IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 30 June 2023, accepted 12 July 2023, date of publication 17 July 2023, date of current version 16 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3295914

== RESEARCH ARTICLE

An Optimized Multi-Organ Cancer Cells
Segmentation for Histopathological
Images Based on CBAM-Residual U-Net

HASNAIN ALI SHAH © AND JAE-MO KANG *, (Member, IEEE)

Department of Artificial Intelligence, Kyungpook National University, Daegu 41566, South Korea

Corresponding author: Jae-Mo Kang (jmkang @knu.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government through the
Ministry of Science and ICT (MSIT), under Grant 2022R1A4A1033830; in part by MSIT, South Korea, through the Information

Technology Research Center (ITRC) Support Program Supervised by the Institute of Information and Communications Technology
Planning and Evaluation (II'TP) under Grant IITP-2023-2020-0-01808; and in part by NRF, South Korea, under Project BK21 FOUR.

ABSTRACT In digital pathology, the accurate segmentation of cell nuclei in histopathology images is
essential for medical image analysis. Histopathologists visually evaluate the patterns of cellular architecture
and tissue patterns in histopathology image analysis for cancer detection to determine the malignant tissue
portions and assess the severity of malignancy. However, manually analyzing scans using a high-resolution
microscope requires significant effort and time. A computer-assisted diagnosis system utilizing deep learning
(DL) algorithms rapidly, reliably, and automatically segments cell nuclei. However, the existing research
studies have limited accuracy, high computational costs, and a lack of robustness and generalizability on
diverse datasets. To address these issues, this paper proposes a novel and improved DL architecture based
on the U-Net, namely, the CBAM-Residual U-Net for improving accuracy, robustness, and generalized
segmentation algorithm that can be applied to various staining techniques and tissue structures. The proposed
architecture utilizes a ResConv and convolution block attention modules (CBAM). These modules help the
proposed architecture learn the image’s shallow and deep features. The CBAM module uses an attention
mechanism concentrating on essential features such as cell nuclei’s shape, texture, and intensity to accurately
segment the raw input patterns. The proposed CBAM-Residual U-Net involves fewer trainable parameters,
reducing the computational and time cost s compared to state-of-the-art techniques. Extensive experiments
and comprehensive evaluations are conducted to demonstrate the performance of the proposed scheme on
publicly available datasets: i) Data Science Bowl (DSB) 2018, ii) The GlaS, iii) Triple-Negative Breast
Cancer (TNBC). The experimental results show that our proposed model considerably outperforms the state-
of-the-art techniques and detects cellular boundaries well, providing fine-grained segmentation results.

INDEX TERMS Digital pathology, deep learning, medical image segmentation, cell nuclei, cancer detection.

I. INTRODUCTION

Pathology is a branch of medicine that treats and prevents
various diseases. It is essential in many medical diagnostic
applications and is the basis for many medical regimens.
Pathologists use biopsies to make predictive and diagnostic
decisions based on cell arrangement and shape [1]. Detecting
and segmenting cell nuclei is critical for pathologists and
pathology researchers. Histopathological image analysis is
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performed to investigate tissue growth patterns and cell
shapes. Pathologists use a microscope to examine tissue
slides at different magnifications. They examine the entire
tissue sample at modest magnifications (4x, 10x) to
determine the locations of malignant areas, particularly the
architectural patterns of cancer. Slides are then carefully
examined at greater magnifications (40x, 60x, and 100x)
to assess their appearance at the cellular level. [2].

Digital pathology (DP), which benefits from enhanced
microscope imaging technologies, has become prevalent in
clinical applications. The DP also facilitates the remote
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study of multispectral whole-slide images (WSIs) containing
detailed features from the tissue to cellular levels. Whole-
slide histopathology scans are commonly used to determine
malignancy grades and diagnoses. One can extract strong
features for nuclear morphological characteristics and other
factors through nuclear segmentation based on these images.
Early diagnosis is crucial for preserving a patient’s life, and
the accurate examination of histopathology scans is critical
for diagnosing a patient [3]. Cell nuclei are separated from
cells using either manual or image processing approaches.
However, manually segmenting nuclei from cells is laborious
and time-consuming. Furthermore, board-certified doctors
and pathologists often find it difficult to travel globally,
resulting in a time-consuming and continuous effort to
assess large numbers of WSIs. Such constraints limit
the widespread implementation of effective evaluation and
diagnosis in developing nations and regions with a shortage
of pathologists and high patient populations.

Integrating artificial intelligence (AI) and DP facilitates
precise, rapid, and complete diagnosis, leading to more
accurate targeted therapy [4]. As technology changes con-
tinuously, it is vital to understand the current status of
Al technologies in DP. Therefore, studying Al in DP is
necessary for evaluating its implementation and research
development. Al, particularly a deep neural network archi-
tecture, has recently dominated ML and computer vision
studies using a wide range of well-annotated databases.
Neural architectures can effectively address fundamental
issues such as detection, segmentation, and classification,
allowing them to outperform human specialists [5]. Based
on the rapid improvement of DL, CAD systems have been
intensively explored and implemented for medical imaging
tasks. Several datasets and challenges for DP have been
released for numerous diagnostic and exploratory research
tasks, including detecting malignancies using WSIs, catego-
rizing malignancies as cancerous/noncancerous or dividing
them into specific subcategories, segmenting cells/nuclei, and
identifying cells. As a result, many CAD approaches based
on deep neural architectures have been developed, including
completely supervised, weakly supervised, semi-supervised,
and unsupervised methods [6], [7]. These approaches can
help pathologists diagnose and screen for malignancies in
the lungs, lymph nodes, breasts, blood, and other organs.
Few pathologists are available to evaluate malignancies, but
numerous cases require evaluation, particularly in underde-
veloped nations and regions [8].

However, to classify cancer types accurately, extensive and
accurate datasets are required to assist in the development
of robust and reliable DL algorithms. Therefore, databases
and methodologies for studying various tumors are urgently
needed. The shapes of nuclei may vary depending on
factors such as cellular life span, cell type, and disease
severity. The context of a nucleus may contain a variety of
cellular morphologies that can affect segmentation, as shown
in Fig. 1. Additionally, nuclei may be close to each
other, making segmentation challenging. To overcome these
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obstacles, this paper aims to develop a CAD system for
overlapping/clustered nuclei segmentation in histopathology
images. Our work stands out due to the unique integration of
the Convolutional Block Attention Module (CBAM) with the
Residual U-Net architecture. This combination is novel and
has not been explored extensively in the existing literature.
The CBAM block, which efficiently combines attention
and convolutional mechanisms, is designed to focus on
informative features in the input data, thereby improving the
model’s performance.

