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ABSTRACT This study explores new theoretical results for the global exponential stability of bidirectional
associative memory delayed neural networks in the Clifford domain. By considering time-varying delays,
a general class of Clifford-valued bidirectional associative memory neural networks is formulated, which
encompasses real-, complex-, and quaternion-valued neural network models as special cases. To analyze the
global exponential stability, we first decompose the considered n-dimensional Clifford-valued networks into
2mn-dimensional real-valued networks, which avoids the inconvenience caused by the non-commutativity
of the multiplication of Clifford numbers. Subsequently, we establish new sufficient conditions to guarantee
the existence, uniqueness, and global exponential stability of equilibrium points for the considered networks
by constructing a new Lyapunov functional and applying homeomorphism theory. Finally, we provide a
numerical example accompanied by simulation results to illustrate the validity of the obtained theoretical
results. The present results remain valid even when the considered neural networks degenerate into real-,
complex-, and quaternion-valued networks.

INDEX TERMS Bidirectional associative memory neural networks, Clifford-valued neural networks, global
exponential stability, Lyapunov functions, time-varying delays.

I. INTRODUCTION
Over the past few decades, neural networks (NNs) have
attracted significant attention in the field of artificial intel-
ligence [1], [2], [3], [4], [5], [6], [7], [8]. Compared
with other NNs, bidirectional associative memory neural
networks (BAMNNs) have been attracting more attention
from researchers because of their widespread applica-
tions in many scientific and engineering fields such as
image processing, associative memories, pattern recognition,
automatic control, secure communication, signal process-
ing, optimization problems, and other practical applica-
tions [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

Also, using the BAMNNs perfectly solves the known bitwise
XOR problem, compared to the existing NNs, which makes
it possible to store the data, encoded to binary form, in its
memory. In such practical applications, it is important to
consider the dynamics of the designed NNs, particularly their
stability. As such, recent studies have investigated various
stability methods for BAMNNs and published significant and
interesting results [18], [19], [20], [21], [22], [23], [24], [25].

Recently, Clifford-valued NNs have attracted increas-
ing attention from researchers owing to their generalized
form of quaternion-valued, complex-valued, and real-valued
NNs [26], [27]. Moreover, Clifford-valued NNs are powerful
and effective models for representing and solving geometri-
cal and engineering problems. In Clifford-valued NNs, the
state variables, connection weights, and external inputs are
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Clifford numbers, and they have more complex algebraic
algorithms. It has been used in a wide range of applications,
including medical imaging, robotics, and natural language
processing [27], [28]. Moreover, Clifford-valued NNs offer
several advantages in that they process data that are not
solved by real-, complex-, and quaternion-valued NNs with
high accuracy, and they can also handle multidimensional
data. Consequently, Clifford-valued NNs have emerged as
an important research field. In [29], the problem of global
asymptotic stability in Clifford-valued NNs was examined
using a decomposition method. In [32], the authors derived
a globally asymptotic almost automorphic synchronization
of Clifford-valued recurrent NNs networks with delays.
In [34], the authors considered a class of Clifford-valued
neutral high-order Hopfield NNs with leakage delays and
studied their existence and global stability analysis. Using
the Lyapunov function method, the global exponential sta-
bility of an anti-periodic solution for Clifford-valued iner-
tial Cohen-Grossberg NNs was investigated in [37]. Other
results of Clifford-valued NNs have been reported in earlier
works [35], [36], [38], [39].

In reality, time delays inevitably exist in biological and
artificial NNs and cannot be neglected [5], [10], [17], [21],
[40], [41]. On the other hand, the appearance of discrete time
delays in NNs are usual because of the limited switching
speed of neurons and amplifiers. Moreover, NNs are typically
spatial in nature and the propagation velocity distribution
along these paths results in a delayed propagation distribution
owing to the presence of significant parallel paths with differ-
ent axon sizes and lengths [25], [31], [33]. Numerous studies
have demonstrated that the existence of time delays has an
impact on NNs and can result in complex dynamic behaviors
such as oscillations, divergence, or instability of NNs, all of
which can be detrimental to the system [42], [43], [44], [45].
Consequently, incorporating mixed delays in network mod-
eling boosts the value of the considered NNs in theory and
practice.

To the best of our knowledge, no studies have been
published on the existence, uniqueness, and global expo-
nential stability of BAMNNs with time-varying delays in
the Clifford domain. To fill this gap, we aim to inves-
tigate the global exponential stability of Clifford-valued
BAMNNs using the system decomposition method. In recent
years, a number of studies have been published on the
stability of Clifford-valued NNs; however, Clifford-valued
BAMNNs have not been fully explored, which motivated
us to investigate this topic. The main aspects of this paper
can be summarized as follows: (1) A general form of
Clifford-valued BAMNNs with time-varying delays was pre-
sented to derive more realistic Clifford-valued NNs dynam-
ics. (2) The system decomposition method was used to
investigate the global exponential stability of Clifford-valued
delayed BAMNNs. (3) Lyapunov stability theory, homeo-
morphism theory, and inequality techniques were applied to
Clifford-valued delayed BAMNNs to determine the enhanced
stability conditions. (4) The effectiveness of the main results

was illustrated using a numerical example and simulation
results.

The remainder of this paper is structured as follows:
Section II provides the basic concepts of Clifford algebra,
problem model, definitions, and useful lemmas. The main
results of this study are presented in Section III, Theorem
(3.1) presents sufficient criteria for the existence of the
equilibrium point and the global exponential stability of the
considered NNs. In Corollary (3.2), the results of the stability
criteria are discussed for a special case. Section IV presents
a numerical case study that demonstrates the feasibility of
the derived results. Section V presents the conclusions of this
study.

