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ABSTRACT Early diagnosis of stroke type by imaging is one of the most important tasks for stroke patients.
In this article, we propose a new approach to reconstruct the brain image with high accuracy and quality.
In this approach, first we use the Born iterative method to reconstruct the brain image. Then by comparing
this image with a set of MRI-based brain images, using structural similarity index measure criterion,
we choose the best one as reference image. Finally, we reconstruct the brain image by distorted Born iterative
method or Born iterative method along with generalized Tikhonov regularization using the reference image.
The reconstructed images are compared with those that obtained based on Tikhonov regularization. These
comparisons demonstrate that the accuracy and quality of images in the proposed approach are significantly
increased.

INDEX TERMS Microwave imaging, generalized Tikhonov regularization, brain stroke classification.

I. INTRODUCTION
One of the main causes of death and disability worldwide
is brain stroke [1], [2]. It can be divided into hemorrhagic
stroke, which is bleeding in the brain, and ischemic stroke,
in which blood flow is limited by a blood clot. The majority
of stroke cases–about 80%–are ischemic and about 20% of
them are hemorrhagic. Within 3–4.5 hours following the
onset of stroke symptoms, the clinical choice to provide a
proper action should be made [1], and it is based on imaging
techniques like computed tomography (CT) and magnetic
resonance imaging (MRI) [2].

Due to a number of benefits over more traditional imaging
modalities like CT or MRI, microwave imaging (MWI) is a
method that has recently gained growing interest. It offers
a non-intrusive evaluation of the structural and functional
state of biological tissues. It uses nonionizing radiation in
the low (GHz) part of the electromagnetic spectrum and
hence the patient is safe. Additionally, the technology may
be made small and portable, making it possible to use
MWI technology in mobile applications. The usability and
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comparatively inexpensive price are further benefits. MWI
is only constrained by the amount of time required for
image reconstruction because the data acquisition time of
an MWI device is in the range of milliseconds to a few
seconds. Finally unlike MRI, it is a silent technology and
suitable for people who are claustrophobic. The relatively
weak spatial resolution, which is related to the frequency
spectrum used, is a disadvantage. Due to the substantial
attenuation of the brain tissues, this frequency spectrum
is particularly constrained for applications involving brain
imaging. However, MWI, a novel imaging modality, can be
a useful method addition to already well-recognized imaging
technologies, like the aforementioned CT or MRI [1], [3].

Recently, many researches for reconstruction of brain
images and detection of tumor and stroke using microwave
imaging have been done [4], [5]. For example, in [2]
for brain stroke detection and monitoring, a helmet with
177 waveguide antennas has been fabricated. Reconstructed
images using finite difference time domain and finite element
methods were related to a 3D simple phantom. In this
article the hemorrhagic stroke is well observed however
the detection of the ischemic stroke is difficult. In [8],
to reconstruct the brain images quickly, the computational
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domain has been divided into several sections for parallel
computation and a high-performance computing machine has
been applied. Although the reconstructed time for 3D brain
phantom reduced to 94 seconds from 2 hours, the quality of
the reconstructed images was low. In [6], a combination of
the contrast source inversion method and the finite element
method has been proposed to reconstruct the head images.
The authors have presented a novel approach for discretizing
contrast sources that simplifies the algorithm implementation
and improves the accuracy of computed quantities. In [7], the
authors have implemented a non-linear microwave imaging
approach using DBIM with GPU-accelerated FDTD and
compare 2-D and 3-D microwave tomography implementa-
tions for head imaging and stroke detection in a numerical
head phantom.

The inverse scattering problems are ill-posed, hence the
regularization method should be used. Applying a proper
regularization method can improve the quality of images.

Reference [9] introduces a new regularization algorithm
based on the Newton-Conjugate-Gradient Method in Lp