Our work uniquely combines the CBAM with the Residual
U-Net architecture. This integration has yet to be extensively
explored. The CBAM block is innovatively designed to
concentrate on valuable features in the input data by effec-
tively merging attention and convolutional mechanisms. This
design enhances the performance of the model. Our model
has been fine-tuned explicitly for segmenting multi-organ
cancer cells in histopathological images. By capitalizing
on the power of both the CBAM and Residual U-Net,
our model successfully extracts pertinent features, thus
enhancing segmentation accuracy. The model has proven
superior in terms of Dice scores, sensitivity, and specificity
compared to existing models. This significant improvement
can refine diagnostic accuracy and improve patient outcomes.

o We propose an automated method called the convo-
lution block attention module (CBAM) residual U-net
architecture for histopathological cell nuclei image
segmentation. This method combines attention and con-
volutional information across shallow and deep layers.
The CBAM Residual U-Net can minimize segmentation
gaps and improve features by combining a learning
algorithm with residual connections.

o Our proposed model utilizes the residual convolution
(ResConv) module for extracting more comprehensive
features. It compensates for the loss of local features
during convolution operations and enables the proposed
model to learn diverse information from previous inputs
by utilizing skip connections. Spatial and channel atten-
tion modules suppress redundant details, concentrate
on rich features, and enhance the model’s resilience to
noise.

o We conduct a thorough ablation study to guide the
selection and optimization of various data augmentation
techniques for the proposed model, through which we
propose to use various data augmentation transforma-
tions for the proposed model to achieve better results
using limited datasets while reducing overfitting.

o The extensive experimentation conducted in this study
demonstrates the pivotal role of improved feature
selection and optimization in achieving the proposed
model’s superior performance, surpassing the previous
state-of-the-art models.

This paper is divided into five sections. Section I overview
nuclear segmentation and its importance for cancer detection.
Section II discusses the existing literature. Section III
describes the proposed method and Section IV explains
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our detailed experimentation and ablation analysis, and
Section VI concludes the paper with future directions.

II. LITERATURE REVIEW

This section reviews related works that have used traditional
image processing, ML, and DL methods to identify and
segment abnormal cell nuclei in histopathology scans.
Wang et al. [9] employed an image preprocessing method to
identify and segment cell nuclei. To find regions of interest
(ROIs), they introduced a wavelet transform and multi-scale
region growth. Additionally, an adaptable morphological
operation combined with the curvature-scale-space corner
detection technique was used to separate overlapping cells.
This approach yielded excellent and consistent outcomes in
terms of specificity and sensitivity. Feng et al. [10] developed
a DL network for colon pathological WSI evaluation,
which includes tissue identification and lesion segmentation.
It includes an enhanced U-Net with a VGG net as the back-
bone and two strategies for inference and learning, respec-
tively. Researchers specifically suggested a class-wise Dice
loss function to balance the proportions of benign and can-
cerous samples. The experiments showed that their approach
produced excellent results on the benchmark dataset.

Albusayli et al. [11] suggests utilizing digital scores of
stroma cancer lymphocytes and cancer stroma to predict
disease-specific lifespan in TNBC patients. The researchers
developed a deep learning system on a sizable dataset of
labeled breast cancer tissue samples to locate and measure
disease. They subsequently predicted disease-specific sur-
vival in TNBC patients using the computerized ratings that
were produced. The findings show that in TNBC patients,
the Al-based digital scores significantly indicate disease-
specific survival. Makem et al. [12] proposed an arithmetic
operational approach led by a control parameter to detect
and extract white blood cell nuclei from blood smear images.
Images with a resolution greater than 300 x 300 were first
cropped to recover white blood cell nuclei. The resulting
color features were fed into a Fourier transform, followed
by an average circular filter and mean-shift clustering
operation. This approach was evaluated on five distinct
image datasets, yielding Dice coefficient (DC) scores ranging
from 90 to 95%. Sharma et al. [13] suggests a novel tech-
nique for segmenting colon polyps in medical images using a
scalable deep-learning framework. The research emphasizes
the significance of early colorectal polyp diagnosis, which
can aid in preventing colorectal cancer. The proposed
Li-SegPNet performs well in segmenting the polyps after
being trained using the Kvasir-SEG and CVC-ClinicDB
datasets of annotated clinical data.

Tomar et al. [14] proposed a novel FAnet architecture
based on a feedback attention mechanism. When utilized with
current feature maps to strengthen feature representations,
the feedback mechanism included in the FANet architecture
enhanced intricate operational attention. Zidan et al. [15]
proposed the SwinCup model, which consists of two stages
of segmentation: the first stage uses a Swin Transformer

111610

encoder-decoder architecture to perform coarse segmentation
of the entire image, followed by refinement of the segmenta-
tion results using a second Swin Transformer network with
attention mechanisms. They also provide a unique function,
the “hard negative mining loss,” intended to alleviate class
imbalance and increase the model’s capacity to recognize tiny
objects. The suggested technique delivers cutting-edge results
in accuracy, speed, and efficiency. Xu et al. [16] proposed
a novel convolutional neural network (CNN)-based structure
called DCSAU-Net for various medical image segmentation
applications. This framework uses multi-resolution mixed
features and a broad receptive field in its CSA and DC
layers. DCSAU-Net can retrieve optimal information from
input images. Experiments demonstrated that DCSAU-Net
outperformed other SOTA networks regarding F1 score
and mean intersection over union (mloU). Liu et al. [17]
proposed an augmenting strategy for transferring microscopy
nucleus images from one modality to another using a
multi-modality style-transfer generative adversarial network.
This augmentation technique supports training a masked
region convolution neural network (R-CNN) for nucleus
segmentation by increasing training image variety, thereby
making the trained model more resilient to testing data and
leading to higher accuracy.