II. MATHEMATICAL FORMULATION AND PROBLEM
DEFINITION
A. NOTATIONS
In the remainder of this paper, the n-space real vectors, n-
space real Clifford vectors, set of all n × m real matrices,
and set of all n × m real Clifford matrices are denoted by
Rn,An, Rn×m, andAn×m, respectively. The transposition and
involution transposition of the matrices are denoted by T and
∗, respectively. The Clifford algebra with m generators over
a real number is denoted by A. The norm of Rn is defined

as
∥∥z∥∥ =

n∑
p=1

∣∣zp∣∣. For z =
∑
A∈4

zAeA ∈ A denote
∥∥z∥∥

A
=∑

A∈4

∣∣zA∣∣. For all 1, n = 1, 2, . . . , n and 1,m = 1, 2, . . . ,m.

B. CLIFFORD ALGEBRA
The Clifford real algebra over Rm is given by

A =

{ ∑
A⊆{1,m}

aAeA, aA ∈ R
}
,

where eA = ew1ew2 . . . ewη with A = w1,w2, . . . ,wη, 1 ≤

w1 < w2 < . . . < wη ≤ m. Furthermore, e∅ =

e0 = 1 and ew, w = 1,m denote the Clifford genera-
tors that satisfy the following conditions: (i) eiej + ejei =

0, i ̸= j, i, j = 1,m, (ii) e2i = −1, i = 1,m.
For convenience, an element is defined as the product of
many Clifford generators e1e2e3e4 = e1234. Define 4 =

{∅, 1, 2, . . . ,A, . . . , 12 . . .m}, we get

A =

{ ∑
A

aAeA, aA ∈ R
}
,

where
∑
A

is the short form of
∑
A∈4

and A is isomorphic to

R2m . For any Clifford number z =
∑
A∈4

zAeA ∈ A, the

involution of z is denoted by z̄ =
∑
A∈4

zAēA, where ēA =

(−1)
ϱ[A](ϱ[A]+1)

2 eA, and ϱ[A] = 0 if A = ∅ and ϱ[A] = η

if A = w1w2 . . .wη ∈ 4. From this definition, we obtain
eAēA = ēAeA = 1, and z =

∑
A∈4

zAeA : R → A, where

zA : R → R, A ∈ 4, and ż(t) =
∑
A∈4

żA(t)eA. We refer the
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reader to [26], [27], [28], [29], [30], [31], [32], and [33] for
more information on Clifford algebra.
Remark 2.1: Since eBēA = (−1)

ϱ[A](ϱ[A]+1)
2 eBeA, then

eBēA = eC or eBēA = −eC , eC is the basis for Clifford
algebraA. Define ϱ[B.Ā] = 0 if eBēA = eC and ϱ[B.Ā] = 1 if
eBēA = −eC then, eBēA = (−1)ϱ[B.Ā]eC . This shows that
there exists a unique SC for any SC ∈ A that satisfies SB.Ā =

(−1)ϱ[B.Ā]SC for eBēA = (−1)ϱ[B.Ā]eC . Hence, SB.ĀeBēA =

SB.Ā(−1)ϱ[B.Ā]eC = (−1)ϱ[B.Ā]SC (−1)ϱ[B.Ā]eC = SCeC , and
S =

∑
C

SCeC ∈ A.

C. PROBLEM FORMULATION
In this section, we consider a class of Clifford-valued
BAMNNs with time-varying delays as follows:

ẋp(t) = −dpxp(t) +

m∑
q=1

aqpgq(yq(t − σqp(t))) + up,

ẏq(t) = −cqyq(t) +

n∑
p=1

bpqfp(xp(t − τpq(t))) + vq,

(1)

where for all t ≥ 0; p = 1, n, q = 1,m; xp(t) ∈ A and yq(t) ∈

A denote the state variables; 0 < dp ∈ R+ and 0 < cq ∈

R+ denote the self-feedback connection weights; aqp ∈ A,
bpq ∈ A denote the interconnection weights; fp(·) : A → A

and gq(·) : A → A denote the neuron activation functions;
up ∈ A and vq ∈ A denote the external inputs; τpq(t) ∈ R+

and σqp(t) ∈ R+ denote the transmission delays.
The initial conditions of NNs (1) are given by
xp(t) = ϕp(t), t ∈ [−σ, 0], σ = max

1≤p≤n
max
1≤q≤m

{σqp},

yq(t) = ψq(t), t ∈ [−τ, 0], τ = max
1≤q≤m

max
1≤p≤n

{τpq},

(2)

where ϕp ∈ C([−σ, 0],A) and ψq ∈ C([−τ, 0],A) are
continuous functions.

The transmission delays σqp(t), τpq(t) and the signal
functions fp(·), gq(·) are assumed to satisfy the following
hypothesis:
(H1) Delays σqp(t), τpq(t) (p = 1, n; q = 1,m) are differen-
tiable and satisfy{

0 ≤ σqp(t) ≤ σqp, σ̇qp(t) ≤ µ1 < 1,
0 ≤ τpq(t) ≤ τpq, τ̇pq(t) ≤ µ2 < 1,

(3)

where σqp ∈ R+, τpq ∈ R+, µ1 ∈ R+ and µ2 ∈ R+ are
constants.
(H2) Functions fp(·), gq(·) : A → A (p = 1, n; q = 1,m) are
Lipschitz continuous. Then there exist constants L

g
q ∈ R+

and K
f
p ∈ R+ such that{

|gq(x) − gq(y)|A ≤ Lg
q|x − y|A, q = 1,m,

|fp(x) − fp(y)|A ≤ Kf
p|x − y|A, p = 1, n,

(4)

for all x, y ∈ A and gq(0) = 0, fp(0) = 0.

For any solution (x, y)T =
(
x1(t), x2(t), . . . , xn(t), y1(t),

y2(t), . . . , ym(t)
)T and the equilibrium point (x∗, y∗)T =(

x∗

1 (t), x
∗

2 (t), . . . , x
∗
n (t), y

∗

1(t), y
∗

2(t), . . . , y
∗
m(t)

)T of NNs (1),
we denote

∥∥(ϕ,ψ)T − (x∗, y∗)T
∥∥ as follows:

∥∥(ϕ,ψ)T − (x∗, y∗)T
∥∥ = sup

−σ≤t≤0

n∑
p=1

∣∣ϕp(t) − x∗
p

∣∣r
+ sup

−τ≤t≤0

m∑
q=1

∣∣ψq(t) − y∗q
∣∣r , (5)

where r > 1 is a constant.