Banach Spaces for brain imaging. This algorithm improves
the convergence properties and the accuracy of reconstructed
images, however it needs to a prior information. In [10], the
inverse scattering problem is solved in a variable exponent
Lebesgue space Lp(·) (1 < p < 2) for brain images. In this
article a mechanism to determine the value of p according to
the pixel location of the corresponding image (inside the brain
or outside of it) is introduced and the reconstruction of brain
image with hemorrhagic stroke is done. In [11], Winters et
al. utilize both ℓ1 and ℓ2 penalties to regularize the system
of linear equations in each iteration of the distorted Born
iterative method (DBIM). The effect of the ℓ2 penalty is to
stabilize the results while ℓ1 is used for sparsity. In [12],
a comparison of an enhanced DBIM and the multiplicative-
regularized (MR) contrast source inversion (CSI) method is
done. In the enhanced DBIM, two different regularizations,
multiplicative and laplacian regularizations, are utilized.
The result of this comparison shows that the result of
these regularization methods are the same however the
implementation and computational complexity of MR-CSI
is better than those of enhanced DBIM. In [13] and [14],
a new regularization term is introduced for DBIM which is
related to the induced current instead of contrast. Using this
regularization term in [13] leads to more robustness against
noise compared to DBIM with Tikhonov regularization.
In [14], using an approximation in the regularization term
of [13], leads to reduction of computation burden in the 3D
inverse scattering problems. In [15] a new integral equation
(NIE) is proposed to tackle the severe ill-posedness and
strong nonlinearity in inverse scattering problems. In [16] a
hybrid regularization technique is utilized to solve this NIE.
Using this proposed method, the image of strong scatterer
can be reconstructed. In [17],the authors propose a fast 3D
algorithm for solving the inverse scattering problem that
does not need the regularization method. In this algorithm a
smooth basis function is used which reduces the number of
variables for mapping the permittivity.

The tissue of brain is complex. Hence in the problem
of reconstructing its image for high accuracy stroke clas-
sification, it is necessary to use a proper method that can
reconstruct such complex medium. In this paper, we propose
a new approach for solving the inverse scattering problem
based on the generalized Tikhonov regularization in conjunc-
tion with BIM andDBIM. This approach leads to high quality
brain images reconstruction for stroke classification. In this
approach, first we use BIM with Tikhonove regularization
to reconstruct brain images from scattering data. Then we
compare it with a set of MRI-based brain images in order to
choose a suitable reference image. Finally we reconstruct the
brain image using BIM or DBIM with generalized Tikhonov
regularization based on this reference image.

The proposed approach has two contributions. First appli-
cation of the generalized Tikhonov regularization method in
brain microwave imaging, and second, the selection proce-
dure of the reference image for the generalized Tikhonov
regularization operator.

This paper is organized as follows. In the second
section, we introduce the electromagnetic scattering problem.
Tikhonov regularization method for solving the ill-posed
problem and two quantitatively method, BIM and DBIM, are
described in this section. In the third section, we introduce our
proposed approach that utilizes a special type of generalized
Tikhonov regularization in BIM and DBIM in order to
reconstruct the high quality images. In the fourth section
we present numerical results and compare the reconstructed
images with those of obtained by BIM and DBIM with
Tikhonov regularization.

II. ELECTROMAGNETIC SCATTERING
In the scattering theory, we have the Lippmann-Schwinger
integral equation in 2D medium [18] as follows

E tot (r) = E inc(r) − ω2µε0

∫
Di

Gb(r, r ′)χ (r ′)E tot (r ′)dr ′ (1)

In (1), the second term on the right is the scattered field
and is composed of an integral over the investigation domain
Di. Gb(r, r ′) is the background Green’s function (i.e. Green’s
function of the domain without the scatterers). χ (r) =

εr (r) − εbr is the contrast function that is the difference
between the investigation domain and background relative
permittivities. E tot (r) is the total field (i.e. the electric field in
the medium with scatterers) and E inc(r) is the incident field
in the background medium.

Equation (1) can bewritten in two different media. The first
medium is the investigation domain, and the second one is
the measurement domain, which is the medium composed of
observation points. The equation written in the investigated
domain r ∈ Di is the state equation (2), and the equation
written in the measurement domain r ∈ Dm is the data
equation (3).

E tot (r) = E inc(r) − ω2µε0

∫
Di

GD(r, r ′)χ(r ′)E tot (r ′)dr ′

(2)
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Escat (r) = −ω2µε0

∫
Di

Gs(r, r ′)χ (r ′)E tot (r ′)dr ′ (3)

GD(r, r ′) and Gs(r, r ′) are the Green’s functions from the
investigation domain to the investigation domain and the
measurement domain, respectively.

In forward scattering problem, first we calculate the total
field from (2) and then apply it in (3) to acquire the scattering
fields from an object. The inverse scattering problem is
intrinsically non-linear and ill-posed. Non-linearity can be
resolved using iterative methods, however to resolve the
ill-posedness of the problem, it is necessary to utilize regu-
larization methods. In the next subsections, we present the
Tikhonov and generalized Tikhonov regularization methods
and then the BIM and DBIM using Tikhonov regularization.

