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ABSTRACT This paper presents a technique for investigating the cyclic properties of substitution boxes
(S-boxes) in the Cipher Block Chaining (CBC) mode of operation. S-boxes provide nonlinear transfor-
mations in encryption algorithms to create confusion and enhance cryptographic strength. The CBC mode
design is used in block ciphers to hide periodic patterns and create a diffusion effect. The main objective of
this study was to detect the periodicity of the bijective S-boxes in CBC mode to evaluate their cryptographic
strength. The study of S-boxes using the presented technique allows us to examine them in a different
manner and study their diffusion levels, the metrics of which are the periodicities of the S-box element
sequences. To apply the diffusion effect of the CBC mode to the S-boxes, the encryption function used in
the cryptographic ciphers was changed to a substitution function for the S-boxes used as an inner nonlinear
component of the encryption function. The S-box used in the Advanced Encryption Standard (AES) was
selected for experiment and study. In this study, the cyclic properties of the S-box were considered from
two different aspects: periodicity detection of the S-box with respect to iterations and blocks. According to
our study, the maximal periods of the AES S-box and various other S-boxes were found to be very large,
indicating that the influence of the CBC mode spread over many iterations and blocks, thus confirming the
high level of cryptographic strength of the S-boxes.

INDEX TERMS AES, block cipher, CBC mode of operation, cyclic properties, periodicity, S-box,
cryptographic strength.

I. INTRODUCTION
Cryptography, which has its roots in ancient times, is in an
essential position to perform in the field of information secu-
rity. Currently, cryptography has changed. It differs signifi-
cantly from cryptography, which existed until the twentieth
century and is divided into classic and modern cryptogra-
phy [1], [2], [3]. Modern cryptography tasks, which can be
observed in applications such as electronic digital signa-
tures, information authentication, information integrity con-
trol, electronic money, and secure network communications,
have been extended. Therefore, security measures are being
considered at the level of progress with the development
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of information technology and computing power. Modern
cryptography is one of the most relevant sciences, in which
advanced knowledge of mathematics and computer science
is required. Current cryptography uses two approaches, sym-
metric and asymmetric [4], [5], [6]. Symmetric cryptography
is divided into block and stream ciphers [7].

Block ciphers accept messages and produce fixed-length
results called blocks under the action of a secret key. Cur-
rently, a block length of 128 bits is considered optimal for
balancing the security and computational speed of encryp-
tion [8]. Not all data can be encrypted in a single block,
because there are very large datasets. In such cases, various
techniques, called modes of operation, are used to enhance
the effects of encryption algorithms. The operating mode
is a symmetric encryption scheme designed to encrypt an
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arbitrary length [9]. In many applications, block ciphers oper-
ate in one mode or the other. Various operating modes have
been developed for this purpose [10], [11], [12]. However,
some of these modes have advantages and disadvantages in
their use. For example, in the Electronic Codebook (ECB),
blocks perform independently of each other; they are repeated
in both plaintext and ciphertext. The advantage is that the
blocks are independent, which makes it possible to perform
encryption operations in parallel. The disadvantage is that
they are repeatable with respect to each identical block, which
is a vulnerability to cryptographic attacks. To eliminate rep-
etition, other modes have been developed including Cipher
Block Chaining (CBC), Output Feedback (OFB), Cipher
Feedback (CFB), and Counter Mode (CTR).

One of the main ways to provide nonlinear transforma-
tions in cryptographic ciphers is to use substitution boxes
(S-boxes), which are Boolean vector functions with certain
cryptographic and cyclic properties on which the crypto-
graphic strength of the entire cipher depends [13], [14].
In most cases, they are represented in substitution tables
formulated using various mathematical transformations.

This study investigated the bijective S-box used in the
Rijndael encryption algorithm or the Advanced Encryption
Standard (AES) [15], [16]. The purpose of our study was to
detect the periodicity of the S-box with respect to iterations
and blocks in the CBC mode. This provides an indication of
the level of diffusion formation, by which we can investi-
gate the cryptographic strength of the S-box as an additional
criterion.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III describes the
experiments and results, and Section IV concludes the study.
In Section III, experiments and results are presented using
two approaches. The first is the periodicity detection of the
S-box in the CBC mode with respect to the iterations and the
second is with respect to the blocks.