To prove the main results of this paper, the following
definitions and lemmas will be used:
Definition 2.2: [42] The point of equilibrium (x∗, y∗)T of

NNs (1) is globally exponentially stable, if there exist scalars
α ≥ 1 and λ ∈ R+, then

n∑
p=1

∣∣xp(t) − x∗
p

∣∣r +

m∑
q=1

∣∣yq(t) − y∗q
∣∣r

≤ α
∥∥(ϕ,ψ)T − (x∗, y∗)T

∥∥e−λt , t ≥ 0.

Definition 2.3: [43] Let f : R2mn
→ R2mn be continuous,

and the upper-right Dini derivativeD+(f ) of f is expressed as

D+(f (t)) = lim sup
h→0+

f (t + h) − f (t)
h

.

Lemma 2.4: [44] Assume that a ∈ R+, b ∈ R+, 1 < p,
and 1

p +
1
q = 1, then the following condition holds:

ab ≤
1
p
ap +

1
q
bq.

Lemma 2.5: [45] Let H(x, y) : R2m(n+m)
→ R2m(n+m)

continuous. If H(x, y) satisfies the following conditions:
(1) H(x, y) is injective on R2m(n+m),
(2)

∥∥H(x, y)
∥∥ → ∞ as

∥∥x, y∥∥ → ∞.
Then H(x, y) is a homeomorphism of R2m(n+m).

III. MAIN RESULTS
This section presents the delay-independent criteria for the
existence, uniqueness, and global exponential stability of the
equilibrium point for NNs (1) using homeomorphism theory
and Lyapunov functions.

Based on the previous discussion about Clifford algebra,
we can decompose the Clifford-valued function into the real-
valued function. For example, for the second term in NNs (1),
we have
m∑
q=1

aqpgq(yq(t − σqp(t)))

=

m∑
q=1

∑
C∈4

aCqpeC
∑
B∈4

gBq (yq(t − σqp(t)))eB
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=

m∑
q=1

∑
A∈4

∑
B∈4

(−1)ϱ[A.B̄]aA.B̄qp (−1)ϱ[A.B̄]eAēB

× gBq (yq(t − σqp(t)))eB

=

m∑
q=1

(−1)2ϱ[A.B̄]
∑
A∈4

∑
B∈4

aA.B̄qp g
B
q (yq(t − σqp(t)))eAēBeB

=

m∑
q=1

∑
A∈4

∑
B∈4

aA.B̄qp g
B
q (yq(t − σqp(t)))eA, p = 1, n. (6)

According to the above discussion, Clifford-valued NNs
(1) can be decomposed into equivalent real-valued NNs (7)
to overcome the non-commutativity problem:


ẋAp (t) = −dpxAp (t) +

m∑
q=1

∑
B∈4

aA.B̄qp g
B
q (y

A
q (t − σqp(t))) + uAp ,

ẏAq (t) = −cqyAq (t) +

n∑
p=1

∑
B∈4

bA.B̄pq f
B
p (x

A
p (t − τpq(t))) + vAq .

(7)

The initial conditions of NNs (7) are given by

{
xAp (t) = ϕAp (t), t ∈ [−σ, 0], p = 1, n,
yAq (t) = ψA

q (t), t ∈ [−τ, 0], q = 1,m,
(8)

where



xA(t) = (xA1 (t), x
A
2 (t), . . . , x

A
n (t))

T ,

yA(t) = (yA1 (t), y
A
2 (t), . . . , y

A
n (t))

T ,

x(t) =

∑
A∈4

xA(t)eA, y(t) =

∑
A∈4

yA(t)eA,

uA = (uA1 (t), u
A
2 (t), . . . , u

A
n (t))

T , u =

∑
A∈4

uAeA,

vA = (vA1 (t), v
A
2 (t), . . . , v

A
n (t))

T , v =

∑
A∈4

vAeA,

aqp =

∑
C∈4

aCqpeC , a
A.B̄
qp = (−1)ϱ[A.B̄]aCqp,

bpq =

∑
C∈3

bCpqeC , b
A.B̄
pq = (−1)ϱ[A.B̄]bCpq,

eAēB = (−1)ϱ[A.B̄]eC ,
gB

(
yA(t − σqp(t))

)
= gB1

(
yA11 (t − σqp(t)), . . . , y

A2m
1 (t − σqp(t))

)
,

gB2
(
yA12 (t − σqp(t)), . . . , y

A2m
2 (t − σqp(t))

)
, . . .,

gBn
(
yA1n (t − σqp(t)), . . . , yA2mn (t − σqp(t)))

)T
,

f B
(
xA(t − τpq(t))

)
= f B1

(
xA11 (t − τpq(t)), . . . , x

A2m
1 (t − τpq(t))

)
,

f B2
(
xA12 (t − τpq(t)), . . . , x

A2m
2 (t − τpq(t))

)
, . . .,

f Bn
(
xA1n (t − τpq(t)), . . . , xA2mn (t − τpq(t)))

)T
.

(9)

(H3) By hypothesis (H2), we have

∑
B∈4

∣∣gBq (yA1q , yA2q , . . . , yA2mq ) − gBq (ŷ
A1
q , ŷ

A2
q , . . . , ŷ

A2m
q )

∣∣
≤ Lg

q

∑
A∈4

∣∣yAq − ŷAq
∣∣, q = 1,m,∑

B∈4

∣∣f Bp (xA1p , xA2p , . . . , xA2mp ) − f Bp (x̂
A1
p , x̂

A2
p , . . . , x̂

A2m
p )

∣∣
≤ Kf

p

∑
A∈4

∣∣xAp − x̂Ap
∣∣, p = 1, n.

