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ABSTRACT Text classification is a classical task in natural language processing. Prior traditional text
classification methods rely on manually extracted features to a great extent, which are easily influenced
by human subjectivity. Some existing text classification methods based on the artificial neural networks
sometimes neglect the contextual semantic relationships of discontinuous word sequences, resulting in poor
learning results. To alleviate these problems, we propose an attention-based gated graph neural network
in the framework of coupled P systems (CPGANN) to automatically extract feature representations of
nodes. The gating unit with attention is introduced to aggregate neighbor information to capture context
semantic relations, and effectively alleviate the long-term dependence on discontinuous words. In order to
obtain more discriminative nodes for classification, the attention mechanism is employed in CPGANN to
extract keyword nodes before readout to aggregate subgraph representations. Extensive experiments on four
real-world datasets demonstrate that CPGANN outperforms all other state-of-the-art baseline algorithms.

INDEX TERMS Attention mechanism, graph neural network, P systems, text classification.

I. INTRODUCTION
Deep learning has made great progress in some tasks such
as image processing [1], [2], [3], [4], speech recogni-
tion [5], and semantic understanding [6], [7] by dealing with
Euclidean data distributed over a high-dimensional feature
space through neural networks. In this process, deep learning
methods rely heavily on the features extracted by neural net-
works. In traditional machine learning methods, features are
often extracted by experienced experts. Nevertheless, features
are automatically extracted by artificial neural networks in
deep learning methods that require less manual intervention
by contrast. Consequently, deep learning is becoming more
and more popular in practical applications for the past few
years.
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However, there exists a large amount of complex
non-Euclidean data in the real world, such as graph data,
manifold data, etc. Among them, graph data is a kind of non-
linear data consisting of quite a few objects and relationships,
which can present the complex relationships between entities
in the real world more accurately. Due to its flexibility, graph
data has been applied to node classification [7], [8], link
prediction [9], [10], [11], text classification [12], cluster-
ing [13], [14], and many other areas. Deep learning methods
have been widely utilized in recent years to extract features
of non-Euclidean spatial data. As a result, Graph Neural
Network (GNN) [15] has attracted more and more attention
from researchers as a new research hotspot.

Bruna et al. first applied convolutional neural networks
to graphs and proposed the Graph Convolution Network
(GCN) [16] by transforming the convolution operator, which
reduced the computational complexity of GNNmodels. Since
then, researchers have applied the gating mechanism to GNN
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based on GRU [17], and Li et al. [18] proposed Gate Graph
Neural Network (GGNN) to process sequence data. GGNN
considers not only the relationship between the current node
and its previous node but also the connection between multi-
ple neighbor nodes and the current node. Velikovi et al. [19]
introduced attention mechanism into GNN and proposed
Graph Attention Network (GAT). Its attention mechanism
can give higher weight to nodes and edges that are more
related to neural network tasks, and improve the effectiveness
of training and the accuracy of testing. The gating mechanism
and attention mechanism have been also successfully applied
to many real problems of GNN nowadays. Wu et al. [20] pro-
posed a fused gated graph convolutional network model for
rumor detection research, which can effectively highlight the
importance of source post information. In the task of machine
translation [21], the importance of different words in the
input sentence is reflected by the mechanism of distributing
attention weights.

Text classification is one of the most fundamental tasks in
natural language processing. The traditional shallow learning
model is adopted to deal with the text classification problem
mainly by ignoring the grammar and order of some texts and
representing a text or paragraph with some specific symbols.
Such models have few parameters and good domain adapt-
ability. For instance, the bag of words model [22] employs a
set of disordered sequences of words to express a text or a
document, puts all the words in the whole document set into
the bag, and then arranges them disordered.