Jian and Kamata [18] proposed a two-step DL architecture
for cell-nucleation segmentation. In the first phase, their
architecture performed coarse segmentation. The second
phase then performed sophisticated segmentation. They also
included a unique weighted loss function to improve the
resistance of their model to blurred borders, ambient noise,
and staining strength inhomogeneity. Dahamija et al. [19]
presented complete DL architectures for segmenting different
medical images, including cell nuclei, brain tumors, lungs,
and skin lesions. Their model can assist experts and accelerate
the medical diagnosis procedure. Additionally, they com-
bined a transformer encoder with a fully connected neural
encoder. The results demonstrated significant improvement
compared to previous methods. Alom et al. [20] proposed
the implementation of a recurrent residual U-net (R2UNet)
model for nuclear segmentation. They validated the R2ZUNet
model using the DSB 210 Grand Challenge dataset. They
obtained an impressive DC of nearly 92.15%. Additionally,
experimental findings revealed good qualitative ability for
multiple modalities of medical image segmentation (retinal
blood vessels, skin cancer, and lung segmentation).

Priyal et al. [21] developed a DL framework (modified
UNet) with fewer trainable parameters to reduce computing
costs and training time. They analyzed the performance
of the modified U-Net and SegNet architectures. They
reported that the U-Net model outperformed SegNet
while using fewer parameters. Their study proved that a
modified UNet can perform excellently on medical imaging
applications. Jha et al. [22] proposed a novel architecture
consisting of an encoder-decoder U-net. The proposed
double U-net utilized VGG19 as a backbone network for
the encoder, squeeze excitation blocks, and atrous spatial
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FIGURE 1. lllustration of activation maps received from proposed CBAM Residual U-Net model using various experimental
combinations of several datasets organized as (a) Original image of tissues, (b) Ground truth masked images Here, from
(c) to (g) denote the model feature extraction capability as the convolutional layers get deeper.

pyramid pooling. The authors evaluated their model using
different medical imaging datasets and achieved SOTA
performance. Chanchal et al. [23] proposed a convolution
neural architecture called the deep structured residual
encoder-decoder network that addressed fundamental issues
in automated nucleus segmentation. The main challenge is
identifying nuclei in histopathology images with a broad
spectrum and many defects. This challenge was solved by
developing an encoder-decoder architecture with additional
discriminative pathways capable of retrieving relevant and
concise textural information.

Previous research shows that significant efforts have
been made to develop different CNN-based architectures
for naturalistic and pathological imaging segmentation.
However, the CNNs usually suffer from losing essential
features, due to which residual blocks are frequently used to
address the issue. Recently, additional studies have been put
into creating generalized algorithms, resulting in most experts
evaluating the techniques using multiple databases [12],
[19], [21]. The availability of validation data constitutes
one of the significant issues in the healthcare field. Table 1
shows the overall results of the previous results. There are
several complex appearances in medical visualizations that
are frequently overlooked throughout the inspection and,
therefore, can progress to malignancy, provided the initial
diagnosis is not carried out immediately. Thus, a precise
segmentation of medical images method is required to handle
such complex data. Therefore, in the next section, we propose
the CBAM Residual U-Net architecture to meet this demand,
which generates effective, accurate segmentation masks from
complex images.

Ill. PROPOSED MODEL: CBAM RESIDUAL U-NET
This paper presents an improved segmentation model called
the CBAM residual U-Net, which extends the capabilities of
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the base U-Net model initially developed in [24] in medical
image segmentation. The encoder and decoder are the two
basic components of the U-Net. The encoder is composed
of convolution layers that are maximally pooled to extract
the characteristics of an image. The decoder uses transposed
convolution layers with upsampling layers to enable localiza-
tion. In our proposed architecture, in addition to utilizing the
regular convolution blocks proposed in the original U-Net,
we incorporate a variety of customized ResConv blocks based
on residual connections, improved channel attention, and
spatial attention modules. In this section, we first outline
the architecture of the proposed CBAM residual U-Net by
presenting a schematic of its general structure. We then
introduce the construction processes and functions of each
attention module. Finally, the loss function for training our
proposed model is presented.

A. ARCHITECTURE OF THE PROPOSED CBAM RESIDUAL
U-NET

In the U-Net, spatial and regional information loss during
convolution operations is unavoidable. We propose the
CBAM residual U-Net to address this drawback, which
utilizes a unique CNN encoder and decoder model for cell
nucleus segmentation. Our proposed model uses detailed
spatial context information for image segmentation and
provides more accurate results than baseline networks. Fig. 2
presents the entire architecture of the CBAM residual U-Net.
In the CBAM residual U-Net, the twin convolutional block
in the original U-Net is replaced by two fully connected
ResConv 3 x 3 modules such that the convolution kernel
can lose the loss of valid information can be compensated by
obtaining deeper semantic information. An efficient CBAM
is inserted after each fully connected ResConv block. In other
words, the ResConv blocks and relevant CBAM modules
appear in pairs. The decoder is similar to the encoder.
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TABLE 1. Detailed analyses of the proposed and state-of-the-art studies.
Reference Model Advancements Limiting factors
[10] U-Net (VGG-16) - Designed class-wise loss function - Cannot generalize well to other
datasets or imaging modalities.
- Improved training and inference time - More diverse datasets is needed.
[11] ResNet - innovatively combines deep CNNs and ~ More data and validation needed to con-
graph theory to create digital sSTME  firm findings
markers for predicting TNBC outcomes
[12] Fourier Transform, K-means - Strong generalization ability through - Postprocessing overhead and requires
prioritizing reliable and informative  many learn-able parameters
samples
- Exceptional performance achieved - Complex method
with multiple datasets
[13] Li-SegPNet - Skip connections help in training - Relies on Large Dataset
deeper networks
- Big impact augmentation process - Structure Complexity
[14] FANet - Efficient for biomedical image seg- - Struggles with variable lighting condi-
mentation tions
- Good at capturing context and localiza- - Requires large amounts of data for
tion training
[15] SwinCup Transformer - Good for jointly segmented nuclei - Complex architecture
- Utilizes hierarchical representations - Has a long runtime
[16] Deep CSA U-Net - CSA module captures detailed infor- - relies on large data
mation
- performs better on the multi-class seg-
mentation
[18] Style GAN, Mask R-CNN - High accuracy on nuclear segmentation - Computationally expensive due to two
with different modalities stages networks
- Good performance for the prediction - Long inference time
[19] USegTransformer-P - Achieved better performance - preprocessing required
- Low cost - Has a long runtime
Ours CBAM Residual U-Net - Improved Segmentation than prior - Extensive training is required

methods
- Robust to noise and better generaliza-
tion capability

The arrow connecting the decoder and encoder represents
a skip connection, and a CBAM block is inserted after
each skip connection layer. These CBAM blocks are utilized
to enhance the effective extraction of optimized image
features while suppressing erroneous image features through
convolution. The deep features of input cell nuclei images
are retrieved using the CBAM residual U-Net encoder, and
the decoder restores enhanced characteristics. Finally, all
nuclei are segmented and a targeted structure-based image is
generated.