(10)

The equilibrium point of NNs (1) is also the equilibrium point
of NNs (7), and the stability of NNs (1) is the same as that of
NNs (7). Thus, we investigate NNs (7) to obtain sufficient
criteria to establish that the equilibrium point of NNs (7) is
globally exponentially stable.
Theorem 3.1: Let (H1)–(H3) hold, there exist constants

1 < r , λp ∈ R+, λn+q ∈ R+ (p = 1, n; q = 1,m) such
that

−rλpdp + (r − 1)
m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

+

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p < 0, p = 1, n,

−rλn+qcq + (r − 1)
n∑

p=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

+

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q < 0, q = 1,m,

(11)

then the equilibrium point of NNs (7) is globally exponen-
tially stable.
Proof: The proof of this theorem involves two steps: The
first step is to prove the existence and uniqueness of the
equilibrium point.

The point (x∗, y∗)T is an equilibrium point of NNs (7) if
and only if it is a solution of the following equation:

−dpx∗
p +

m∑
q=1

∑
B∈4

aA.B̄qp g
B
q (y

∗
q) + uAp = 0, p = 1, n,

−cqy∗q +

n∑
p=1

∑
B∈4

bA.B̄pq f
B
p (x

∗
p ) + vAq = 0, q = 1,m.

(12)

Define a map
ϒ(xA, yA) =

(
ϒ1(xA, yA), . . . , ϒn(xA, yA),

ϒn+1(xA, yA), . . . , ϒn+m(xA, yA)
)T
, (13)

where
ϒp(xA, yA) = −dpxAp +

m∑
q=1

∑
B∈4

aA.B̄qp g
B
q (y

A
q ) + uAp ,

ϒn+q(xA, yA) = −cqyAq +

n∑
p=1

∑
B∈4

bA.B̄pq f
B
p (x

A
p ) + vAq .

for all p = 1, n and q = 1,m.
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The following proves ϒ(xA, yA) is a homeomorphism.
We claim that in the first step ϒ(xA, yA) is injective to

R2m(n+m). If there exist (xA, yA)T , (x̂A, ŷA)T ∈ R2m(n+m) with
(xA, yA)T ̸= (x̂A, ŷA)T , such that ϒ(xA, yA) = ϒ(x̂A, ŷA),
using Lemma (2.4), we get for all A ∈ 4

0 =

n∑
p=1

rλp
∣∣xAp − x̂Ap

∣∣r−1sgn(xAp − x̂Ap )(ϒp(x
A, yA)−ϒp(x̂A, ŷA))

=

n∑
p=1

rλp
∣∣xAp − x̂Ap

∣∣r−1sgn(xAp − x̂Ap )
(

− dp(xAp − x̂Ap )

+

m∑
q=1

∑
B∈4

aA.B̄qp (gBq (y
A
q ) − gBq (ŷ

A
q ))

)

≤ −

n∑
p=1

rλpdp
∣∣xAp − x̂Ap

∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλp
∣∣aA.B̄qp ∣∣

× Lg
q

∣∣xAp − x̂Ap
∣∣r−1∣∣yAq − ŷAq

∣∣
≤ −

n∑
p=1

rλpdp
∣∣xAp − x̂Ap

∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλp
∣∣aA.B̄qp ∣∣

× Lg
q

(
r − 1
r

∣∣xAp − x̂Ap
∣∣r +

1
r

∣∣yAq − ŷAq
∣∣r)

=

n∑
p=1

λp

(
− rdp + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

)∣∣xAp − x̂Ap
∣∣r

+

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣yAq − ŷAq
∣∣r . (14)

Similarly, we get

0 =

m∑
q=1

rλn+q
∣∣yAq − ŷAq

∣∣r−1sgn(yAq − ŷAq )

×

(
ϒn+q(xA, yA) − ϒn+q(x̂A, ŷA)

)
=

m∑
q=1

rλn+p
∣∣yAq − ŷAq

∣∣r−1sgn(yAq − ŷAq )

×

(
− cq(yAq − ŷAq ) +

n∑
p=1

∑
B∈4

bA.B̄pq (f Bp (x
A
p ) − f Bp (x̂

A
p ))

)

≤ −

m∑
q=1

rλn+qcq
∣∣yAq − ŷAq

∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλn+q
∣∣bA.B̄pq ∣∣

× Kf
p

∣∣yAq − ŷAq
∣∣r−1∣∣xAp − x̂Ap

∣∣
≤ −

m∑
q=1

rλn+qcq
∣∣yAq − ŷAq

∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλn+q
∣∣bA.B̄pq ∣∣

× Kf
p

(
r − 1
r

∣∣yAq − ŷAq
∣∣r +

1
r

∣∣xAp − x̂Ap
∣∣r)

=

m∑
q=1

λn+q

(
− rcq + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)∣∣yAq − ŷAq
∣∣r

+

m∑
q=1

n∑
p=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣xAp − x̂Ap
∣∣r . (15)

Using (14), (15) and (11), we obtain for all p = 1, n, q =

1,m

0 ≤

n∑
p=1

(
λp

(
− rdp + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

)

+

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

)∣∣xAp − x̂Ap
∣∣r

+

m∑
q=1

(
λn+q

(
− rcq + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)

+

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

)∣∣yAq − ŷAq
∣∣r < 0, (16)

which is a contradiction. Therefore, ϒ(xA, yA) is injective on
R2m(n+m).

