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ABSTRACT This paper presents an efficient and scalable reachability analysis algorithm for nonlinear
analog/mixed-signal circuits. In particular, it addresses the challenges in computing the time evolution of the
reachable set of the circuit’s continuous states and its intersection with the guard planes, i.e., the partitioning
planes of the equivalent piecewise-linear system modeling the circuit’s dynamics. The proposed algorithm
utilizes a trajectory form of the reachable set, which can describe its exact evolution over time using analytical
expressions until the set crosses one of the guard planes of the system. When it does, a naive computation
of the reachable set may require splitting the set into multiple sub-sets, each using its own trajectory form.
This is problematic since the number of reachable sets may grow indefinitely over time. To mitigate this,
this work proposes a way of processing a group of reachable sets together that cross a common guard plane
during a finite time interval. This method can keep the number of sets and the associated computational
cost constant over time. The experimental results with a DC–DC converter example demonstrate that the
proposed algorithm can achieve the average speed-ups of 79–107× compared to the existing algorithms
with errors of less than 2%.

INDEX TERMS Analog/mixed-signal circuits, guard intersection, hybrid systems, piecewise-linear system,
reachability analysis, safe operating area, safety verification.

I. INTRODUCTION
REACHABILITY analysis (RA) [1], [2], [3], [4] verifies
the safety of a system by finding all the states that can be
reached from a specified range of initial states (called the
reachable setR) and checking ifR is within a desired target
range. RA is a fundamental method for performing model
checking on communication protocols [1], digital hardware
systems [5], [6], and software [7]. This is widely being
used for verifying modern safety-critical systems, wherein
failures have significant consequences, i.e., enormous costs
or even loss of human lives [8], such as sudden unintended
acceleration [9], and collisions involving autonomous vehi-
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cles [10], [11] or aircraft [12]. Ever since it was shown that
RA can be extended to hybrid systems [2], [3], which contain
both discrete and continuous states, there has been a myriad
of efforts attempting to verify analog/mixed-signal (AMS)
circuits or systems. However, these efforts remain constrained
to the analysis of the simple behavior of very small cir-
cuits, such as verifying the start-up of oscillators [13], [14],
flip-flop [15], 16-modulators [13], static random access
memory (SRAM) [16], phase-locked loops (PLL) [17], [18],
and DC–DC converters [19], [20], rendering them unsuitable
for real-world problems. This paper presents an efficient
and scalable approach to performing RA for nonlinear AMS
circuits.

Most RA methods for AMS circuits in literature start by
modeling a nonlinear AMS circuit as piecewise-linear (PWL)
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systems [21]. In other words, the continuous state space of a
nonlinear circuit or system is partitioned into a set of disjoint
sub-regions S1, S2, . . . , Sp, and the continuous state x(t) ∈
Rn within each sub-region is governed by a different linear
differential equation. Early works focused on representing
the region occupied by the reachable states, e.g., using a set
of hypercubes [7], polyhedra [22], or ellipsoids [23]. Later
works focused on improving the efficiency of computing the
time evolution of the reachable states by utilizing superpo-
sition using zonotope [24] and support functions [25], and
combining machine learning (ML) and satisfiability modulo
theories (SMT) techniques to further accelerate the state
exploration [18].

Our previous work [26] showed that the problem of com-
puting the time evolution of the reachable set within a linear
sub-region can be solved by using a trajectory form, which
describes the reachable set as a zonotope each of which end-
points has an analytical expression describing its trajectory
over time t . This trajectory form of reachable state (TRS) can
describe the exact time evolution of the states without having
to discretize the state space or time and, therefore, avoid all
the related issues found in the previous works.

Now the remaining challenge for performing RA for a
PWL system is with computing the intersection between the
reachable state at time t , R(t), and the boundaries between
the sub-regions, called guard planes G, as illustrated in Fig. 1.
Particularly, the geometrical computation of the intersection
R(t) ∩ G and its subsequent evolution in a new sub-region
often requires set splitting. For example, [27] describes a way
of computing the intersection of the flowpipe reachable set
with polyhedral guards by formulating a convexminimization
problem. To reduce over-approximation errors, one flowpipe
may have to be split into multiple flowpipes as a result [28],
and despite the efforts of merging them afterward, the num-
ber of flowpipes to be maintained during the analysis may
grow indefinitely over time, limiting scalability. The same
challenge exists with the trajectory form as well.

To address this challenge, this paper proposes a way of
computing the guard intersection (GI)R(t)∩G while combin-
ing multiple reachable sets described in trajectory forms, i.e.,
TRSs. The proposed method leverages the fact that we can
compute the exact time interval of a TRS crossing a given
G by solving the analytical expressions. This time interval
can be divided into a set of multiple-unit intervals with finite
durations. When multiple TRSs cross the same G within the
same unit time interval, we take this opportunity to compute
their GIs together and produce a merged result. For comput-
ing the intersection itself, we adopted the scalable technique
presented in [29]. We found this approach can effectively
keep the number of TRSs from growing indefinitely, since in
most of the systems with recurring GIs, the GIs tend to occur
at clustered time intervals.

The experimental results show that an average speed-up
of 79–107× is possible compared to the existing meth-
ods including SpaceEx [28], with a safety-bound estimation
error of less than 2%. More importantly, the example of a

FIGURE 1. The proposed multiple trajectories form reachable set Rcol (t)
for PWL systems. The subsequent Rcol (t) after GI starts from the subset
of G.

digitally-controlled closed-loop DC–DC converter demon-
strates that the number of TRSs can be kept constant even
when the GI occurs repeatedly, with a 40× average speed-up
and an error of less than 2% using the same configuration.