II. RELATED WORK
The foundation of modern cryptography was laid by the
American scientist Shannon [1], [17], who formulated
two important conditions for the strength of cryptographic
ciphers: confusion and diffusion. The entire point of con-
fusion is to make it difficult to find statistical and ana-
lytical connections between the bits of the secret key and
the ciphertext. Diffusion refers to the spread of the influ-
ence of one bit of plaintext over several bits of cipher-
text. S-boxes used in cryptographic ciphers are required to
create confusion. For S-boxes to affect the bit confusion,
they must satisfy cryptographic criteria or properties. There
are different cryptographic criteria, such as balancedness,
algebraic degree, nonlinearity, correlation immunity, alge-
braic immunity, avalanche criteria, and complexity parame-
ters [18], [19], [20], to evaluate the resistance of encryption
algorithms to various cryptographic attacks [21], [22], [23].

It is well known that S-boxes do not provide high results
for all the above criteria. Therefore, there is great interest
in finding optimal S-boxes in combination with the limit
values of the criteria. Finding the optimal S-boxes is an actual
problem in cryptography. Currently, there is considerable
interest in designing new S-boxes. For example, in [24], the
authors proposed a method to improve cryptographic prop-
erties, including the distance to the strict avalanche criterion
(DSAC) of an existing AES S-box by modifying and adding
affine transformations. DSAC is 372. For more details on
DSAC, see [25]. In the study [25] a function for F28 , which is
a new S-box for AES, was proposed. The function is defined
for byte x as:

S (x) =


Ax + α

Ax + β
, if x ̸= A−1β

01 if x = A−1β,

where A is an 8 × 8 invertible matrix of bits and α, β are
two different bytes. The proposed S-box exhibits improved
cryptographic properties. For example, DSAC is 328, which
is better than that of AES S-box, which is 432.

To evaluate cryptographic strength against existing crypto-
graphic attacks, it is also important to investigate the cyclic
properties of the cipher’s internal components, including the
S-box. The weaknesses of the cryptographic cipher are the
short periods and presence of fixed and opposite fixed points.
In [26], using certain input data, the authors studied the output
data of the AES in the ECB, CBC, OFB, and CFB modes and
detected characteristic periodic patterns in the output data of
the four modes. The authors of [27] investigated the cyclic
properties of the internal components of AES. They stated
that the periods of the linear and non-linear functions of the
AES were short; however, when these functions were com-
bined, the period increased dramatically to approximately
2110. In another study [28], new period results were obtained
using a combination of four internal functions of the AES,
with a very large period (greater than 10205).

III. EXPERIMENTS AND RESULTS
Ehrsam et al. created a CBC operation mode in 1976 [29].
In CBC mode, each plaintext block is operated using a
Boolean logical XOR operation with a previous ciphertext
block.

The general calculation formulas for encryption are
derived using the following formulas for ECB:

Ci = Ek (Pi) , i = 1, n (1)

and for CBC:

C1 = Ek (P1 ⊕ IV ) , Ci = Ek (Pi ⊕ Ci−1) , i = 2, n (2)

where i is the block number, Pi is the plaintext of the i-th
block,Ci is the ciphertext of the i-th block, k is the encryption
key, Ek is the encryption function, IV is the initialization
vector, and n is the total number of blocks.
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TABLE 1. Cycle structure of the AES S-box.

TABLE 2. Input data for the calculation of the maximal period of the
S-box with respect to the iterations.

In the proposed technique for investigating the nonlinear
layer of S-boxes, we replaced the encryption functionEk used
in block ciphers with a substitution function for the S-boxes
used as an inner nonlinear component of the encryption func-
tion Ek , denoted by S to study the effect of diffusion in the
CBC mode on S-boxes. By changing the encryption function
to a substitution function, we can write (1) and (2) for ECB
as follows:

Ci = S (Pi) , i = 1, n (3)

and for CBC:

C1 = S (P1 ⊕ IV ) , Ci = S (Pi ⊕ Ci−1) , i = 2, n (4)

Algorithm 1, in which formulas (3) and (4) are applied, is as
follows:

A. PERIODICITY DETECTION OF THE S-BOX IN CBC
MODE WITH RESPECT TO THE ITERATIONS
To demonstrate the proposed technique, we selected the bijec-
tive S-box consisting of 256 elements (bytes) used in AES as
an example.
Definition 1: The process of repeatedly applying the same

function is called iteration.
Definition 2: A cyclic or iterated function is the identity

function when iterated a finite number of times:

f n(x) = f (. . . (f (f (x))) . . .) = x

where f n is the n-th iterate of function f .For example, every
permutation of a finite set is a cyclic function, according to
this definition.