Second, we show that
∥∥ϒ(xA, yA)

∥∥ → ∞ as
∥∥(xA, yA)∥∥ →

∞. By Lemma (2.5), we have

n∑
p=1

rλp
∣∣xAp ∣∣r−1sgn(xAp )

(
ϒp(xA, yA) − ϒp(0, 0)

)

=

n∑
p=1

rλp
∣∣xAp ∣∣r−1sgn(xAp )

×

(
− dpxAp +

m∑
q=1

∑
B∈4

aA.B̄qp (gBq (y
A
q ) − gAq (0))

)

≤−

n∑
p=1

rλpdp
∣∣xAp ∣∣r+ n∑

p=1

m∑
q=1

∑
B∈4

rλp
∣∣aA.B̄qp ∣∣Lg

q

∣∣xAp ∣∣r−1∣∣yAq ∣∣
≤−

n∑
p=1

rλpdp
∣∣xAp ∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλp
∣∣aA.B̄qp ∣∣

× Lg
q

(
r − 1
r

∣∣xAp ∣∣r +
1
r

∣∣yAq ∣∣r)
=

n∑
p=1

λp

(
− rdp + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

)∣∣xAp ∣∣r
+

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣yAq ∣∣r . (17)

Similarly, we get

m∑
q=1

rλn+q
∣∣yAq ∣∣r−1sgn(yAq )(ϒn+q(x

A, yA) − ϒn+q(0, 0))

=

m∑
q=1

rλn+q
∣∣yAq ∣∣r−1sgn(yAq )(

− cqyAq +

n∑
p=1

∑
B∈4

bA.B̄pq (f Bp (x
A
p ) − f Bp (0))

)
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≤ −

m∑
q=1

rλn+qcq
∣∣yAq ∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλn+q
∣∣bA.B̄pq ∣∣

× Kf
p

∣∣yAq ∣∣r−1∣∣xAp ∣∣
≤ −

m∑
q=1

rλn+qcq
∣∣yAq ∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλn+q
∣∣bA.B̄pq ∣∣

× Kf
p

(
r − 1
r

∣∣yAq ∣∣r +
1
r

∣∣xAp ∣∣r)
=

m∑
q=1

λn+q

(
− rcq + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)∣∣yAq ∣∣r
+

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣xAp ∣∣r . (18)

Using (17) and (18), we can get

n∑
p=1

rλp
∣∣xAp ∣∣r−1sgn(xAp )(ϒp(x

A, yA) − ϒp(0, 0))

+

m∑
q=1

rλn+q
∣∣yAq ∣∣r−1sgn(yAq )(ϒn+q(x

A, yA) − ϒn+q(0, 0))

≤

n∑
p=1

[
λp

(
− rdp + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

)

+

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

]∣∣xAp ∣∣r
+

m∑
q=1

[
λn+q

(
− rcq + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)

+

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

]∣∣yAq ∣∣r
≤ −α

( n∑
p=1

∣∣xAp ∣∣r +

m∑
q=1

∣∣yAq ∣∣r). (19)

where α = min{α1, α2},

α1 = min
1≤p≤n

{
λp

(
− rdp + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

)
+

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

}
> 0,

α2 = min
1≤q≤m

{
λn+q

(
− rcq + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)
+

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

}
> 0.

(20)

Thus, using Hölder inequality, we get

α

( n∑
p=1

∣∣xAp ∣∣r +

m∑
q=1

∣∣yAq ∣∣r)

≤ −

n∑
p=1

rλp
∣∣xAp ∣∣r−1sgn(xAp )(ϒp(x

A, yA) − ϒp(0, 0))

−

m∑
q=1

rλn+q
∣∣yAq ∣∣r−1sgn(yAq )(ϒn+q(x

A, yA) − ϒn+q(0, 0))

≤ r max
1≤s≤n+m

{λs}

[ n∑
p=1

∣∣xp∣∣r−1∣∣ϒp(xA, yA) − ϒp(0, 0)
∣∣

+

m∑
q=1

∣∣yAq ∣∣r−1∣∣ϒn+q(xA, yA) − ϒn+q(0, 0)
∣∣]

≤ r max
1≤s≤n+m

{λs}

( n∑
p=1

∣∣xAp ∣∣r +

m∑
q=1

∣∣yAq ∣∣r) r−1
r

×

( n∑
p=1

∣∣ϒp(xA, yA) − ϒp(0, 0)
∣∣r

+

m∑
q=1

∣∣ϒn+q(xA, yA) − ϒn+q(0, 0)
∣∣r) 1

r

, (21)

that is,

∥∥(xA, yA)∥∥T ≤

 r max
1≤s≤n+m

{λs}

α

r ∥∥ϒ(xA, yA) − ϒ(0, 0)
∥∥.

(22)

Thus,
∥∥ϒ(xA, yA)

∥∥ → ∞ as
∥∥(xA, yA)T∥∥ → ∞.

According to Lemma (2.5), ϒ(xA, yA) are homeomor-
phisms of R2m(n+m). Thus, NNs (7) has a unique solution
(x∗, y∗)T which is the unique equilibrium point.

The second step is to show that the equilibrium point of the
NNs (7) is globally exponentially stable. Let x̄Ap (t) = xAp (t)−
x∗
p , ȳ

A
q (t) = yAq (t)−y

∗
q, f̄

B
p (x̄

A
p (t−τpq(t))) = f Bp (x

A
p (t−τpq(t))+

x∗
p )− f Bp (x

∗
p ), ḡ

B
q (ȳ

A
q (t − σqp(t))) = gBq (y

A
q (t − σqp(t))+ y∗q)−

gBq (y
∗
q). Then, NNs (7) can be reduced to the following model
˙̄xAp (t) = −dpx̄Ap (t) +

m∑
q=1

∑
B∈4

aA.B̄qp ḡ
B
q (ȳ

A
q (t − σqp(t))),

˙̄yAq (t) = −cqȳAq (t) +

n∑
p=1

∑
B∈4

bA.B̄pq f̄
B
p (x̄

A
p (t − σpq(t))).