The remainder of the paper is organized as follows:
Section II introduces the TRS, and Section III describes the
proposed RA algorithm with further details on computing
the GIs and merging multiple TRSs. Section IV presents the
experimental results with a few AMS circuit examples, and
Section V concludes the study.

II. TRAJECTORY FORM OF REACHABLE SET
This section defines the TRS R(t) in a PWL system. The
continuous spaceX of the employed system is partitioned into
a set of disjoint sub-regions Sq’s, indexed by the discrete state
q ∈ Q. Assume that R(t) from sub-region Si intersects the
sub-region Sj where i, j ∈ Q, this transition is denoted as (i, j)
and its hyperplane guard G(i,j) is defined as follows:

G(i,j) : w · x + b = 0, (1)

where, in simplified notation, w = w(i,j) ∈ Rn is a unit vector
normal to each hyperplane, and b = b(i,j) ∈ Rn is an offset.
The continuous state variable x(t) and output y(t) ∈ Rno

are governed by the linear differential equation of the system,
given by

ẋ(t) = Aix(t)+ Bu(t), y(t) = Cx(t)+ Du(t), (2)

where Ai ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and D ∈ Rno×ni .
The trajectory of x(t) starting from the initial state x0 at time
t = t0 can be expressed as

x(t) = eAitx0 +
∫ t

t0
eAi(t−τ )Bu(τ )dτ. (3)

When an external control signal d(t) is given, the input of
the system equation of Si, u(t) ∈ Rni is generated depending
on the circuit topology. It has been shown in [30] that when
each u(t) has the form:

u(t) =
∑
k

ck tmk e−ak t , (4)

VOLUME 11, 2023 74603



S. Kim, J. Kim: RA for Nonlinear AMS Circuits With Trajectory-Based Reachable Sets

where the coefficients ak ’s and ck ’s are complex numbers,
andmk ’s are non-negative integers, the solutions for x(t)’s and
y(t)’s governed by (2) have the same expressions. Although
we assume a single-input case (i.e., ni = 1) here, multi-input
cases can be accommodated in a straightforward manner. The
main advantage of this representation is that it is possible
to express all types of analog input signals of u(t) using the
sum of exponential representations, i.e., tuples of coefficients
{(ak , ck ,mk ), . . .}’s representing the s-domain signal form.
For example, a step input of u(t) can be expressed as U (s) =
1/s⇔ {(0+0j, 1+0j, 1)}, a ramp function can be expressed
as U (s) = 1/s2 ⇔ {(0 + 0j, 1 + 0j, 2)}, and a function of
the step response of a linear filter having a pole frequency
ω0 can be expressed as U (s) = 1/s − 1/(s + ω0) ⇔
{(0+0j, 1+0j, 1), (ω0+0j,−1+0j, 1)}. Note that this form
of u(t) can be extended to a concatenated form where u(t)
takes a different expression depending on the time interval
(e.g.,u0(t − t0) starting from t0, u1(t − t1) starting from t1,
and so on). For simple notation, we abbreviate this as u(t)
without the subscripts for time intervals.

The initial set of states at time t0, that is, R(t0), is repre-
sented as a zonotope Z0 as

Z0 = (c, ⟨g1, . . . , gr ⟩) = {c+
∑
h

αhgh|αh ∈ [−1, 1]}, (5)

where c ∈ Rn is a center point, and gh’s ∈ Rn are a set of
generators [24]. Any point within the zonotope in (5) can be
expressed as a linear combination of gh’s from c.
It has been shown in [26] that, using the superposition

principle, each R(t) ⊆ Si for t ≥ t0 can be represented as
zonotope where all the vectors c and gh’s can be expressed as
functions of time t using (4), that is,

R(t) = (c(t), ⟨g1(t), . . . , gr (t)⟩). (6)

Sampling values for R(t) at t yields a zonotope set of states
as in (5), which is denoted as sample(·).

In this study, a procedure named getTrajectory-
Zonotope(·) computes the TRSR(t) from theZ0 sampled
byR(t0) in the current sub-region Si, as given in (6). In [30],
it was shown that this computation can be carried out in the
Laplace s-domain. For instance, the time-domain expressions
of u(t) can be transformed into the Laplace-domain expres-
sion U (s) as

u(t) =
∑
k

ck tmk e−ak t
L
−→ U (s) =

∑
k

bk
(s+ ak )mk+1

, (7)

and the Laplace-domain transform of x(t), X (s), can be com-
puted using the matrices given in (2) as

X (s) = (sI − Ai)−1BU (s)+ (sI − Ai)−1x(t0), (8)

which can be transformed back into a time-domain expression
as in (4). The TRS R(t) in (5) is computed by applying
this procedure to the vectors of Z0, or equivalently, to its
center c and generators gh’s individually. To avoid redundant
computations of the transfer-function matrices (sI − Ai)−1B