A. TIKHONOV AND GENERALIZAD TIKHONOV
REGULARIZATION METHODS
Tikhonov regularization is the most commonly used method
for regularizing ill-posed problems [18]. If the matrix
equation ¯̄Ax̄ = b̄ is an ill-posed problem, in the Tikhonov
regularization, we should solve the following optimization
problem

Min
x

∥∥∥ ¯̄Ax̄ − b̄
∥∥∥2 + λ∥x̄∥2 (4)

In the (4), λ is the regularization parameter and can
be determined by several methods such as L-Curve or
Generalized Cross Validation methods [18]. The closed form
of the solution of (4) is

x̄ =

(
¯̄A
H

¯̄A+ λ ¯̄I
)−1

¯̄A
H
b̄ (5)

In generalized Tikhonov regularization method, we should
solve the following optimization problem

Min
x

∥∥∥ ¯̄Ax̄ − b̄
∥∥∥2 + λ

∥∥∥ ¯̄Lx̄
∥∥∥2 (6)

In (6), L is a regularization operator. The closed form of
the solution of (6) is

x =

(
¯̄A
H

¯̄A− λ ¯̄L
H

¯̄L
)−1

¯̄A
H
b̄ (7)

B. BORN ITERATIVE METHOD
BIM is an iterative method that utilizes the Born approxima-
tion at each iteration [19]. At the kth iteration of this method,
first the total field E totk−1(r) is computed for the contrast
function obtained in the previous iteration, χk−1(r), using the
state equation (2). Then by substituting E totk−1(r) in the data
equation (3) and using a regularization method, the inverse
problem is solved to achieve χk (r). For the first iteration,
χ0(r) is chosen arbitrarily.

Matrix form of (2) and (3) are as follows, respectively

Ē totk−1 = Ē inc +
¯̄GD · ¯̄χk−1 · Ē totk−1 (8)

Ēscat =
¯̄Gs · ¯̄χk · Ē totk−1 (9)

For solving (9) using Tikhonov regularization method, the
following optimization problem should be solved

Min
¯̄χ

Ni∑
i=1

∥∥∥Ēscat,i − ¯̄Gs · ¯̄χ · Ē tot,ik−1

∥∥∥2 + λ
∥∥ ¯̄χ
∥∥2 (10)

in which Ni is the number of transmitters. The closed form of
the solution of (10) is as follows

¯̄χ =

( Ni∑
i=1

¯̄Gs · Ē tot,ik−1

)H
·

( Ni∑
i=1

¯̄Gs · Ē tot,ik−1

)
+ λ ¯̄I

−1

·

( Ni∑
i=1

¯̄Gs · Ē tot,ik−1

)H
·

( Ni∑
i=1

Ēscat,i
) (11)

C. DISTORTED BORN ITERATIVE METHOD
DBIM is an iterative method that is similar to BIM, except
that in DBIM the the effective inhomogeneous background
Green’s function is used that is updated at each iteration [20].
In this method, at the kth iteration, the difference of the
contrast functions at the current and previous iteration
δχk−1 = χk − χk−1 is reconstructed. The state equation in
DBIM is the same as the BIM but the data equation is as
follows

Escat (r) = −ω2µε0

∫
Di

Gs(r, r ′)χk−1(r ′)E totk−1(r
′)dr ′

− ω2µε0

∫
Di

Gbsk−1(r, r
′)δχk−1(r ′)E totk−1(r

′)dr ′

(12)

In (12), the first term on the right is the scattered field
caused by χk−1 and the second term is the scattered field
caused by δχk−1 in which the background medium is related
to χk−1. Thematrix form of the data equation (12) is as follow

Ēscat =
¯̄Gs · ¯̄χk−1 · Ē totk−1 +

¯̄Gbsk−1 · δ ¯̄χk−1 · Ē totk−1 (13)

In (13), the inhomogeneous background Green’s function
¯̄Gbsk−1 and the total field calculated for ¯̄χk−1, Ē totk−1, are as
follows [13], [18]

¯̄Gbsk−1 =
¯̄Gs ·

(
¯̄I − ¯̄χk−1 ·

¯̄GD
)−1

(14)

Ē totk−1 =

(
¯̄I − ¯̄χk−1 ·

¯̄GD
)−1

· Ē inc (15)

For solving (13) using Tikhonov regularizationmethod, the
following optimization problem should be solved