(23)

Choose the Lyapunov functional V(t) which is given as
follows:

V(t) =

n∑
p=1

λp

[
erϵt

∣∣x̄Ap (t)∣∣r +
1

1 − µ1

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣
× Lg

q

∫ t

t−σqp(t)

∣∣ȳAq (s)∣∣rerϵ(s+σ )ds],
+

m∑
q=1

λn+q

[
erϵt

∣∣ȳAq (t)∣∣r +
1

1 − µ2

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣
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× Kf
p

∫ t

t−τpq(t)

∣∣x̄Ap (s)∣∣rerϵ(s+τ )ds]. (24)

Based on (H1) and erϵ(t−σqp(t)+σ ) = erϵ(t−τpq(t)+τ ) ≥ erϵt ,
computingD+V(t) along the solutions of NNs (23), we obtain

D+V(t)

j ≤
n∑

p=1

λprerσ t
∣∣x̄Ap (t))∣∣r−1sgn(x̄Ap (t))

(
− dpx̄Ap (t)

+

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

∣∣ȳAq (t − σqp(t))
∣∣)

+

n∑
p=1

λprϵerϵt
∣∣x̄Ap (t)∣∣r +

1
1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣

× Lg
q

∣∣ȳAq (t)∣∣rerϵ(t+σ ) −
1

1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣

× Lg
q

∣∣ȳAq (t − σqp(t))
∣∣rerϵ(t−σqp(t)+σ )(1 − σ̇qp(t))

+

m∑
q=1

λn+qrerτ t
∣∣ȳAq (t))∣∣r−1sgn(ȳAq (t))

(
− cqȳAq (t)

+

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

∣∣x̄Ap (t − τpq(t))
∣∣)

+

m∑
q=1

λn+qrϵerϵt
∣∣ȳAq (t)∣∣r +

1
1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣

× Kf
p

∣∣x̄Ap (t)∣∣rerϵ(t+τ ) −
1

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣

× Kf
p

∣∣x̄Ap (t − τpq(t))
∣∣rerϵ(t−τpq(t)+τ )(1 − τ̇pq(t))

≤ erϵt
[
r

n∑
p=1

λp(ϵ − dp)
∣∣x̄Ap (t)∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλp
∣∣x̄Ap (t)∣∣r−1

×
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳAq (t − σqp(t))
∣∣ +

erϵσ

1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣

× Lg
q

∣∣ȳAq (t)∣∣r −

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳAq (t − σqp(t))
∣∣r]

+ erϵt
[
r

m∑
q=1

λn+q(ϵ − cq)
∣∣ȳAq (t)∣∣r +

n∑
p=1

m∑
q=1

∑
B∈4

rλn+q

×
∣∣ȳAq (t)∣∣r−1∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t − τpq(t))
∣∣

+
erϵτ

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t)∣∣r
−

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t − τpq(t))
∣∣r]. (25)

By the Lemma (2.4) it follows
n∑

p=1

m∑
q=1

∑
B∈4

rλp
∣∣x̄Ap (t)∣∣r−1∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳAq (t − σqp(t))
∣∣

≤ (r − 1)
n∑

p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣x̄Ap (t)∣∣r
+

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳq(t − σqp(t))
∣∣r , (26)

n∑
p=1

m∑
q=1

∑
B∈4

rλn+q
∣∣ȳAq (t)∣∣r−1∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t − τpq(t))
∣∣

≤ (r − 1)
n∑

p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣ȳAq (t)∣∣r
+

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄p(t − τpq(t))
∣∣r . (27)

From (25)-(27), we get

D+V(t) ≤ erϵt
[
r

n∑
p=1

λp(ϵ − dp)
∣∣x̄Ap (t)∣∣r

+ (r − 1)
n∑

p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣x̄Ap (t)∣∣r
+

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳq(t − σqp(t))
∣∣r

+
erϵσ

1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳAq (t)∣∣r
−

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳAq (t − σqp(t))
∣∣r]

+ erϵt
[
r

m∑
q=1

λn+q(ϵ − cq)
∣∣ȳAq (t)∣∣r

+ (r − 1)
n∑

p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣ȳAq (t)∣∣r
+

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄p(t − τpq(t))
∣∣r

+
erϵτ

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t)∣∣r
−

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t − τpq(t))
∣∣r].
(28)

Thus, we have

D+V(t)

≤ erϵt
[ n∑
p=1

λp

(
r(ϵ − dp) + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣
× Lg

q

∣∣)x̄Ap (t)∣∣r +
erϵσ

1 − µ1

n∑
p=1

m∑
q=1

λp
∣∣aA.B̄qp ∣∣Lg

q

∣∣ȳAq (t)∣∣r]
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+ erϵt
[ m∑
q=1

λn+q

(
r(ϵ − cq) + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)

×
∣∣ȳAq (t)∣∣r +

erϵτ

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

∣∣x̄Ap (t)∣∣r].
(29)

Based on condition (11), we can select a small constant ϵ > 0,
such that

λp

(
r(ϵ − dp) + (r − 1)

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

)
+

erϵτ

1 − µ2

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p < 0,

λn+q

(
r(ϵ − cq) + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)
+

erϵσ

1 − µ1

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q < 0.

(30)

Therefore, we have

D+V(t)

≤ erϵt
[ n∑
p=1

(
λp

(
r(ϵ − dp) + (r − 1)

m∑
q=1

∑
B∈4

×
∣∣aA.B̄qp ∣∣Lg

q

)
+

erϵτ

1 − µ2

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

)∣∣x̄Ap (t)∣∣r
+

m∑
q=1

(
λn+q

(
r(ϵ − cq) + (r − 1)

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

)

+
erϵσ

1 − µ1

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

)∣∣ȳq(t)∣∣r] < 0. (31)

Furthermore, V(t) ≤ V(0) for t ≥ 0. Hence

V(t) ≥ min
1≤s≤n+m

{λs}erϵt
{ n∑
p=1

∣∣x̄Ap (t)∣∣r +

m∑
q=1

∣∣ȳAq (t)∣∣r}.
(32)

Moreover, from (24), we have

V(0) ≤

n∑
p=1

λp

[∣∣x̄p(0)∣∣r +
1

1 − µ1

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣
× Lg

q

∫ 0

−σqp(0)

∣∣ȳq(s)∣∣rerϵ(s+σ )ds]
+

m∑
q=1

λn+q

[∣∣ȳq(0)∣∣r +
1

1 − µ2

n∑
p=1

∑
B∈4

∣∣bA.B̄pq ∣∣
× Kf

p

∫ 0

−τpq(0)