Algorithm 1 Computing the Guard Intersection
Input : Z0 := {Zī=1,...,Ns }, G := G(i,j) = (w(i,j), b(i,j)),

u(t)
Output: Ic, ts

1 R(t),I0 ← ∅;
2 for ī ∈ (1, . . . ,Ns) do
3 Rī(t)← getTrajectoryZonotope(i,Z ī, u(t));

4 Rcol (t)← Rcol (t) ∪ {Rī(t)};
5 end
6 ([t1, t2],flag)← findCrossZonotope(Rcol (t),T );

7 ts ← {t
j̄
s = (t1 + j̄

(t2−t1)
Ns

) |j̄=0,...,Ns } ;
8 D← getOrthogonalBasis(G,Rcol (t));
9 for ī = (1, . . . ,Ns) ∧ j̄ = (0, . . . ,Ns) ∧ k̄ = (1, . . . , n− 1)

do

10 Z ī,j̄
s ← sample(Rī(t), t j̄s) ;

11 Ic
ī,j̄,k̄
← getIntersect2D(Z ī,j̄

s , lk̄ ) /* [m,M ] */

12 end
13 for j̄ = (0, . . . ,Ns) ∧ k̄ = (1, . . . , n− 1) do
14 Ic

j̄,k̄
←

⋃Ns
ī=1
Ic
ī,j̄,k̄

15 end
16 returnRcol (t),Ic, ts

and (sI − Ai)−1 for the same linear differential equation, the
proposed method stores a collection of previously calculated
transfer-function matrices.

III. HYBRID REACHABILITY ANALYSIS WITH GUARD
INTERSECTION
The proposed algorithm computes the GIs of the TRS, i.e.,
Rcol(t) ∩ G as an approximate zonotope subset of G. It com-
putes the GI as a set of ranges [m,M ] for each direction
defined by a set of unit vectors lk̄ for k̄ = 1, 2, . . . and
transforms it back to TRS again to be computed iteratively.
The algorithm is explained in the following two subsections.

A. COMPUTATION OF GUARD INTERSECTION
This subsection describes the procedure for computing the
GI ranges in four steps: (i) building the TRS from an initial
set, (ii) detecting the GI, (iii) computing the ranges represent-
ing the GI by projection, and (iv) merging the ranges. The
pseudo-code of the algorithm for computing the GI ranges is
listed in Algorithm 1.

1) BUILDING TRAJECTORY-FORM REACHABLE SETS Rcol (t)
In the first step of the algorithm, the procedure Get-
TrajectoryZonotope computes the TRS Rcol(t) in (9)
using the corresponding linear system given in (2), asso-
ciated with the state for the current sub-region q from
Z0 =

⋃Ns
ī=1
Z ī. The resulting Rcol(t), which contains Ns-fold

Rī(t)’s in (6), is defined as

Rcol(t) = {Rī(t),Rj̄(t) for ī, j̄ = 1, . . . ,Ns}, (9)

74604 VOLUME 11, 2023



S. Kim, J. Kim: RA for Nonlinear AMS Circuits With Trajectory-Based Reachable Sets

FIGURE 2. The procedure ‘findCrossZonotope’ detects the occurrence of
GIs, resulting in three different cases depending on the relation between
[t1, t2] and T .

where ī, j̄ are the set index for subregions Si and Sj,
respectively.

2) DETECTION OF GUARD INTERSECTIONS
Next, the algorithm detects every GI betweenRī(t) ∈ Rcol(t)
and G. It computes the time range [t1, t2] for which the
intersections Rcol(t) ∩ G ̸= ∅ occur within the local time
bound T where the current input u(t) is valid. As shown in
Fig. 2, using the distance function of zonotopes introduced
in [28], the findCrossZonotope(·) procedure iteratively
finds the values of the entering time t1 and exiting time t2 until
T . The function has been extended for the TRS by computing
the distance of eachRī(t) at arbitrary t = t ′ from the G, given
as

ymin(w, t ′) = c(t ′) · w−
∑r

h=1
|gh(t ′) · w|,

ymax(w, t ′) = c(t ′) · w+
∑r

h=1
|gh(t ′) · w|, (10)

each of which is represented as a piecewise-continuous func-
tion based on the polarity of the right term gh(t ′) ·w. Because
each continuous segment of the function is represented in
trajectory form as in (4), finding t1 and t2 is equivalent to
finding the t ′ used in the expressions ymin(w, t ′) = 0 and
ymax(w, t ′) = 0. The values of t ′ can be found using a scalar
optimization algorithm.

Three distinguishable intersecting cases arise for this eval-
uation depending on the position ofR(T ) with respect to the
G, as shown in Fig. 2. If the procedure finds t1 and t2 within
the local time bound (t1, t2 < T ), it normally returns the
resulting pair of times and the flag ‘CROSSED’. If t1 and
t2 are not found within the T , then it returns the last set
of states Rcol(T ) sampled at t = T with the flag ‘NOT
CROSS.’ If the time ranges are found but the end time of the
intersection t2 is greater than the local time bound T (t1 <

T < t2), it returns the flag ‘CROSSING’ but requires some
modification for generating the next initial set for Rcol(t),
which is explained in the next subsection.

3) COMPUTING INTERSECTIONS AS RANGES Ic
ī,j̄,k̄

WITH 2-D PROJECTION
We define the set of ranges expressing the GI as Ic = {Ic

ī,j̄,k̄
}

for directions of lk̄ ’s. Thus, we need to find lk̄ that spans G.