B. CONVOLUTIONAL BLOCK ATTENTION MODULE (CBAM)
The CBAM comprises two consecutive submodules, the
channel attention module (CAM) and spatial attention
module (SAM), used in a specific order. A CBAM is used
in every convolutional block in a deep network to generate
successively refined feature maps from initial input feature
maps. The CBAM is utilized to enhance the main properties
of the spatial and channel dimensions. Such an attention
module can improve the expressiveness of a network by
focusing on essential aspects while suppressing irrelevant
features. As shown in Fig. 3 a CBAM combines CAM
and SAM. The attention is performed separately for the
channels and spatial dimensions and then combined with
input features to achieve adaptive feature improvement. The
CBAM involves one-dimensional channel attention mapping
M. of size C x 1 x 1 and a two-dimensional spatial attention
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mapping M; of size 1 x H x W as follows:

F'=M(F)®F,
F'=M(FY®F'. (1)

Here, ® represents an element-wise multiplication, F’ repre-
sents the one-dimensional channel attention map developed
by the CAM module. and F” is the ultimate refined output
produced by SAM. Through the experiments, we found that
a sequential order produces better results than a parallel
configuration. Also, the experimental results indicate that the
channel-first-order is significantly better than a spatial design
for the sequential process arrangement.

C. CHANNEL ATTENTION MODULE (CAM)

The CAM initially uses average and maximum pooling
methods to combine spatial information from feature compo-
nents before generating two potential contextual descriptive
features Fj,, € RVH*W and F5, e RVHXW which
are calculated from the average pooling layer and obtained
using the max pooling layer, respectively. Then, by using an
activation function, these two defining features are sent into a
multilayer perceptron (MLP) and added element by element
to generate a channel attention map:

M (F) = o (MLP(AvgPool(F)) + MLP(MaxPool(F)))

= (Wi (Wo (Five )) + Wi (Wo (Fi) - @)
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FIGURE 2. Block diagram of the CBAM Residual U-Net architecture. The ResConv modules are followed by CBAM Module and Max pool (2 x 2) block in
the Encoder. The characteristics retrieved from these are concatenated with Up-sampling ResConv Module in the Decoder.

/ Convolution Block Attention Module (CBAM) \
Channel
Attention
Input Module X Refined
Feature Spatial Feature F’
Attention

o \. Module
8 1) )

Channel Attention Module (CAM) Spatial Attention Module (SAM)

MaxPool

o Vowm | (-
- P >
Channel Channel-refined Sigmoid b
Input Attention M, > . .
Feature F Feature F MaxPool, AvgPool Spatial Attention
A\'gPool Shared MLP A

FIGURE 3. Architecture of CBAM Module utilized in the proposed CBAM-Residual-UNet architecture. The input features are passed to (CAM) module for
amplifying the most relevant channels through 1 x 1 Maxpool, the Average pool with shared MLPs. The refined features are passed to (SAM) module to
highlight the most informative regions of the feature maps using Conv 7 x 7.

Here, F,, and Fy,, represent the average- and max-pooled attention map is obtained through the sigmoid activation
characteristics, respectively. Subsequently, a common layer function..

receives these characteristics as inputs and generates an

M _-channel attention map. Shared MLP systems with hidden

units form a unified connection. The hidden activation size D. SPATIAL ATTENTION MODULE (SAM)

is fixed at R/C = r x 1 x 1, where r is the reduction ratio, SAM mainly concentrates on the information components
which decreases parameterization complexity. Following the that synchronize with channel attention. The input char-
application of the shared network based on every descriptor, ~ acteristics of the spatial attention module are processed
all of the extracted features are combined using an element- simultaneously through max and average pooling. In the

wise sum. Also, Wy € RE/"™<C W € RE*C/" are the weights SAM, the channel dimensions are pooled, and two descriptive
are shared based characteristics are acquired after pooling. F/ ax € RIHXW

of the MLP. The two inputs Fy,, and Fi, m H W
on these two weights. M.(F) is multlphed by (F) in element- obtained from the max pooling layer and F, av € R
by-element fashion to generate (F’). Finally, the channel is obtained from the average pooling layer. These two
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descriptive characteristics are patched together based on the
channel dimension. The two feature mappings are patched
simultaneously and a two-dimensional spatial attention-
weighted map M(F") is produced by applying the sigmoid
activation function and f7*7 convolution layer, as follows:

My(F)=0 (f7X7 ([AvgPool (F’) ; MaxPool (F/)]))

=0 (177 ([Fave Foun]) ) - 3)

Here, f7*7 refers to the convolution process using a 7 x 7
convolution filter and o(x) = 1;7 denotes the sigmoid
activation function. After feature screening, a final high-level
refined feature map F” is produced at the end by combining
the channel-attention-extracted features M.(F’) and spatial

attention weighted map M;(F").

E. ResConv MODULE

Instead of using traditional double convolutional layers,
we introduce a different approach for completely connected
residual blocks called ResConv. Fig. 4 presents the archi-
tecture of the ResConv module. In ResConv, features are
obtained through a sequence of convolution procedures,
each accompanied by rectified linear unit activation and
batch normalization. The results are summed sequentially
according to the weights w1, wy, and w3 to achieve a superior
level of integration between shallow and deep traits while
retaining intermediate layer characteristics. In this case, wq,
wy, and w3 are all adjusted to one, implying that the feature
maps include both deep and shallow feature knowledge and
intermediate details. These feature weights have the same
ratio and are equally important because they compensate for
the loss of semantic information and aid in retrieving more
extensive and adaptable features. Consequently, the ResConv
module can be considered as three separate convolution
layers, resulting in three different receptive domain regions,
which boosts the flexibility and generalization potential
of the network. The proposed ResConv module adds the
information retrieved by many convolutional filters rather
than concatenating it, which can significantly reduce memory
usage. Additionally, ResConv is relatively simple to imple-
ment.