∣∣x̄p(s)∣∣rerϵ(s+τ )ds]
≤

n∑
p=1

λp
∣∣x̄p(0)∣∣r +

erϵσ

1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣

× Lg
q

∫ 0

−σqp

∣∣ȳq(s)∣∣rerϵsds+

m∑
q=1

λn+q
∣∣ȳq(0)∣∣r

+
erϵτ

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

×

∫ 0

−τpq

∣∣x̄p(s)∣∣rerϵsds
≤ max

1≤s≤n+m
{λs}

[
1 +

σerϵσ

1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

+
τerϵτ

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

]
×

∥∥(ϕA, ψA)T − (x∗, y∗)T
∥∥

= M∗
∥∥(ϕA, ψA)T − (x∗, y∗)T

∥∥, (33)

where

M∗
=

[
1 +

σerϵσ

1 − µ1

n∑
p=1

m∑
q=1

∑
B∈4

∣∣aA.B̄qp ∣∣Lg
q

+
τerϵτ

1 − µ2

n∑
p=1

m∑
q=1

∑
B∈4

∣∣bA.B̄pq ∣∣Kf
p

]
.

Setting M =

max
1≤s≤n+m

{λs}

min
1≤s≤n+m

{λs}
M∗ > 1. It is inferred from (32) and

(33) that for all t ≥ 0
n∑

p=1

∣∣x̄Ap (t)∣∣r+ m∑
q=1

∣∣ȳAq (t)∣∣r ≤M
∥∥(ϕA, ψA)T − (x∗, y∗)T

∥∥e−rϵt .
(34)

This means that the equilibrium point of NNs (7) is globally
exponentially stable. This completes this proof.

When we consider r = 2, Corollary (3.2) can be derived
by using Theorem (3.1).
Corollary 3.2: Let (H1)–(H3) hold, there exist constants

λp ∈ R+, λn+q ∈ R+ (p = 1, n; q = 1,m) such that
−λpdp+

m∑
q=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

2
+

m∑
q=1

∑
B∈4

λn+q
∣∣bA.B̄pq ∣∣Kf

p

2
<0,

−λn+qcq+
n∑

p=1

∑
B∈4

λn+q
∣∣bA.B̄qp ∣∣Kf

p

2
+

n∑
p=1

∑
B∈4

λp
∣∣aA.B̄qp ∣∣Lg

q

2
<0,

(35)

then the equilibrium point of NNs (7) is globally exponen-
tially stable.
Remark 3.3: Theorem (3.1) examines the global exponen-

tial stability criteria for Clifford-valued NNs by dividing
the original Clifford-valued NNs into multidimensional real-
valued NNs. It should be noted that the main results of this
study are related to Clifford-valued NNs.
Remark 3.4: In [30], the authors investigated the Sp-

almost periodic solutions of a fuzzy Clifford-valued cellular
NN model with time-varying delays. In [31], the authors
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examined asymptotic almost automorphic synchronization
criteria for neutral type fuzzy cellular NNs Clifford-valued
recurrent NNs with time delays. In [38], the authors analyzed
the global asymptotic stability criteria for Clifford-valued
NNs incorporating impulsive effects and time-varying delays.
However, no studies have investigated the stability of
Clifford-valued BAMNNs with time delays using the decom-
position method. Therefore, we investigated the global
exponential stability of Clifford-valued BAMNNs with time
delays using Lyapunov stability and system decomposition
method. In addition, the results proposed in this study are new
and differ from those in the existing literature [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39].
Remark 3.5: In this study, the proposed NNs (1) is more

general than those presented in previous studies; therefore,
there are significant differences between them. For example,
by setting the Clifford generators m as 0, 1, and 2, the NNs
(1) becomes a real-, complex-, and quaternion-valued NNs,
respectively.

IV. NUMERICAL EXAMPLES
This section presents an example of the effectiveness and
feasibility of the proposed method.
Example 1: For m = 2, the two neurons Clifford-valued

BAMNNs are considered as follows:

ẋ1(t) = −d1x1(t) + a11g1(y1(t − σ11(t)))
+a21g2(y2(t − σ21(t))) + u1,

ẋ2(t) = −d2x2(t) + a12g1(y1(t − σ12(t)))
+a22g2(y2(t − σ22(t))) + u2,

ẏ1(t) = −c1y1(t) + b11f1(x1(t − τ11(t)))
+b21f2(x2(t − τ21(t))) + v1,

ẏ2(t) = −c2y2(t) + b12f1(x1(t − τ12(t)))
+b22f2(x2(t − τ22(t))) + v2.

(36)

The Clifford generators are: e21 = e22 = e212 = e1e2e12 = −1,
e1e2 = −e2e1 = e12, e1e12 = −e12e1 = −e2, e2e12 =

−e12e2 = e1, x1 = x01e0 + x11e1 + x21e2 + x121 e12, x2 =

x02e0+x12e1+x22e2+x122 e12, y1 = y01e0+y11e1+y21e2+y121 e12,
y2 = y02e0 + y12e1 + y22e2 + y122 e12.
We also considered the following parameters

d1 = 2, d2 = 2,

c1 = 3, c2 = 3,

a11 = 0.2e0 + e1,

a12 = 0.1e0 + 0.3e2 − 0.6e12,

a21 = 0.05e0 − 0.2e2 + 0.4e12,

a22 = 0.1e0 + 0.1e1 + 0.05e12,

b11 = 0.3e0 + 0.01e1,

b12 = 0.1e0 + 0.1e2 + 0.02e2 − 0.3e12,

b21 = 0.05e0 − 0.3e2 + 0.05e12,

b22 = 0.2e0 + 0.2e1 + 0.05e12,

u1 = 0.3e0 + 0.1e1 − 0.2e12,

FIGURE 1. Time responses of the states x0
1 (t) , y0

1 (t) of the NNs (36).

FIGURE 2. Time responses of the states x1
1 (t) , y1

1 (t) of the NNs (36).

u2 = 0.1e0 − 0.3e1 + 0.1e2 − 0.4e12,

v1 = 0.3e0 + 0.1e1 − 0.1e12,

v2 = 0.2e0 + 0.1e1 + 0.1e2 − 0.2e12.