Algorithm 2 GetIntersect2D(Z ī,j̄
s , lk̄ )

Input : Z ī,j̄
s , w, lk̄ , D

Output: Ic
ī,j̄,k̄

/* Projected zonotope for (w, lk̄ ) */
1 Z(w,lk̄ ) ← (Projw,lk̄ (c), ⟨Projw,lk̄ (g1), . . . ,Projw,lk̄ (gr )⟩) ;
2 Project Gh→ x = γk ;
3 Pick g0 from generators ⟨gh⟩ of Z(w,lk̄ ) s.t. v1 is most close

to x = γk ;
4 v1 ← c+ g0 ;
5 Sort ⟨gh⟩ in tangent order arctan(gx/gy) ;
6 Pop g := (gx , gy) in ⟨gh⟩ ;
7 v2 ← c+ g ;
/* traverse vertex by counter-clockwise)

*/
8 while ⟨gh⟩ ̸= ∅ do
9 y← Get line intersection between v1v2 and x = γk ;

/* next line segment */
10 v1 ← v2 ;
11 Pop g := (gx , gy) in ⟨gh⟩ ;
12 v2 ← v2 + 2g ;

/* counter-clockwise */
13 Ic

ī,j̄,k̄
← [m,M ] ;

14 M ← y if y > M
15 end

/* by clockwise) */
16 ⟨gh⟩ in tangent order arctan(gx/gy) ;
17 while ⟨gh⟩ ̸= ∅ do
18 . . .
19 v2 ← v2 − 2g/* clockwise */
20 . . .
21 m← y if y < m
22 end
23 Ic

ī,j̄,k̄
← [m,M ] ;

24 return Ic
ī,j̄,k̄

The discrete time steps are defined as t j̄s = t1 + j̄(t2 − t1)/Ns
spanning the intersecting time range [t1, t2], where ī, j̄ =
0, . . . ,Ns and k̄ = 1, . . . , n. Each resulting Ic

ī,j̄,k̄
is given by

[m,M ] where m,M ∈ R denote the minimum and maximum
values of the range of values, respectively.

The proposed algorithm adopts the projection method
introduced in [29] that efficiently computes GIs in
high-dimensional state space and extends the algorithm for
the TRS. It is implemented as the getIntersect2D(·)
procedure that computes the GI by intermediately computing
Z ī,j̄
s representing zonotope sampled from Rī(t) at time t j̄s via

the projection ofRī(t) into two-dimensional spaces generated
for pairs of vectors,w and lk̄ ’s. The projection of a continuous
state x(t) is defined by Projw,lk̄ (x(t)) = (w · x(t), lk̄ · x(t)).
Using the above property, the projection for a zonotope Z
given in (5) can be expressed as Projw,lk̄ (Z) 7→ Z(w,lk̄ ) =

(Projw,lk̄ (c), ⟨Projw,lk̄ (g1), . . . ,Projw,lk̄ (gr )⟩), whose result-
ing projected zonotope, Z(w,lk̄ ) ∈ R2, is a subset of the
two-dimensional state space, i.e., the (w, lk̄ )-space. Finally,
the procedure getIntersect2D computes the GI for
each projected zonotope Projw,lk̄ (Z

ī,j̄
s ) and yields Ic

ī,j̄,k̄
that
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FIGURE 3. Finding a set of optimal basis D using orthogonal vectors lk̄ ’s
spanning G. The initial choice using one of the gh’s helps to find the
optimal lk̄ ’s.

scales in each direction along lk̄ ∈ D. The ranges of 2-D
intersection between v1v2, where v1 and v2 are the vertices of
the intersection, and the projected guard hyperplane x = γ

can be simply obtained by the following algebra as:

y = (γk − v1x)
v2y − v1x
v2x − v1x

+ v1y (11)

where v1 = (v1x , v1y) and v2 = (v2x , v2y). The
detailed algorithm used in getIntersect2D is listed in
Algorithm 2.

Note that this approximation method would result in
an additional over-approximation error depending on how
the lk̄ ’s are chosen, as shown in Fig. 3. Therefore,
the getOrthogonalBasis(·) procedure finds the set
of optimal orthogonal lk̄ ’s, by selecting the one that
has a minimum-volume hypercube enclosing the GIs,⋃

īRī(t ′) ∩ G sampled at t ′ = tmid = (t1 + t2)/2. The search
process finds the lk̄ ’s that minimizes the expression for the
volume of zonotope VZ =

∏
k̄
∑

h |gh · lk̄ | for all k̄ and h.
If an initial value of lk̄ is selected from the gh’s of the sampled
zonotope Rī(tmid ), the initial search time of the process can
be reduced, as illustrated in Fig. 3.

Even though the zonotopes are projected in a two-
dimensional space, enumerating all the vertices of the zono-
tope with many generators can slow down the analysis.
However, this procedure can efficiently compute intersec-
tions by prioritizing the vertices based on their distance to
the G without enumerating all the vertices, extending the idea
in [29] to the proposed method.

4) MERGING INTERSECTIONS Ic
ī,j̄,k̄

TO Ic
j̄,k̄

In addition, the resulting set of GI ranges Ic for Rī(t)’s
consists of Ns(Ns + 1)(n − 1)-fold pairs of values [m,M ].
Based on the fact that every Ic

ī,j̄,k̄
with an identical index ī

shares the same guard-crossing time t j̄s and the same direction
of lk̄ , they can be merged by taking their union, resulting in
the new (Ns + 1)(n− 1)-fold Ic

j̄,k̄
.