F. LOSS FUNCTION

The effectiveness of a DL model is highly dependent on its
loss function. The binary cross-entropy (BCE) loss function
is a frequently used loss function in classification, detection,
and segmentation applications, of which the fundamental
benefit is that it produces smooth loss curves, leading to fast
model training [25]. The BCE loss is given by

N

1 N -
BCE = —— > y;-log (i) + (1 — y;) -log (1 = 3;) . (4)
N i=0
Here, segmented output and true images are represented by y;

and y;, respectively, where N denotes the number of training
sets for the ith slice (I € N). Dice loss is a loss function
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FIGURE 4. ResConv module architecture where w,, w,, and wy are three
different residual skip connections followed by ReLU activation and batch
normalization layers to include both shallow and deep characteristics
while retaining intermediate layer features.

that allows an algorithm to obtain results closer to the ground
truth. It is gradually gaining popularity based on its intrinsic
optimization of the DC and positive effect on class imbalance.
The Dice loss is computed mathematically as [26]

i=N
Dice Loss =1 — Z
=0

2% [yi N 3

5
lyil + ®)

yi

Note that the Dice and BCE losses can be used to optimize
the DC and manage imbalanced data, respectively. The
proposed CBAM Residual U-Net is trained to minimize both
the BCE loss in (4) and the Dice loss in (5), considering

the mutual connection between these two loss functions. The
combined loss (CL) function is given by:

N

1 A . A
CL:—ﬁgyi-log(yt)—l-(l—yz)-log(l—yz)
i=N2*|Yi05’i|
+1-) —— 6
g;‘ lyil + [3i] - ©

Here, N is the number of training sets, and y; and y; represent
the actual image and segmentation image predicted for the ith
slice (I € N), respectively.

IV. RESULTS AND ANALYSIS

This section presents the training and validation results for
the proposed CBAM residual U-Net trained on benchmark
DSB 2018, Glas, and TNBC datasets images taken from
Kaggle. Several data augmentation strategies are used to
increase the size of the training data. We employ a range of
hyperparameter settings to optimize the proposed algorithm
for improved learning. Fig. 5 shows the training and
validation process of the proposed CBAM Residual U-Net
for semantic segmentation. Fig. 6 shows the loss curves graph
for the proposed CBAM residual U-Net model on DSB 2018,
GlaS, and TNBC datasets. The graph reveals that as the
number of epochs increases, the loss decreases steadily over
a shorter period using the optimized hyperparameters until
it reaches a point of stability. For loss curves, one can see
that the proposed model converges within 25 to 35 epochs,
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TABLE 2. Layer wise details of the proposed CBAM-Residual U-Net.

Block Name/Size Filters Dimensions Parameters ~ Activation Function Operation Type
Encoder Block 1 ResConv Block 64 512 x 512 x 64 3,840,51 ReLU Convolution
ResConv Block 64 512 x 512 x 64 36,864 ReLU Convolution
CBAM Block - 512 x 512 x 64 - - Attention
Maxpool 2x2 - 256 x 256 x 64 - - Pooling
Encoder Block 2 ResConv Block 128 256 x 256 x 128 73,728 ReLU Convolution
ResConv Block 128 256 x 256 x 128 147,456 ReLU Convolution
CBAM Block - 256 x 256 x 128 - - Attention
Maxpool 2x2 - 128 x 128 x 128 - - Pooling
Encoder Block 3 ResConv Block 256 128 x 128 x 256 294912 ReLU Convolution
ResConv Block 256 128 x 128 x 256 589,824 ReLU Convolution
CBAM Block - 128 x 128 x 256 - - Attention
Maxpool 2x2 - 64 x 64 x 256 - - Pooling
Encoder Block 4 ResConv Block 512 64 x 64 x 512 1,179,648 RelLU Convolution
ResConv Block 512 64 x 64 x 512 2,359,296 ReLU Convolution
CBAM Block - 64 x 64 x 512 - - Attention
Decoder Block 4 ResConv Block 512 64 x 64 x 512 2,359,296 ReLU Convolution
ResConv Block 512 64 x 64 x 512 2,359,296 ReLU Convolution
Skip Connection - 64 x 64 x 512 - - Skip Connection
UpSample 2x2 - 128 x 128 x 512 - - Pooling
Decoder Block 3 ResConv Block 256 128 x 128 x 256 1,179,648 RelLU Convolution
ResConv Block 256 128 x 128 x 256 1,179,648 ReLU Convolution
Skip Connection - 128 x 128 x 256 - - Skip Connection
UpSample 2x2 - 256 x 256 x 256 - - Pooling
Decoder Block 2 ResConv Block 128 256 x 256 x 128 295,040 ReLU Convolution
ResConv Block 128 256 x 256 x 128 147,584 RelLU Convolution
Skip Connection - 256 x 256 x 128 - - Skip Connection
UpSample 2x2 - 512 x 512 x 128 - - Pooling
Decoder Block 1 ResConv Block 64 512 x 512 x 64 73,792 ReLU Convolution
ResConv Block 64 512 x 512 x 64 36,928 ReLU Convolution
Skip Connection - 512 x 512 x 64 - - Skip Connection
Output Conv 1 x 1 1 512 x 512 x 1 3,328 Sigmoid Convolution
@ Data Preprocessing
Augmentation z"' ,~""‘ 5
“.‘.;' -, _.". @Trainingthe CBAM l Stounc Tutt
\‘.4: p Residual U-Net
e - : d

®

Calculating difference
between initial
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@ a2t
Horizontal Flip
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FIGURE 5. Flowchart depicting the data preprocessing and training procedures. In the first stage, the input data is preprocessed and
augmented. Following that, data is processed by the proposed CBAM Residual U-Net for semantic segmentation.

showing that the training is performed successfully and very varied in terms of cell type, staining type, cell brightness,
quickly. cell magnification, and cell imaging modality (fluorescence

versus bright field). A combination of 841 images with
A. DATASETS DESCRIPTION diverse biological and experimental heterogeneities from
1) DATA SCIENCE BOWL 2018 30 biological experiments was provided by multiple labo-
This dataset publicly available on Kaggle [27], in which ratories. Each image was assigned a different number, and
the data was obtained under diverse circumstances and the images and masks for each nucleus in the images were
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saved in a specific folder based on the image numbers. Images
and masks of various sizes were scaled to the same size of
256 x 256 pixels.

2) Glas

The GlaS colon dataset contains digital histopathology
images of stained colon tissue samples with hematoxylin and
eosin. Researchers at the University of Warwick developed
the dataset and is openly available for use in research [28].
The dataset includes 165 scans, each accompanied by
annotations of specific glands inside the colon tissue. Expert
pathologists generated gland annotations, which provide
a foundation for training and assessing algorithms for
automated identification and categorization of colon tissue
anomalies such as colorectal cancer.