Algorithm 1 Algorithm for the Substitution Function in the
ECB and CBC Modes of Operation
Input: P – plaintext, IV – initialization vector, l – length
of block, n – number of blocks, mode - option of one of
the two modes: ‘‘ECB’’ or ‘‘CBC’’, sbox− the option of a
specific S-box, for example, an AES S-box).
Output: C – ciphertext, presented as matrix (n× l)
Function Substitution (P, IV , l, n,mode, sbox)
1: if (mode = "ECB") then
2: for i← 1 to n
3: for j← 1 to l
4: C[i, j]← sbox[P[i, j]]
5: end for
6: end for
5: else if (mode = "CBC") then
6: for i← 1 to n
7: for j← 1 to l
8: if (i = 1) then
9: C[i, j]← sbox [P[i, j]⊕ IV [j]]
10: else
11: C[i, j]← sbox [P[i, j]⊕ C[i− 1, j]]
12: end if
13: end for
14: end for
15: end if
16:return C

Definition 3: Let S: F2n → F2n be a function that defines
an S-box. For x ∈ F2n , the period of x under S is the smallest
positive integer n such that Sn (x) = x.
Definition 4: The order of an arbitrary element of permu-

tation of a finite set is equal to the least common multiple
(LCM) of the cycle lengths in its cyclic decomposition.

Permutations of a finite set should be considered
when investigating the cyclic properties of the bijective
S-boxes [30]. For more details on LCM, see [31].
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TABLE 3. The periods of each element of the AES S-box in the ECB and CBC modes for input data of (5).

Algorithm 2 Algorithm for Periodicity Detection in the
S-Box With Respect to the Iterations

Input: P - plaintext, IV – initialization vector, l –length
of block, n –number of blocks, mode - option of one of
the two modes: ‘‘ECB’’ or ‘‘CBC’’, sbox− the option of a
specific S-box, for example, an AES S-box).
Output: T – the period
Function Period (P, IV , l, n,mode, sbox)
1: C ← substitution(P, IV , l, n,mode, sbox)
{ C - ciphertext}

2: T← 1
3: if (int (P) ̸= int (C)) then
{P and C for equality comparison}

4: while (int (P) ̸= int (C))
5: C ← Substitution(C, IV , l, n,mode, sbox)
6: T ← T + 1
7: end while
8: end if
9: return T

Theorem 1 (Order of Permutations): The order of permu-
tation of a finite set written in the disjoint cycle form is the
LCM of the cycle lengths.
Theorem 2 (Products of Disjoint Cycles): Every permuta-

tion of a finite set can be written as a cycle or as a product of
disjoint cycles.

The proofs of Theorems 1 and 2 are provided in [32].
In our study, terms such as order, cycle length, and period

are interchangeable.
Let us review the cyclic properties of the AES S-box,

its cycle structure includes five disjoint cycles with lengths
of 59, 81, 87, 27, and 2 (see Table 1). For the disjoint
cycles of the AES S-box and the length of each cycle, refer
to [27]. The AES S-box period can be found in [25] and [28].
By calculating the LCM of the cycle lengths of the disjoint
cycles, we obtained the order of an arbitrary element of

Algorithm 3 Algorithm to Calculate the Maximal Period of
the S-Box With Respect to the Iterations
Input: l –length of the block, n –number of blocks, mode -
option of one of the two modes: ‘‘ECB’’ or ‘‘CBC’’, sbox
− the option of a specific S-box, for example, an AES
S-box).
Output: G − the maximal period of the S-box
1: L ← [0, 0, . . . , 0]︸ ︷︷ ︸

256 elements
2: for k ← 0 to 255
3: A← [0, 0, . . . , 0]︸ ︷︷ ︸

256 elements
4: for i← 0 to 255
5: P← [[i, i, . . . , i︸ ︷︷ ︸

l

], [i, i, . . . , i]︸ ︷︷ ︸
l

, . . . , [i, i, . . . , i]︸ ︷︷ ︸
l

]

︸ ︷︷ ︸
n blocks

6: IV ← [k, k, . . . , k]︸ ︷︷ ︸
256 elements

{IV– the initialization vector}
7: T ← Period (P, IV , l, n,mode, sbox)

{T - the period}
8: A [i]← T {A - array of the T variable}
9: end for
10: L[k]← LCM (A)

{L - array of LCM of the A variable}
11: end for
12: G← LCM(L)
13: return G

the AES S-box as 277182, which was the maximal period.
Thus, we can state that the order of an arbitrary S-box
element is:

S277182 (x) = x

here, x = 00,FF .
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Algorithm 4 Algorithm to Calculate the Maximal Period of
the S-Box With Respect to the Blocks

Input: l–length of the block, n–number of blocks, mode -
option of one of the two modes: ‘‘ECB’’ or ‘‘CBC’’,
sbox− the option of a specific S-box, for example, an AES
S-box).
Output:G maximal period of the S-box
1: L ← [0, 0, . . . , 0]︸ ︷︷ ︸

256 elements
2: for i← 0 to 255
3: A← [0, 0, . . . , 0]︸ ︷︷ ︸

256 elements
4: for k ← 0 to 255
5: P← [[i, i, . . . , i︸ ︷︷ ︸

l

], [i, i, . . . , i]︸ ︷︷ ︸
l

, . . . , [i, i, . . . , i]︸ ︷︷ ︸
l

]

︸ ︷︷ ︸
n blocks

6: IV ← [k, k, . . . , k]︸ ︷︷ ︸
256 elements

{IV– the initialization vector}
7: C ← substitution (P, IV , l, n,mode, sbox)

{C– the ciphertext}
8: for T ← 1 to n {T– the period}
9: if (C[0] = C[T ]) then
10: A[k]← T {A - array of the T variable}
11: break
12: end if
13: end for
14: end for
15: L[i]← LCM(A)
16: end for {L - maximal periods for each element of the

S-box }
17: G← LCM(L)
18: return G

From this, we can conclude that any plaintext within one
block transformed through the AES S-box after 277182 iter-
ations returns to the plaintext again:

P→ S (P)→ C1→ S (C1)→ . . .C i→ . . .C277182 = P

where P is the plaintext, S is the substitution function, Ci is
the ciphertext at the i-th iteration.
To detect periodicity and calculate the order of an arbitrary

element of the S-box, that is, the maximal period of the S-box
with respect to iterations, we present Algorithms 2 and 3,
respectively.

To determine the periodicity of the S-box with respect
to the iterations, we set some input data: all plaintexts and
initialization vectors consist of only one block each, all blocks
contain only one element each in hexadecimal notation, and
the range of change of elements is from 0 to 255 (see Table 2).
By implementing Algorithms 2 and 3, we obtained the

maximal periods for each element of the AES S-box in ECB
mode with respect to the iterations (see Table 3).

In case of ECB mode, by calculating the LCM of the
periods in Table 3, in Algorithm 3 denoted by the vari-
able L, we found that the maximal period with respect
to the iterations, the denoted by variable G, was 277182
iterations.

The next part of the study examined the AES S-box in the
CBC mode. By implementing Algorithms 2 and 3 for the
input data (5), the periods for each element in CBC mode
were equal to the maximal periods for each element in ECB
mode (see Table 3).

P = [i] , i = 00,FF, IV = [00] (5)

In the case of input data (6), we already obtained other periods
(see Table 4).

P = [i] , i = 00,FF, IV = [01] (6)

The period values in Table 4 are already different because all
the elements operate using a Boolean logical XOR operation
with initialization vector IV = [01].

Therefore, by changing the initialization vector IV = [k],
k = 00,FF , we obtained the maximal periods for each
element in the CBC mode (see Table 5). In Algorithm 3,
we denoted by variable L. By calculating the LCM of the
values for each element, we obtained the maximal period of
the AES S-Box in CBC mode with respect to the iterations
(see Table 6), denoted by variableG. Themaximal period was
approximately 9.68× 1089 iterations.

B. PERIODICITY DETECTION OF THE S-BOX IN CBC
MODE WITH RESPECT TO THE BLOCKS
Our study shows that by applying the substitution function,
we can determine the periods in CBC mode with respect
to the blocks. We applied the CBC mode construction used
in block ciphers to investigate the cyclic properties of AES
S-box.

Consider the example of finding the maximal period of the
AES S-box in CBC mode with respect to the blocks for the
input data presented in Table 7.
In the input data, all plaintexts consist of 257 blocks each,

initialization vectors consist of only one block each, all blocks
contain a single element in hexadecimal notation, and the
range of elements changes from 0 to 255. The selection of
257 blocks was sufficient because the periods for each S-box
element individually in CBCmode ranged from 1 to 256 with
respect to the blocks.

Algorithm 4 presents an algorithm to calculate themaximal
period of the S-box with respect to the blocks. By implement-
ing Algorithm 4 on the input data of (7), we obtained the
results for the AES S-box.