B. SUBSEQUENT INITIAL ZONOTOPE
Algorithm 3 lists the procedure for computing Z0 in the new
sub-region Sj from Ic

j̄,k̄
, where Z0 is Ns-fold zonotopes, i.e.,

Algorithm 3 Computing Next Initial Zonotope Z j̄
0

Input : Ic := {[m,M ]j̄=(0,...,Ns),k=(1,...,n−1) }

Output: Z0 := {Z
j̄
0 |j̄=(1,...,Ns)},R

col (t), tr
1 Z0 ← ∅; ZG0 ← ⟨c,D⟩;
2 RG(t ′)← getTrajectoryZonotope(j,ZG0, u(t ′));
3 for j̄ ∈ (0, 1, . . . ,Ns) do

4 t j̄r ← t2 − t1 − t
j̄
s;

5 Z j̄
G ← sample(RG(t ′), t

j̄
r );

6 end
7 for j̄ ∈ (1, . . . ,Ns) do
8 for k̄ ∈ (1, . . . , n− 1) do
9 Ij̄,k̄ ← Ic

j̄−1,k̄
∪ Ic

j̄,k̄
;

10 end
/* Initial set for next cycle */

11 Z j̄−1
c ← I2Z (Z j̄−1

G ,Ij̄−1,k̄ ); Z
j̄
c ← I2Z (Z j̄

G ,Ij̄,k̄ ) ;

12 Z j̄
0 ← ĈH (Z j̄−1

c ,Z j̄
c)};

13 Z0 ← Z0 ∪Z
j̄
0;

/* Reachable sets in Sj */

14 Z j̄
← ĈH (I2Z (ZNs−1

G ,Ij̄−1,k̄ ), I2Z (Z
Ns
G ,Ij̄,k̄ )) ;

15 Rj̄(t)← getTrajectoryZonotope(qj),Z j̄, ui(t));

16 Rcol (t)← Rcol (t) ∪Rj̄(t);
17 end
18 return Z0,Rcol (t), tr

Z0 =
⋃

j̄Z
j̄
0, valid at t = t2, that can be computed as the

trajectory form of (4) in the subsequent GI cycle.

1) BUILDING REACHABLE SET OF GUARD
HYPERPLANE RG(t)
To obtain Z0, the proposed algorithm represents the time
evolution of the states from the GI by obtaining a reachable
set of G itself, i.e., RG(t ′ = tr

j̄
), where t ′ denotes time after

ts
j̄
, that is, t ′ = t− ts

j̄
, and tr

j̄
= t2− tsj̄ indicates the remaining

period until t = t2 in the new sub-region Sj, as illustrated
in Fig. 4 (a). After defining ZG0 = (c, ⟨l1, . . . , ln−1⟩) as
the zonotope spanning the entire hyperplane of G where
c = |b|w ∈ G, we compute the TRS of G, RG(t ′) =
(c(t ′), ⟨l1(t ′), . . . , ln−1(t ′)⟩) governed by a different linear
system in (2) in the subsequent sub-region Sj starting from
ZG0.

Each Ic
j̄,k̄

representing GI at t = t j̄s that scales the zonotope

sampled from RG(t), i.e., Z
j̄
G = RG(t ′ = t j̄r ) will undergo

the conversion procedure I2Z(·). The procedure yields an
equivalent cross-sectional zonotope valid at t = t2, Z j̄

c =

(cj̄, ⟨gj̄1, . . . , g
j̄
n−1⟩), given as

cj̄ = c(t j̄r )+
n−1∑
k̄=1

(mj̄,k̄ +Mj̄,k̄ )lk̄ (t
j̄
r )/2

gj̄
k̄
= (Mj̄,k̄ − mj̄,k̄ )lk̄ (t

j̄
r )/2, (12)
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FIGURE 4. Example of reachable set computation from the ranges using Algorithm2.

where mj̄,k̄ and Mj̄,k̄ indicate the minimum and maximum

values in Ij̄,k̄ , respectively, and the new time steps 1t = t j̄r

specify the duration for the Rj̄
G(t
′) evolving from the time

instant of GI t = t j̄s, which is globally equivalent to t = t2.

2) CONVERTING RANGES Ic
j̄,k̄

’s INTO NEXT INITIAL SET Z j̄
0’s

Next, the procedure ĈH(), which computes the convex hull
of two zonotopes incorporated in [24], iteratively combines a
pair of adjacent zonotopes Z j̄−1

c and Z j̄
c for j̄ = 1, . . . ,Ns,

resulting in Z0 as Z0 =
⋃Ns

j̄=1
Z j̄
0, as shown in Fig 4 (c).

However, directly applying this procedure to the resulting
zonotopes can result in a large over-approximation error
owing to the zonotopes’ asymmetry, as seen in the leading
and trailing zonotopes in Fig 4 (b). Therefore, we consider
the maximum range of the pair of Ic

j̄−1,k̄
and Ic

j̄,k̄
for each

[t j̄−1s , t j̄s] in j̄ = 0, . . . ,Ns to balance the size of the paired
zonotopes. When the range of the smaller ones in all the
paired zonotopes is extended, we obtain a hull of zonotopes
with a small over-approximation error, as the zonotopes Z j̄

0’s
shown in Fig 4 (c).