3) TROPLE NEGATIVE BREAST CANCER

The TNBC cell histopathological dataset is a publicly acces-
sible collection of digitized histopathology imaging of breast
cancer tissue samples [29]. The dataset is produced in order
to help in the development of algorithms for the automated
identification and categorization of breast cancer subtypes.
TNBC includes 81 digitized images of hematoxylin and
eosin-stained breast cancer tissue samples. These samples
came from individuals with triple-negative breast cancer,
a form of breast cancer that lacks the estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth
factor receptor 2. Each image in the dataset is labeled with
pixel-level annotations of the breast cancer cells.

B. HYPERPARAMETER SETTINGS

Now, we elaborate on the hyperparameter settings selected
for the target task to obtain optimal results. We exploit
Adam as an optimizer for training to achieve the maximum
loss reduction [30]. This optimization strategy employs an
adjustable gradient descent algorithm to adjust weights as
close to their local minima. We particularly select Adam
rather than other optimization approaches such as stochastic
gradient descent [31] or RMSProp [32] thanks to its easy
implementation, faster learning experience, and efficient
memory consumption. Adam has recently achieved outstand-
ing performance in various DL applications, especially for
the segmentation of medical images. The settings of the
hyperparameters with a low learning rate (LR) that were
modified to operate alongside the other hyperparameters are
listed in Table 3. The Adam optimization method is utilized
with an initial LR of 10e~3 because it is relatively stable for
hyperparameter optimization to tolerate sparse gradients for
a complex problem such as a nucleus or cell segmentation.
The LR concerning validation loss is reduced to a minimum
learning rate of 10e — 7 with a batch size of eight and
a combined loss function using the ReduceLROnPlateau
callback. Our U-Net architecture is trained using the Keras
API with the TensorFlow backend. 90% of the dataset is used
to train the proposed model, and 10% is used for evaluation.
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TABLE 3. Hyperparameter settings for training process.

No. Hyperparameters Settings

1 Optimizer Adam

2 Callbacks ReducelLROnPlateau
3 Initial LR 10e3

4 Reduced LR 10e~7

5 Batch size 8

6 Epochs 100

7 Loss function Combined Loss

TABLE 4. System specifications used for our experiments.

No. System Specification

1 CPU Intel Core i5- 11400 CPU
2 System type Windows 10, 64 bit OS

3 RAM 16 GB

4 GPU Nvidia RTX A5000

5 Library TensorFlow

6 Development tool ~ Python 3.7

C. IMPLEMENTATION SETUP

The proposed CBAM residual U-Net is implemented using
Python with the Keras and TensorFlow frameworks. The
DSB 2018, Glas, and TNBC datasets validate the proposed
model. The entire model was trained on a server with the
specifications listed in Table 4. To validate our model,
we compare its performance to that of the existing U-Net
models. The validation processes adopted for the specific
dataset utilized in this study will be discussed in detail later.

D. EVALUATION METRICS

Nucleus segmentation algorithms must be evaluated using
criteria that penalize both pixel-level and object-level
inaccuracy. Therefore, we employ two distinct assessment
measures. First, the F1 measure is used for object-level
evaluations. The Dice Coefficient (DC) are also employed
for pixel-level assessment. The harmonic average of precision
and recall defines the F1 measure. If ground-truth images are
represented by X; and segmented objects are represented by
Y;, then the precision, recall, and F1 measure, are assessed
using false positives (FP), false negatives (FN), and true
positives (TP). TP is the total number of ground-truth
objects X; that have been accurately segmented among Y;.
FP is the number of wrongly segmented images Y; that
are not ground-truth objects X;. The count of erroneously
un-segmented items Y; that are ground-truth objects X;
defines FN. The F1 measure, precision, recall, and Dice
Coefficient are given by Equations (7) to (10).

2TP
F1—Score= ——, @)
2TP 4+ FP 4+ FN
.. P
Precision = ————, (8)
TP + FP
TP
Recall = ——. ©)
TP + FN

The F1 measure is less effective and sufficient to account
for pixel level. The DC assesses segmentation quality at
the pixel level. If the pixels of a ground-truth nucleus are
represented by X; and the pixels of its associated segmented
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nucleus are represented by Y}, then the DC is defined as:
X0y

DC=2 - ———.
1Xi| + |Y;|

(10)

The predicted nucleus X; maximizes the Dice score index
of the ground-truth nucleus Y;. The remaining cells are a
collection of X; with no matching. DC is the proportion of
segmented results among the confined area of the matched
elements. Each segmentation error (both under and over-
segmentation) reduces the DC.

E. EXPIREMENTAL RESULTS

Now, to demonstrate the superiority of our proposed CBAM
Residual U-Net algorithm for nuclei segmentation, we com-
pare the performance of the CBAM residual U-Net to the
other SOTA algorithms, including U-Net (several back-
bones), DeepLabv3, and Attention U-Net, and a pixel-wise
segmentation network (SegNet). For a fair comparison, the
training and validation data and assessment standards are set
to be the same for all compared schemes.

1) RESULTS ON DSB 2018 DATASET

Table 8 presents the results of experimental comparisons
on the DSB 2018 dataset. We investigate the performance
of a U-Net architecture using various neural networks as
a backbone. We report all of the outcomes. The proposed
technique’s F1 score, DC, precision, and recall are 0.963,
0.945, 0.966, and 0.953, respectively. The proposed model
has greater recall and F1 scores than the other models,
demonstrating that our approach is clinically advantageous.
Also, the proposed model improves the F1 score by 4.13%,
DC by 5.35%, recall by 4.72%, and precision by 4.83%
compared to the conventional U-Net. Additionally, our
approach provides more balanced performance for the rel-
evant parameters, indicating outstanding capabilities across
the board for nucleus segmentation.

2) RESULTS ON GlaS DATASET

The GlaS colon dataset intends to create an autonomous
Al system for segmenting colon structures to overcome
challenges brought on by manual labeling. The quantitative
findings from the GlaS dataset are displayed in Table 8. The
F1, Dice, precision, and recall values for the proposed CBAM
Residual U-Net are 0.82, 0.77, 0.86, and 0.85. The results
show that the proposed network generates SOTA outcomes
outperform other more current approaches in terms of the
metrics and other methods utilized for evaluation.