Let σ11(t) = σ21(t) = 0.5 + 0.2sint , σ12(t) = σ22(t) =

0.4 + 0.3sint , τ11(t) = τ21(t) = 0.6 + 0.1sint , and τ12(t) =

τ22(t) = 0.4 + 0.3sint . It is clear that 0 ≤ σ11 = σ21 ≤ 0.7,
0 ≤ σ12 = σ22 ≤ 0.7, 0 ≤ τ11 = τ21 ≤ 0.7, 0 ≤

τ12 = σ22 ≤ 0.7, and the time derivative can be obtained
as σ̇11(t) = σ̇21(t) = 0.2 cost , σ̇12(t) = σ̇22(t) = 0.3 cost ,
τ̇11(t) = τ̇21(t) = 0.1 cost , and τ̇12(t) = τ̇22(t) = 0.3 cost .
Moreover, the activation functions are chosen as g1(y1) =

g2(y2) = 0.5 tanh(y0)e0 + 0.5 tanh(y1)e1 + 0.5 tanh(y2)e2 +

0.5 tanh(y12)e12, f1(x1) = f2(x2) = 0.5 tanh(x0)e0 +

0.5 tanh(x1)e1 + 0.5 tanh(x2)e2 + 0.5 tanh(x12)e12. It is
obvious that It seems that the activation functions gq(·) and
fp(·) are satisfying hypothesis (H2) with L

g
1 = L

g
2 = 0.5 and

K
f
1 = K

f
2 = 0.5, respectively.

Further, it is easy to obtain aA.B̄11 = 1.2, aA.B̄12 = −0.2,
aA.B̄21 = 0.25, aA.B̄22 = 0.25, bA.B̄11 = 0.31, bA.B̄12 = −0.8,
bA.B̄21 = 0.2, bA.B̄22 = 0.45 and take r = 2, λn = 1, (n = 1, 2),
λ2+q = 1, (q = 1, 2). Using a simple calculation, we obtain

− rλ1d1 + (r − 1)
2∑

q=1

∑
B∈4

λ1|aA.B̄q1 |Lg
q

+

2∑
q=1

∑
B∈4

λ2+q|bA.B̄1q |K
f
1 < 0, q = 1, 2, (37)
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FIGURE 3. Time responses of the states x2
1 (t) , y2

1 (t) of the NNs (36).

FIGURE 4. Time responses of the states x12
1 (t) , y12

1 (t) of the NNs (36).

FIGURE 5. Time responses of the states x0
2 (t) , y0

2 (t) of the NNs (36).

− rλ2d2 + (r − 1)
2∑

q=1

∑
B∈4

λ2|aA.B̄q2 |Lg
q

+

2∑
q=1

∑
B∈4

λ2+q|bA.B̄2q |K
f
2 < 0, q = 1, 2, (38)

− rλ3c1 + (r − 1)
2∑

p=1

∑
B∈4

λ3|bA.B̄p1 |Kf
p

+

2∑
p=1

∑
B∈4

λp|aA.B̄1p |L
g
1 < 0, p = 1, 2, (39)

− rλ4c2 + (r − 1)
2∑

p=1

∑
B∈4

λ4|bA.B̄p2 |Kf
p

+

2∑
p=1

∑
B∈4

λp|aA.B̄2p |L
g
2 < 0, p = 1, 2. (40)

FIGURE 6. Time responses of the states x1
2 (t) , y1

2 (t) of the NNs (36).

FIGURE 7. Time responses of the states x2
2 (t) , y2

2 (t) of the NNs (36).

FIGURE 8. Time responses of the states x12
2 (t) , y12

2 (t) of the NNs (36).

Under the initial conditions ϕ1(t) = 0.2e0 − 0.2e1 − 0.7e2 −

0.6e12, ϕ2(t) = −0.6e0 + 0.2e1 + 0.2e2 + 0.4e12, ψ1(t) =

−0.4e0 + 0.5e1 + 0.8e2 + 0.4e12, and ψ2(t) = 0.7e0 −

0.5e1 − 0.3e2 − 0.5e12, the time responses of the states of
the NNs (36) were obtained using MATLAB, as shown in
Figures (1)-(8). From these figures (1)-(8), it can be seen that
the time response of the states of the NNs (36) converge to the
equilibrium point over time. This shows that all conditions in
Theorem (3.1) are satisfied; therefore, the NNs considered in
(36) have a unique equilibrium point that is globally expo-
nentially stable.

V. CONCLUSION
This study investigated the global exponential stability
problem for a class of Clifford-valued BAMNNs with time-
varying delays. We first decomposed the n-dimensional
Clifford-valued NNs into 2mn-dimensional real-valued NNs
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to avoid the inconvenience caused by the non-commutativity
of Clifford number multiplication. We then established new
sufficient conditions for the existence, uniqueness, and global
exponential stability of the equilibrium points for the consid-
ered networks using Lyapunov functions, homeomorphism
theory, and inequality techniques. Finally, the results pre-
sented in this paper are illustrated using a numerical example
accompanied by the simulation results.

The results of this study can be used to explore various
dynamics of Clifford-valued BAMNNs, including finite-
time stability, state estimation, and synchronization. Thus,
we will examine finite-time stability for the following
Clifford-valued BAMNNs with impulsive effects

ẋp(t) = −dpxp(t) +

m∑
q=1

aqpgq(yq(t − σqp(t)))

+up, t ≥ 0, t ̸= tk , p = 1, n,
△xp(tk ) = αk (xp(tk )), t = tk , k = 1, 2, . . . , p = 1, n,

ẏq(t) = −cqyq(t) +

n∑
p=1

bpqfp(xp(t − τpq(t)))

+vq, t ≥ 0, t ̸= tk , q = 1,m,
△yq(tk ) = βk (yq(tk )), t = tk , k = 1, 2, . . . , q = 1,m.
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