets in the
target domain. Note that the pretrained source model used here is
trained using the hiring recommendation label.

classification accuracy of the LSTMmodels trained with data
subsets of the target domain.

From this table, the degradation of the accuracy of the
proposed TL model is alleviated even if the training data size
degrades to 20%; the accuracy with 20% of the training data
is 0.435, and that of the non-TL method with all training
data is 0.367. Overall, it can be seen that using a subset of
available data can lead to better performance, so applying
TL to a smaller amount of training data also helps in raising
performance.

C. AUDIO FEATURE ABLATION
From the experimental results, we found that the most effec-
tive modality for the presentation skill assessment prediction
task was audio. We investigate the contribution of each type
of audio feature to the assessment task. For this purpose,
we divide the acoustic features included in COVAREP into
three groups:

1) Features related to prosodic information
2) Features related to spectral information
3) Features related to voice quality.

The analysis is performed with an ablation test by removing
one feature group from the features (prosodic, spectral, and
voice quality). We compare the model lacking the removed
feature groupwith the baselinemodel trained with all features
(All). The details of the audio features are shown in Table 3.
Table 12 describes the analyses of the contribution of the
feature group to two prediction tasks (Overall and Modality
score). ‘Excluded’ means removed from the features and
‘Diff.’ means the difference in accuracy (‘Acc.’) between the
current prediction and that obtained using all audio features.

For the prediction of the overall score, these results showed
that the voice quality (VQ) is the most effective (the accuracy
degraded by 0.004 when excluding VQ). These results indi-
cate that VQ is an important feature for predicting the overall
score determined by the coders when using multimodal infor-
mation from videos.

For the prediction of the modality score, there are no
irrelevant feature groups, so the results show that all types of
features contributed to the prediction of the modality score.
In particular, prosodic and spectral features are the most rele-
vant features for predicting the score (the accuracy degraded
by 0.104 when they were excluded). The modality score is
judged by observing only speech data, so all audio features
that have different aspects capturing speech characteristics
are considered to be key descriptors in predicting the score.

TABLE 12. Contribution of each feature group of the audio feature set
using our proposed method, determined by an ablation test. The
pretrained source model in our method is trained using the hiring
recommendation label. ‘Excluded’ means removed from the features,
and ‘Diff.’ means the difference in accuracy (‘Acc.’) between the current
prediction and that obtained using all audio features.

D. FUTURE WORK
In the future, it would be worthwhile to pursue TL scenar-
ios in which the source and domain datasets and objective
functions differ significantly as well as to attempt to transfer
knowledge from multiple source domains to a single target
domain. In the current work, we implement the TL scenarios
in the presentation assessment by using only the simple layer
sequential model. We do not focus on data augmentation or
explore in-depth feature selection and modality combinations
for other sources. One conclusion concerns the relatively
less effective textual features during TL: due to topic differ-
ences between the source and target domains, we believe it
is important to ensure that we extract context-independent
linguistic features for TL between the domains, rather than
using linguistic features that are context-dependent, such as
word2vec. Context-independent features from text data, such
as discourse coherence and syntactic complexity, can be used
as textual features for modeling. Additionally, we are inter-
ested in leveraging the growing resources focused onmachine
learning and AI model interpretation and explainability to
apply to our work. For example, we can utilize SHAP [60]
(SHapleyAdditive exPlanations) that is based on game theory
to measure feature importance or relevance to predicting
a specific instance outcome. Similarly, other libraries such
as LIME [61] (Local Interpretable Model-agnostic Explana-
tions) can be used to evaluate the performance of the model
against human intuition by examining the features that are
used by the model to generate a certain prediction, such as
the efforts expended in [6]. Currently, we have not further
explored any bias mitigation related to the participant’s race,
age, or ethnicity when modeling, and would leave those for
future work.

VIII. CONCLUSION
In this work, we propose a simple but effective transfer
learning framework for improving model performance in
evaluating oral presentations in a target domain by utilizing
knowledge learned from a different but related task in a
source domain using sequential models. Through the com-
parative evaluation of predictive models that are trained with
and without transfer learning, we demonstrate its potential
usefulness for a target domain in which (1) there is very
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little data for training a predictive model from scratch and
(2) labels for training such models can be expensive and
laborious to obtain. From Table 11, the greatest improvement
in the accuracy obtained by TLwas 0.106 points (10.6%) (this
answers RQ1). Moreover, we investigated several parameters
of the TL framework, such as the impact of the similarity of
the labels and classes between the source and target domains
on the effectiveness of a TL framework. From the results of
the investigation of effective TL approaches, fine-tuning all
layers effectively improves the accuracy, and using the source
domain task that estimates the hiring recommendation yields
stable classification performance in this experiment (this
answers RQ2). Last, we performed a comparative evaluation
between the proposed TL methods and a standard TL method
based on a large-scale pretrained model, and the results show
that our approach performed better than the standard TL
method in most cases. Our proposed model is simple, yet
the results suggest that there is promise in implementing TL
between two different domains in communication assessment
tasks (this answers RQ3).
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