3) RESULTS ON TNBC DATASET

The segmentation of TNBC cell images can be an important
step in analyzing the histopathological features of the cancer
cells and aiding in diagnosis and treatment planning. The
quantitative findings from the GlaS dataset are shown
in Table 8. We have used the K-fold method for these
experiments to train and test every image available for
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FIGURE 6. Training loss curves of the proposed CBAM Residual U-Net
with DSB 2018, GlaS and TNBC dataset.

training and evaluation. The proposed model’s F1, Dice,
and recall values are 0.90, 0.86, 0.91, and 0.90. The results
demonstrate that the proposed network yields state-of-the-art
outcomes, surpassing other contemporary approaches in the
metrics adopted by those methods for assessment.

Fig. 7 shows the qualitative segmenting performance of our
proposed architecture with heat maps. We present findings on
cell segmentation in Table 7 - 8 to illustrate the efficiency of
our suggested architecture on cell nuclei and colon histology
semantic segmentation. CBAM Residual U-Net competed
favorably in testing against various CNN and hybrid models.
Moreover, we tested the effectiveness of our method on the
DSB 2018, GlaS, and TNBC datasets, showing generally
superior performance compared to previous approaches
and highlighting our method’s significant generalizability
across many datasets. The channel and spatial attention
mechanism loops over the image to capture the image’s
long-range patterns, engaging with several windows at each
level. This method helps attention-based networks, which
need fewer layers to achieve a global frame of reference.
The CBAM block can help selectively emphasize the most
instructive characteristics in the feature maps derived from
the encoder in the Residual U-Net framework for cancer
cell segmentation. It is especially helpful for locating
small, delicate structures of significance, such as cancerous
cells, which can be hard to distinguish from surrounding
tissues.

V. ABLATION STUDY

A. PERFORMANCE ANALYSIS

We investigated the function and effects of several com-
ponents inside our CBAM Residual U-Net model. These
elements included the CBAM, residual connections, and
skip connections. The CBAM module, known for its ability
to focus on significant features, showed a critical role in
enhancing the performance of our model. Its elimination
potentially decreases the model’s accuracy due to the inability
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TABLE 5. Total Number of images produced in data augmentation.

Dataset  Original Images Random Cropping Horizontal Flipping  Vertical Flipping Random Rotation  Total Images

DSB 841 841 1682 3364 10092 16820
GlaS 165 330 495 990 495 5445
TNBC 81 162 243 486 1458 3888

Data Science Bowl 2018

GlaS

Triple negative Breast Cancer

a) Input b) Ground c) U-Net d) Attention e) CBAM f) Initial g) Final
Image Truth U-Net Residual feature maps  feature maps
U-Net

FIGURE 7. Qualitative outcomes of the various approaches evaluated on the DSB 2018, GlaS, and TNBC datasets. CNN
networks and attention-based U-Net networks exhibit similar distinctions. Homogeneous forms can be captured quickly,
while more complicated shapes need a global understanding of the limits. a) Input Image b) Ground Truth masked image
c) Standard U-Net output d) Attention U-Net e) Our proposed CBAM Residual U-Net segmentation results, while f) shows
initial feature maps and g) shows the final feature maps of the proposed architecture.

to adequately highlight crucial areas within the images, which absence of CBAM makes the model more susceptible to
are pivotal for cancerous nuclei segmentation. Moreover, the noise, reducing its performance, as shown in Table 6.
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TABLE 6. Performance analysis of the proposed technique with and without CBAM and ResConv on the DSB 2018, GlaS, and TNBC dataset.

DSB 2018 Dataset GlaS Dataset TNBC Dataset
Methods F1 Dice  Precision Recall F1 Dice  Precision Recall F1 Dice  Precision  Recall
U-Net (Standard) 89.7 853 914 88.2 757 693 684 72.2 83.7 753 814 84.2
Proposed Architecture
— (No CBAM Module) 90.3 893  90.6 93.3 748 643 674 71.8 83.1 739 803 82.5
Proposed Architecture 882 846 91.1 858 739 688 68.1 717 831 741 812 81.3
— (No skip connections)
Proposed Architecture —
(Single ResConv in Encoder) 933 923 941 93.1 815 763  80.1 80.6 904 853 91.1 90.2
Proposed Architecture (CBAM
+ ResConV + Skip Connection) 945 937 936 94.3 825 777 86.6 85.3 90.1 86.6 91.2 90.5
TABLE 7. Effect of data augmentation, loss functions, and resolution on the proposed CBAM residual U-Net.
DSB 2018 Dataset GlaS Dataset TNBC Dataset
Methods F1 Dice  Precision Recall F1 Dice  Precision Recall F1 Dice  Precision  Recall
Augmented 945 937 956 95.3 825 627 86.6 85.3 86.5 837 828 83.9
Non-Augmented 933 864 92.1 93.8 763 576 715 79.5 823 80.1 826 81.8
Dice Loss 91.7 879 949 93.1 797 749 789 79.1 79.7 809 789 79.1
BCE Loss 913 87.1 935 92.5 763 771 715 79.5 783 771 795 69.5
Combined Loss 945 93.7 936 94.3 825 777 86.6 85.3 86.5 83.7 828 83.9
500 x 500 pixels 91.3  89.2 903 90.5 825 777 86.6 85.3 86.5 83.7 828 83.9
256 x 256 pixels 945 93.7 93.6 94.3 803 752 813 75.5 89.3 839 903 90.5
128 x 128 pixels 92.1 90.6 912 93.3 81.1 77.6 852 88.3 945 90.1 86.6 88.3

We studied the value of residual connections, which are
crucial in DL models for overcoming the vanishing gradient
issue. According to the experimental findings, removing
these connections could render it more challenging to train
the model since backpropagation would be more complex
and result in worse model performance. Similarly, skip
connections provide accurate segmentation by enabling the
network to use data from high-level semantic characteristics
and low-level geographical details. Their removal results in a
loss of spatial detail, resulting in a drop in performance and a
less successful model at segmenting malignant nuclei.