In the case of a ‘CROSSING’ state, the algorithm cannot
be applied for the Rcol(t) because it partially remains in
the current sub-region Si, and the remaining part does not
intersect G until the local time bound T , as shown in Fig. 4.
To address this, we split the GI time range t = [t1, t2] into
two, depending on whether the corresponding part ofRcol(t)
crosses the guard or not: [t1,T ] and [T , t2]. First, we dis-
cretize [T , t2] into t

j̄2
s with j̄2 = 1, . . . ,Ns−K and compute a

set of zonotopes Z0,2, as in the previously described method.
For the remaining [t1,T ], we segment the reachable set at t =
T , i.e., Z j̄

0,1 = R
j̄1 (t = T ) into K -fold zonotopes Z j̄1

0,1 with
j̄1 = 1, . . . ,K that are uniformly spaced and spatially parallel
to the guard plane. Note that we can choose a non-negative
integer K ∈ N to be proportional to the distance from the

guard, i.e., choosing K/Ns ≈ 11/(11 +12) will yield good
accuracy. Then, the resulting initial set is given by the union
of the two sets representing each part at t = T , as follows:
Z0 = Z0,1 ∪Z0,2 Thus, we can maintain Ns forRj̄(t)’s with
a relatively minimal error, without increasing the complexity
of the overall algorithm.

3) COMPUTING REACHABLE SETS Rj̄ (t)’s UNTIL Z j̄
0’s

The reachable sets after each GI until t = t2 are defined as
a set of a new TRS Rj̄(t) representing a set of states while
t = [ts

j̄−1
, ts
j̄
] for j̄ = 1, . . . ,Ns to t = t2. Each pair of

zonotopes Z j̄−1
c0 and Z j̄

c0 are computed from the GI ranges
as I2Z(ZNs−1

G , Ij̄−1,k̄ ) and I2Z(Z
Ns
G , Ij̄,k̄ ), respectively. The

initial set Z j̄ for Rj̄(t) can then be obtained by merging the
pair by ĈH(Z j̄−1

c0 ,Z j̄
c0). Finally, we obtain Rj̄(t) from each

Z j̄ using the GetTrajectoryZonotope procedure and
collect them in Rcol(t).

C. TIME COMPLEXITY
The GetTrajectoryZonotope procedure has a com-
plexity of O(n2r) where r is the number of generators in the
zonotope. In contrast, getIntersect2D has a complexity
of O(1). Because Algorithm 1 calls GetTrajectory-
Zonotope Ns times and getIntersect2D N 2

s · n times,
its overall time complexity isO(N 2

s n+Nsn
2r) and is indepen-

dent of n. Thus, if Ns is smaller than n and r is limited to scale
linearly with n using the dimensionality reduction technique
in [24], the overall complexity becomes O(n3Ns). Because
Algorithm 2 also calls GetTrajectoryZonotope
Ns+1 times, the overall time complexity for both algorithms
is O(n3Ns).

D. SAFETY BOUNDS OF TRAJECTORY-FORM
REACHABLE SETS
To verify the safety of the circuits using the computed TRS
Rcol(t), we compute its occupying region in the state space.
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FIGURE 5. The examples of obtaining the bounds of the operating region
with varying input ui (t). The bounds are indicated in blue lines.

For example, in the state space of (IL ,VC ), each range can
be obtained using unit vectors (1, 0) for IL and (0, 1) for
VC . Then, minimum and maximum values of the range can
be found by searching the global peak value of all Rī(t) ∈
Rcol using the distance function defined in (10), given by
[Min∀t ′∈[0,Tmax ](ymin(l, t

′)),Max∀t ′∈[0,Tmax ](ymax(l, t
′))] for

all ī, where Tmax indicates the overall time bound of the
analysis.

Fig. 5 displays examples of computing the bounds ofR(t)
obtained from the system by varying the input u(t) in two
axes. The system matrix of the given example is A = [−1−
4; 4− 1] and u(t) = ejω0t , where the frequency of u(t) is ran-
domly chosen, i.e., ω0 ∈ [−50, 50] rad/s. For any trajectory
of zonotope sets, the algorithm can accurately compute the
bounds of the moving shapes regardless of the size of the time
steps as it computes the minimum or maximum bounding
values using an iterative search process from the continuous
function defined in (4), instead of from the segmented sets
sampled at discrete time steps.

IV. EXPERIMENTAL RESULTS
This section discusses the experimental results obtained from
a 2-D hybrid system and DC–DC converters. The proposed
algorithms were implemented in Python/C++, and the run-
times were measured using a 3-GHz Intel Xeon 8124M
single-core CPU with 16GB memory.

A. NUMERICAL EXAMPLE
The first example is a 2-D linear hybrid system with no input,
which is partitioned by the guard G1 with w = (0.1, 1) and
b = −1. The guard splits the state space into two regions,
each with the system matrix

A1 =
(

1 −10
10 0

)
, A2 =

(
2 −20
20 0

)
. (13)

Fig. 6 compares the reachable sets computed using the
proposed algorithm, Girard’s algorithm [29], and brute-force
Monte–Carlo (MC) simulations, when the system starts with
the initial states ranges x1 = [−1,1] and x2 = [2.5,3.5]. The
blue-colored areas highlight the reachable sets immediately
after each GI, i.e., at t = t2. The over-approximation error of
each algorithm compared to the MC results can be computed

from the area of its R and the hull of the MC samples RMC
as given below:

err1 = Area(R−RMC )/Area(R) (14)

where the areas are estimated using another MC inte-
gration method. For four cycles of GIs, the proposed
algorithm has err1 of 0.506%, whereas Girard’s algorithm
has 2.477%, achieving a 4.89× reduced over-approximation
error.