P = [00], . . . , [00]︸ ︷︷ ︸
257 blocks

, IV = [00] (7)

These results are the values of the ciphertexts in the ECB and
CBC modes, showing periodicity with respect to the blocks

75690 VOLUME 11, 2023



Z. Alimzhanova et al.: Periodicity Detection of the Substitution Box in the CBC Mode of Operation

TABLE 4. The periods of each element of the AES S-box in the CBC mode for input data of (6).

TABLE 5. The approximate values of the maximal periods for each element of the AES S-box in the CBC mode for the input data of Table 2.

TABLE 6. The maximal period of the AES S-box in CBC mode for the input
data of Table 2.

(see Table 8). Fig.1 shows the visualization periodicity of the
ciphertexts with respect to the blocks for input data (7) in
decimal notation.

TABLE 7. Input data for the calculation of the maximal period of the
S-box with respect to the blocks.

Table 9 presents the periods with input data for the case in
which

P = [i], [i], . . . , [i], . . . , [i]︸ ︷︷ ︸
257 blocks

, IV = [00], i = 00,F F (8)
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TABLE 8. Values of ciphertexts in the ECB and CBC modes for input data are shown in (7).

FIGURE 1. Visualization of the periodicity in the ciphertexts in ECB and CBC modes with respect to the blocks.

For example, the period for each element, T = 256 appears
for P = [76], [76], . . . , [76], . . . , [76]︸ ︷︷ ︸

257 blocks

, I V = [00] or

P = [EA], [EA], . . . , [EA], . . . , [EA]︸ ︷︷ ︸
257 blocks

, I V = [00] and, for

P = [52], [52], . . . , [52], . . . , [52]︸ ︷︷ ︸
257 blocks

, IV = [00] the period

T = 1, because for the S-box parameter equal to 52,
returns the value 00 (see Table 1). Therefore, with plaintext
P = [52], [52], . . . , [52], . . . , [52]︸ ︷︷ ︸

257 blocks

, the values of the

ciphertext C = [00], [00], . . . , [00], . . . , [00]︸ ︷︷ ︸
257 blocks

are equal to the

value of the initialization vector, as shown in (8).
Based on the input data in Table 7, the maximal periods for

each element in the CBCmode are listed in Table 10, denoted
by variable L in Algorithm 4. By calculating the LCM for
each element in Table 10, we obtained that the maximal
period of the AES S-box in the CBC mode with respect to
the blocks, indicated by the variable G, was approximately
9.68×1089 blocks, which yielded the same result with respect
to the iterations. The exact value of the maximal period is
shown in Table 6.
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TABLE 9. The periods for each element of the AES S-box in the CBC mode for input data of (8).

TABLE 10. The maximal periods for each element of the AES S-box in the CBC mode for input data of Table 7.

Table 11 presents the maximal periods of the various
S-boxes used in encryption algorithms, such as Skipjack
[33], SMS4 [34], Kuznyechik [35], Camellia [36], CLE-
FIA [37], and SEED [38], as well as those constructed
using different methods and techniques proposed by the
authors [24], [25], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], and [49]. To determine the maximal periods

for these S-boxes with respect to the blocks, we used the
input data listed in Table 7. The best results, namely the
approximate values of the maximal periods of the S-boxes
in the CBC mode with respect to the blocks exceed-
ing 10100 > 2332 were shown Skipjack (2.6 × 10101),
Camellia S1 (1.2 × 10100) and proposed by Hussain et al.
(2.9× 10104) [45].
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TABLE 11. The approximate values of the maximal periods of the various S-boxes in the CBC mode for input data of Table 7.

IV. CONCLUSION
In this paper, we investigate the diffusion effect of the CBC
mode on the bijective AES S-box by detecting its periodicity
in two ways. The periods of the S-box element sequences
in the CBC were calculated with respect to iterations using
Algorithms 2 and 3 (Tables 3, 4, and 5), and with respect to
blocks using Algorithm 4 (Tables 9 and 10). In our study, the
maximal periods of the AES S-box with respect to iterations
and blocks showed the same result, which was approximately
9.68× 1089 (Table 6).
For comparative analysis in our study, we determined the

maximal periods for other S-boxes in the CBC mode with
respect to the blocks (Table 11). It should be noted that in
the case of cryptographically and cyclically good S-boxes,
the maximal periods showed very large intervals (more than
1077 > 2255), indicating that the influence of the CBC mode
spread over a considerable number of iterations and blocks,
confirming the high level of cryptographic strength of the
S-boxes.
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