B. EFFECT OF DATA AUGMENTATION
A systematic analysis is conducted to determine the effects
of the addition or removal of different elements or modules
on the efficiency of the proposed model. We investigate the
overall impact of data augmentation, other loss functions,
and model robustness and stability. The quality, quantity, and
significance of training data affect the performance of most
ML and DL algorithms. A shortage of information is among
the most common issues in deploying ML in enterprise
settings. Acquiring relevant data can be time-consuming
and costly in many cases. Data augmentation allows us to
increase the quantity of existing data by performing various
alterations to available data. We generated new training data
and applied apply several image transformations, random
cropping, horizontal and vertical flipping, and random
rotation (90°, 180°, 270°). The experimental findings show
that data augmentation is critical for improving the training
efficacy of the proposed model. Table 5 presents the number
of images produced in data augmentation, and Table 7
reveals that training the proposed model using augmented
data increases the accuracy compared to training it without
augmented data.

The effectiveness of segmentation models can be sig-
nificantly improved by data augmentation. Since there are
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fewer training data in the DSB 2018, GlaS, and TNBC
datasets, data augmentation can generate more training data
by applying various alterations to the original images. It can
assist the model in learning from a more varied collection
of training data by creating new images from current data.
As a result, the model could better manage changes in
tissue texture and form and diverse tissue types and disease
patterns. Also, by increasing the variety of the training
data and strengthening the model’s resistance to noise, data
augmentation can assist in preventing overfitting.

C. EFFECT OF LOSS FUNCTIONS

In the following, through the experiments, we study the
effects of using several other loss functions with the same
hyperparameter settings defined in Table 7. A loss function
informs the algorithm of its proximity to the optimal solution.
It leads a model to seek a perfect prediction that transfers
input information into output data (images into masks in
the case of image segmentation). We consider binary cross-
entropy, Dice loss, and a combination of cross-entropy and
Dice loss called combined loss. The experimental results
reveal that the combined loss function performs better than
the other two.

The performance can be improved for cancer cell detection
by combining the Dice loss and binary cross-entropy (BCE)
loss functions. Table 7 shows the performance of our
proposed CBAM Residual U-Net model on Dice loss, BCE
loss, and Combined loss. Although the BCE loss function
evaluates the discrepancy between the anticipated likelihood
of each pixel belonging to a particular class and the ground
truth label, the Dice algorithm measures the intersection
between the predicted segmentation map and the ground truth
segmentation pattern. The two algorithms can be combined to
provide the model advantages from both methods. The BCE
loss function can help imbalance the positive and negative
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TABLE 8. Comparison of proposed CBAM Residual U-Net with SOTA architectures on DSB 2018, GlaS, and TNBC datasets.

DSB 2018 Dataset GlaS Dataset TNBC Dataset
Models / Backbone F1 Dice Precision Recall F1 Dice Precision Recall F1 Dice Precision Recall
U-Net 897 853 914 882 757 693 634 722 837 753 8l4 842
U-Net (DenseNet) 90.6 885 9238 88.5 706 615 7438 70.5 846 755 85.8 82.5
U-Net (Inception) 91.0 88.8 92.7 89.5 69.0 60.8 72.7 70.5 81.0 738 80.7 82.5
U-Net (ResNet) 88.8 86.8 90.3 88.1 71.8 658 693 74.1 85.8 80.8 813 88.1
U-Net (EfficientNet) 90.7 879 91.2 90.3 80.7 76.2 85.2 80.3 86.7 859 93.2 80.3
U-Net (VGG16) 711 678 722 70.2 71.1  67.8 722 70.2 821 798 922 70.2
DeepLabV3 (ResNet) 914 882 924 89.5 796 722 704 75.7 834 802 814 84.5
Attention U-Net 88.5 83.6 87.8 90.3 81.5 756 758 86.3 89.2 846 938 85.3
CBAM-Residual 94.5 937 936 943 825 717 866 85.3 90.1 866 912 90.5
U-Net (Ours)
TABLE 9. Performance comparison with SOTA algorithms. every convolution block to construct refined feature maps
Noof Time from input initial feature maps. Also, we introduced a novel
Models Parameters Complexity — cost type of completely connected residual block (ResConv) to
U-Net 3IM Medium Medium obtain initial features from input images. The residual skip
PSPNet 46.8M (ResNet101) High High . .
DeepLaby3 58M (including ASPP) High High connection weights wy, w», and w3 ensure.d that both shallpw
Mask R-CNN  44M (ResNet50 ) High High and deep feature maps were received during the convolution
I;Cl\lf\l « égiAM( 1(2FC;1\L)8(S’ 1\(’)?)(316) i/’ery g@gﬁ ;’ery g@gﬁ process. At last, we compared our proposed framework to
esNeXt esNeXt- ery Higl ery Hig . . .
Ours 22M (CBAM) Low Low various SOTA DL models in terms of DC, F1-score, weight

classes, while the Dice loss function can assist with the model
learning the intricate boundaries between tissue sections.

D. EFFECTS OF RESOLUTIONS

In the next set of experiments, we resize the images to
500 x 500, 256 x 256, and 128 x 128 pixels to study the
robustness of the proposed model for different image sizes.
When we scale the images up to 500 x 500 pixels, the image
noise increases, which degrades performance. Despite the
decrease in size, the model performance on images of 256 x
256 pixels is better than that of images of 500 x 500 pixels as
a result of noise reduction. When we further reduce the size
to 128 x 128 pixels, the model performance declines based
on the reduction in nucleus size. Table 7 further reveals that
the model trained on 256 x 256 pixel images performs best
regarding the Fl-score, Dice, precision, and recall values.
For the GlaS dataset, the proposed CBAM residual U-Net
performed better on 500 x 500 pixels by achieving the best
precision and recall values.

The performance findings show that our suggested design
performs better than traditional U-Net and backbone archi-
tectures. Table 9 shows the performance comparison of the
proposed model with other SOTA algorithms. The proposed
CBAM residual U-net model has a size of only 296.8 MB
with 22M distinct parameters, making it one of the most
effective architectures for segmentation.

VI. CONCLUSION AND FUTURE WORK

We introduced the CBAM residual U-Net, a novel DL
model for identifying and segmenting cell nuclei. This model
employed more precise spatial context data and delivered
more exact findings than baseline image segmentation
networks by convolution. The CBAM consisted of two
successive sub-modules, the CAM and the SAM, utilized in
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size, and other factors.

Overall, the proposed model outperformed the other SOTA
models in all aspects. Therefore, the proposed model is
suitable for real-world applications because of its high per-
formance, stability, and minimal computational complexity.
Future work will include researching and implementing
more powerful, robust, and precise CNN, transformer, and
diffusion algorithms for medical and clinical purposes. Input
image with feature maps extracted from the intermediate
layers of the proposed CBAM residual U-Net model with
different staining intensities.
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