We compared the runtime and accuracy of the proposed
algorithm to those of the SpaceEx algorithms [28], while
computing the safety bounds of the system, with two accuracy
options that configured the set shape, box (box) and octagon
(oct). The default time step was Ts = 0.01s, and the error
tolerance was ϵ = 0.01. The error in the safety bounds (err2)
in comparison to the MC results can be computed as:

err2 =
1
n

n∑
i=1

|x̂i,max − xi,max | + |x̂i,min − xi,min|
xi,max − xi,min

(15)

where [xi,min, xi,max] is the range of each state variable com-
puted by the MC simulation and [x̂i,min, x̂i,max] is the range
computed with each algorithm or configuration.

Fig. 7 shows that the runtime of the proposed algorithm
increases linearly with NGI because it assigns a fixed Ns for
each cycle of the algorithm. In computing the safety bounds
for the given 12 cycles, the proposed algorithm shows a 13.8×
average speed-up compared to the less accurate ‘box’ option,
yielding an err2 of 8.55%, and a 1074× speed-up compared
to the accurate but slow ‘oct’ option, yielding an err2 of
4.26% in average. Conversely, the proposed algorithm keeps
the error below 1% for all the cycles. The err2 that is a
relative error metric decreases with cycles, mainly due to the
increase in the safety bounds, whereas the absolute error stays
approximately constant.

B. OPEN-LOOP DC–DC CONVERTERS
The second experiment was conducted on a DC–DC buck
converter circuit, as shown in Fig. 8 (a) [19], [20]. It consists
of aMOSFET switch, diode, inductor (L = 10µH ), capacitor
(C = 20µF), and load resistor (RL = 10�). It produces an
output voltage VC , a step-down voltage of the input voltage
VIN (=10V ). In the case of pulse-width modulation (PWM)
control, the steady-state value of VC is proportional to the
duty cycleD of the fixed-period control modes, i.e., the charg-
ing mode when theMOSFET switches on (d(t) = q1) and the
discharging mode when the MOSFET switches off (d(t) =
q2), i.e., VC ≈ D·VIN . However, the conductance of the diode
varies based on the voltage across it (VD = −ILRD,OFF )
with RD,ON = 1� for the on-state and RD,OFF = 1G�

for the off-state. Consequently, in the discharging state, if the
inductor current IL at the instant when the MOSFET switches
off is positive, the diode turns on with a negative VD. The
resistance becomes low (RD,ON ), whereas IL stays positive.
Otherwise, the diode turns off with positive terminal voltage
VD and zero inductor current IL = 0. The former operation is
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FIGURE 6. The reachable sets computed for a 2-D linear hybrid system.

FIGURE 7. The runtime and error comparison (err2) of two-dimensional
hybrid system.

FIGURE 8. DC–DC buck converter (a) circuit and (b) hybrid automata.

called the continuous conduction mode (CCM) and the latter
the discontinuous conduction mode (DCM), which can be
analyzed using a PWL system and the proposed reachability
analysis algorithm.

Fig. 8 (b) shows the hybrid automata model that describes
the operation of the circuit in both the CCM and DCM.
We define the state of the automata with two discrete state
variables q(t) ∈ Q and d(t) ∈ Qd , where Q is the discrete
state space indicating that the diode operating regions in X
and Qd is that of the external control states for the MOSFET
switch state. Depending on both states, the resulting discrete
states of the automata model consist of three discrete modes,
q1, q2, and q3. When the MOSFET is turned on, the state
of the automata is given by q1 regardless of the diode state.
When the MOSFET is turned off, the state is split into two,

FIGURE 9. The reachable sets computed for the DC–DC buck converter
circuit.

the CCM state q2 in which the diode is on and the circuit
operates in the sub-region S1 and the DCM state q3 in which
the diode is off and the circuit operates in the sub-region S2,
where {1, 2} ∈ Q. The hybrid automata model also shows
the generation of u1(t) and u2(t) with a period of T = 1µs
using an additional state variable δ. The system matrices for
the model are

A1 =
(
−105 −105

5× 104 −5× 103

)
, A2 =

(
0 0
0 −5× 103

)
,

where the original values of A2 needed to be changed to avoid
numerical instability issues with SpaceEx.

Fig. 9 shows the reachable sets after 100µs, starting with
the initial state VC = [0,2] V and IL = [0,2] A. The reachable
sets in blue are compared to those with a 1000-point MC
simulation in green for two different duty cycles (D = 0.25,
0.75), resulting in the safety bounds IL = [0,2.25], VC =
[0,2.69] for D = 0.25 and IL = [0,5.06], VC = [0,7.11] for
D = 0.75. The analysis required runtimes of 4.967 s and
0.062 s for D = 0.25 and 0.75, respectively. The resulting
errors err2 were 1.97% forD= 0.25 and 0.11% forD= 0.75.
In Fig. 10, the runtime and accuracy (err2) of the proposed

algorithm in computing the safety bounds are compared with
those of the SpaceEx algorithms, for D = 0.1, 0.5, and 0.9.
For all cases, the proposed algorithm achieved the fastest
runtimes of the range 0.03 s to 2.02 s and the lowest aver-
age error 0.99% (<3.48% for ‘oct’) of the range 0.12% to
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FIGURE 10. The runtimes and safety bound errors (err2) of the proposed algorithm and SpaceEx algorithms.

FIGURE 11. Digitally-controlled DC–DC converter.

2.02%. The speed-up factor was 2× to 656× (avg. 107×)
compared to the SpaceEx results for ‘oct’ and 7× to 414×
(avg. 79×) compared to ‘box.’ The runtimes with D =
0.1 were longer than others because the circuit operates
in DCM, and therefore requires more GI computations.
Nonetheless, the runtime only scaled linearlywith the number
of cycles, demonstrating the effectiveness of the proposed
algorithm. Note that the runtimes of SpaceEx with D =
0.1 stopped increasing after 10 cycles because it failed to
converge within the pre-set iteration limit owing to the expo-
nential increase in the runtime, as indicated by the arrows in
Fig. 10 (a).