Min
δ ¯̄χ

Ni∑
i=1

∥∥∥∥∥ Ēscati −
¯̄Gs · ¯̄χk−1 · Ē tot,ik−1

−
¯̄Gbsk−1 · δ ¯̄χ · Ē tot,ik−1

∥∥∥∥∥
2

+ λ
∥∥δ ¯̄χ

∥∥2 (16)

and the closed form of the solution of (16) is as follows

δ ¯̄χ

=

( Ni∑
i=1

¯̄Gbsk−1 · Ē tot,ik−1

)H
·

( Ni∑
i=1

¯̄Gbsk−1 · Ē tot,ik−1

)
+ λ ¯̄I

−1
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·

( Ni∑
i=1

¯̄Gbsk−1 · Ē tot,ik−1

)H

·

( Ni∑
i=1

Ēscat,i − ¯̄Gs · ¯̄χk−1 · Ē tot,ik−1

)
(17)

III. PROPOSED APPROACH
Our proposed approach is composed of three steps: first,
we reconstruct the brain image by the BIM with Tikhonov
regularization method. Then this image is compared with a
set of MRI-based brain images using the structural similarity
index measure (SSIM) [21] criterion in order to choose a
most similar image to the original profile as reference image.
Finally, we use the BIM or DBIM with the generalized
Tikhonov regularizaion and reference image in order to
reconstruct the brain images. Fig. 1 shows the flowchart of
the proposed approach.

In the generalizad Tikhonov regularization for BIM,
we utilize the regularization operator as follow

L = x − xr (18)

that xr is the reference image. Hence for solving (9) by the
regularization operator (18), we should solve the following
optimization problem

Min
χ

Ni∑
i=1

∥∥∥Ēscat,i − ¯̄Gs · ¯̄χ · Ē tot,ik−1

∥∥∥2 + λ
∥∥ ¯̄χ − ¯̄χ r∥∥2 (19)

and the closed form of the solution of (19) is

χ =

( Ni∑
i=1

¯̄Gs · Ē tot,ik−1

)H
·

( Ni∑
i=1

¯̄Gs · Ē tot,ik−1

)
+ λ ¯̄I

−1

·

( Ni∑
i=1

¯̄Gs · Ē tot,ik−1

)H
·

( Ni∑
i=1

Ēscat,i
)

+ λ ¯̄χ r

 (20)

In the generalizad Tikhonov regularization for DBIM,
we utilize the regularization operator as follow

L = x − xp (21)

in which xp = mxr . Hence the solution of (13) using the
regularization operator (21), can be obtained by solving the
following optimization problem

Min
δ ¯̄χ

Ni∑
i=1

∥∥∥∥∥ Ēscati −
¯̄Gs · ¯̄χk−1 · Ē tot,ik−1

−
¯̄Gbsk−1 · δ ¯̄χ · Ē tot,ik−1

∥∥∥∥∥
2

+ λ
∥∥δ ¯̄χ − mxr

∥∥2
(22)

and the closed form of the solution of (22) is as follows

δχ

=

( Ni∑
i=1

¯̄Gbsk−1 · Ē tot,ik−1

)H
·

( Ni∑
i=1

¯̄Gbsk−1 · Ē tot,ik−1

)
+ λ ¯̄I

−1

FIGURE 1. The flowchart of the proposed approach.

·

( Ni∑
i=1

¯̄Gbsk−1 · Ē tot,ik−1

)H

·

(( Ni∑
i=1

Ēscat,i − ¯̄Gs · ¯̄χk−1 · Ē tot,ik−1

)
+ λmxr

)
(23)

In (22), if m is small, this regularization is similar to
Tikhonov one and if m is large, this approach can not
reconstruct the brain image. The best value for m is a number
near to zero and can be obtained with trail and error.

IV. RESULTS AND DISCUSSION
In this section, we reconstruct the 2D brain images with
stroke at 0.85 GHz using the proposed approach. The object
is a brain phantom from ‘‘BrainWeb’’ database [22], [23]
obtained from realistic 3D MRI images of 20 healthy person.
Each 3D images consist of 362 two-dimensional images.
Each pixel of these images is related to a specific tissue.
We replace the value of pixels with relative permittivity and
conductivity coefficients at 0.85 GHz [24]. The investigation
domain is a square with a side length of 0.2 m and is
composed of 1600 pixels. The head phantom which is
embedded in a lossless matching medium with relative
permittivity 44, is indefinitely long and non-magnetic. The
frequency of solving the scattering problem is 0.85 GHz
and the object is illuminated by TM fields. Transmitters are
24 line sources that located on a circle with a radius of 0.1 m.
The number of observation points are 24 and located exactly
on 24 transmitters.