C. CLOSED-LOOP DIGITAL PWM BUCK CONVERTER
Finally, the applicability of the proposed method was demon-
strated on a digitally controlled DC–DC converter [31]. This
circuit differs from the previous one because of the pres-
ence of the digital feedback loop that regulates the output

voltage Vc based on the reference voltage VREF . Applying
RA on the digital control of analog circuits leads to the
accumulation of large over-approximation errors from the GI
whenever the digital controller compares the circuit states
x = (IL(t),VC (t)), represented by R(t) at every period of
the digital clock t = Tζ . The duty cycle D of the control
switch pulse d(t) is digitally controlled by the polarity of the
error level e(t) = VC (t)−VREF (i.e., distance from the guard
defined by VC (t) = VREF in the state space), referred to as
bang-bang (BB) control [32]. First, the controller measures
the VC (t) at the end of the switching pulse d(t) for each
period and compares the measured value with the desired
VREF (t). If the measured VC (t) is larger than VREF , the con-
troller increases the digital duty value DCODE[ζ ] encoding
the real-valued duty-cycle D(t) by +1 before the next cycle
begins. Otherwise, DCODE[ζ ] is decreased by −1. Here, ζ

indicates the index of discrete-control periods. The default
circuit parameters are the same as those used in the previous
buck converter example.

Note that most digital PWM control schemes use linear
proportional-integral-derivative (PID) control [31]. In this
control scheme, e(t) is converted into a digital ne-bit code
e[ζ ], yielding a duty control code DCODE[ζ ] depending on
the intended transfer function. However, implementing them
into RA would result in a large number of branches whenever
the controller computes the next DCODE[ζ ] from e(t). This
would lead to an exponential increase in the runtime with
respect to the number of cycles |ζ |, i.e.,O(|ζ |) = Ne|ζ |, where
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FIGURE 12. Reachable sets with digital PWM control varying VREF .

FIGURE 13. The runtimes and accuracy measured at the DPWM
controlled DC–DC converter circuit varying circuit parameters VREF and
RL. The runtimes of the SpaceEx increase exponentially after the onset of
the GI at the boundary of the DCM and CCM sub-regions.

the exponentNe denotes the number of discrete levels for e(t),
i.e., Ne = 2ne . Resolving this issue is critical but beyond
the scope of this study. Instead, we modeled a BB controlled
converter, inwhich the bound of the runtime increases slightly
by O(ζ ) = 2ζ by encoding e(t) with a single bit (Ne = 21).
Therefore, RA generates fewer branches in each cycle.

TABLE 1. Definition of math symbols.

Fig. 12 shows the computed Rcol(t) obtained by vary-
ing the VREF = 3V, 5V and 7V in the state space of
the x(t) = (IL(t),VC (t)), compared to the equivalent MC
simulation trajectories. The state space is divided into two
sub-regions depending on the level of VC (t) with respect to
VREF . The computed Rcol(t) originating from the initial set
demonstrates the expected convergence behavior with respect
to VREF on varyingD depending on the operating sub-region.
Each reachable set accurately encloses the state trajectories
from the initial randomly selected samples in the initial set
that ranges IL = [0, 2]A and VC = [0, 2]V while converging
to each of the different VREF .

Fig. 13 shows the runtime of the proposed method and
err2 in (15) compared to the MC simulation results. The
improvements in speed compared to the SpaceEx algorithms
with octagonal shapes (oct) are shown in Fig. 13 (b). The
speed-up ranges from 61–138× (avg. 40×), whereas the
error is maintained below 2% compared to that of the MC
simulation references. The minimum speed-up occurs for
RL = 100�while themaximum speed-ups occur forVREF =
5V and VREF = 7V. The resulting runtime ranges from
50–99 seconds, which is considerably longer than that of
the previous open-loop example. This is because the com-
putation of the reachable set of the closed-loop feedback
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system consistently generates new branches of reachable sets,
thereby exponentially increasing the required runtime for the
completion of the predefined number of cycles (i.e., equiva-
lent to the time bound) similar to conventional methods. The
proposed method not only outperformed previous methods
in terms of runtimes but also achieved the lowest error in
all cases. Note that Fig. 13 (b) has some missing data for
SpaceEx when it could not complete the analysis due to time-
out failures.

V. CONCLUSION
This study presented a new algorithm for performing RA
on nonlinear AMS circuits modeled as a PWL system. The
algorithm accurately expressed the time evolution of con-
tinuous states with sets of trajectory functions in the PWL
system without increasing the number of sets by propos-
ing a new scalable GI computation method. When verify-
ing the safety bounds of a DC–DC converter, the proposed
algorithm demonstrated 79× to 107× average speed-ups
compared to STC algorithms in SpaceEx while maintaining
the safety-bound estimation error within 2% for 50-cycle
iterations. To the best of our knowledge, this is the first study
to address the problem of set increases with respect to GI,
and it suggests a way to compute it in a linear time with good
accuracy. While this work demonstrated the effectiveness of
the proposed method with ideal circuits, we believe it can be
further extended to include noise and process variation effects
as well.

APPENDIX A
MATH SYMBOL DEFINITION
Table 1 lists the definitions of the mathematical symbols used
in this study.
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