We choose the section 220 from the phantom number 04 as
the object. For modeling the hemorrhagic stroke, we use the
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FIGURE 2. Reconstruction of brain images with four different methods and SNR = 30dB for section 220 from phantom number 04. The first
column is the original profile, the second column is images obtained by BIM with the Tikhonov regularization method, the third column is images
obtained by BIM with the generalized Tikhonov regularization method, the forth column is images obtained by DBIM with the Tikhonov
regularization method, and the fifth column is images obtained by DBIM with the generalized Tikhonov regularization method. (a) and (b) are
relative permittivity and conductivity for hemorrhagic stroke, respectively. (c) and (d) are relative permittivity and conductivity for ischemic stroke,
respectively.

relative permittivity and conductivity of blood at frequency
0.85 GHz. The ischemic stroke is modeled by a medium that
its relative permittivity and conductivity are 20% less than
those of healthy brain tissue.

The scattering fields, which obtained numerically by
Moment Method, are summed with white Gaussian noise.
The average of this noise is zero and its standard deviation σ

is obtained from the following relationship according to the
desired SNR value

SNR = 10log10

∥∥Escat∥∥2
2NiNrσ 2 (24)

Ni and Nr are the number of transmitters and observation
points, respectively.

The reference image for generalized Tikhonov is selected
from a dataset composed ofMRI images of 15 different heads
which are obtained from BrainWeb database. These images
are corresponding to phantom numbers 38, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, and 54.

TABLE 1. The SSIM and NRMSE for reconstructed images of phantom
number 04 section 220 with hemorrhagic stroke and 30dB SNR.

In Figs. 2 and 3, the reconstructed images are depicted with
two different SNR levels of 30dB and 20dB, respectively.
The first column is the original profile and the second to
fourth columns represents the brain images obtained by
BIM with Tikhonov regularization (BIM-Tikh), BIM with
generalized Tikhonov regularization (BIM-GenTikh), DBIM
with Tikhonov regularization (DBIM-Tikh) and DBIM
with generalized Tikhonov regularization (DBIM-GenTikh),
respectively. The number of iteration in all of these methods
is ten.

For both relative permittivity and conductivity images, two
comparison criteria, SSIM and normalized root mean square

73374 VOLUME 11, 2023



S. S. S. Mousavi, M. S. Majedi: Quantitative Microwave Imaging Approach for Brain Stroke Classification

FIGURE 3. Reconstruction of brain images with four different methods and SNR = 20dB for section 220 from phantom number 04. The first
column is the original profile, the second column is images obtained by BIM with the Tikhonov regularization method, the third column is images
obtained by BIM with the generalized Tikhonov regularization method, the forth column is images obtained by DBIM with the Tikhonov
regularization method, and the fifth column is images obtained by DBIM with the generalized Tikhonov regularization method. (a) and (b) are
relative permittivity and conductivity for hemorrhagic stroke, respectively. (c) and (d) are relative permittivity and conductivity for ischemic stroke,
respectively.

TABLE 2. The SSIM and NRMSE for reconstructed images of phantom
number 04 section 220 with ischemic stroke and 30dB SNR.

error (NRMSE) are computed and their values are reported
in Tables 1 - 4. The NRMSE for relative permittivity and
conductivity is obtained by (25).

NRMSE =

√√√√√√√√
M∑
i=1

(xr (ri) − xe (ri))2

M∑
i=1

xe(ri)2
(25)

In Eq. (25), xr and xe are the reconstructed and the exact
values, respectively andM is the number of image pixels.

TABLE 3. The SSIM and NRMSE for reconstructed images of phantom
number 04 section 220 with hemorrhagic stroke and 20dB SNR.

TABLE 4. The SSIM and NRMSE for reconstructed images of phantom
number 04 section 220 with ischemic stroke and 20dB SNR.

As seen in Figs. 2 and 3 and Tables 1 - 4, the
proposed approach leads to the better quality for the
reconstructed images and hence an improvement in the stroke
classification.
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V. CONCLUSION
Identifying the type of brain stroke is a realistic and vital
issue. Microwave imaging techniques that are affordable and
portable are one of the newest techniques for diagnosis.
In this paper, we propose a new approach to reconstruct
brain images using generalized Tikhonov regularization.
This approach composed of three step. First using BIM
with Tikhonov regularization method, the brain image is
reconstructed. In the second step we choose a reference image
by comparing the reconstructed image in the previous step
with a MRI-based brain images set using SSIM criterion.
At the last step we reconstruct the brain image by DBIM or
BIM with generalized Tikhonov regularization method and
the reference image. For verification, this approach is applied
for two different SNRs 20dB and 30dB. The reconstructed
images are depicted and the results are compared with
original profile by two criteria: NRMSE and SSIM. SSIM
and NRMSE, for relative permittivity and conductivity have
improved at least 0.1 and about 0.03, respectively. This
comparison shows the reconstructed images have better
quality and accuracy.
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