In information retrieval and text mining, TF-IDF [23] is a
commonly used weighting technique to evaluate the impor-
tance of words in a single document or whole corpus, yet
only adopting word frequency to measure the importance of
words seems to be defective. These shallow learning methods
rely on manually acquired text features to a great extent. With
the explosive growth of information, manual annotation data
has become time-consuming and easily susceptible to the
subjective consciousness of people. The other type of deep
learning model is more complex in structure, which does not
rely on the manually extracted text features, and can directly
model the text content. For example, Kim et al. [24] proposed
to use CNN for text classification based on word vector
representation. Johnson et al. [25] proposed a text classifi-
cation model based on LSTM adopting supervised learning
and semi-supervised pre-trainingmethod. Yao et al. [12] con-
structed a heterogeneous graph based on global relationships
between text and word for semi-supervised text classifica-
tion on GCN. But it did not consider fine-grained text-level
word interactions, resulting in insufficient capture of seman-
tic information.When there aremore nodes and larger graphs,
the full graph update calculates the entire corpus that contains
too much redundancy, increasing the time complexity and
requiring larger memory space.

Membrane computing was formally proposed in 1998 by
Păun [26], also known as P systems. It belongs to a branch
of natural computing, which is a biological computational
model abstracted according to biological structure and

function. In recent years, it has attracted the attention of
many scholars because of its characteristics of distributed,
non-deterministic, and parallelism. According to different
structures and functions, cell-like P system [27], tissue-
like P system [28], and neural-like P system [29] are three
categories of P systems.

At present, the current research on P systems mainly
focuses on theory and application. Theoretically, various
computational models are mainly based on the structural
characteristics of biological cells and analyze their computa-
tional performance. Wu et al. [30] demonstrated unpolarized
cell-like P systems with active membranes, which solves the
NP-hard problems from a new perspective and significantly
improves the computing capability. The notion of collabora-
tion has been presented in tissue-like P systems [31], where
the rules were separately invoked during computation. Addi-
tionally, the major application of P systems was to use the
designed membrane calculation model to solve some practi-
cal problems. Wu et al. [32] defined anti-pulse rules in SN P
systems where synapses can change pulses into anti-pulses
or anti-pulses into pulses. The results showed that the form
of pulse rules is sufficient for Turing generality for ASN
P systems with synaptic rules. In terms of applications, the
designed P systems model was mainly used to solve some
practical problems. Bernardini et al. [33] proposed a P sys-
tems model of a population-sensing regulatory network of the
bacterium Vibrio fischeri, simulating the cancer pathogenesis
process with cell-like P systems. Liu et al. [34] combined
the simple ability of rough set attributes with the apoptosis
mechanism of biological neurons in the P system effectively
for the first time, and designed an apoptosis algorithm of
conditional neurons to remove error messages.

In the era of big data, the amount of textual data on the net-
work is growing day by day. As the most widely distributed
and data-rich information carrier, text contains rich semantic
and contextual information. The purpose of text classification
is to organize and categorize text resources. At the same time,
it is also a key link to solve the text information overload
problem. Therefore, it is especially important to adopt an
artificial neural network model to organize and manage the
massive text data scientifically. Although the text features that
can be extracted by artificial neural networks have been more
comprehensive, they are all in the case of a single task, and
the situation is less effective if the features are extracted under
multiple tasks.

Neural network approximation optimization algorithm
based on membrane systems is a hot research direction in
membrane computing applications at present, but the research
is mostly focused on theoretical aspects. Therefore, a novel
coupled P system is constructed fusing the structure of
cell-like P systems and tissue-like P systems to alleviate
the above deficiencies. It is abstracted from the structure
of biological cells and tissues, nesting the structure of
cells within tissues and adopting hierarchical computational
models within the cell to extract features in parallel. Further-
more, the attention-based graph neural network is combined
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with the coupled P systems. The proposedmodel was inspired
by biological structures and abstracted a new computational
model, while simultaneously taking advantage of the great
parallelism computational properties of the P systems as
well as the way of graph neural network processes the data.
Moreover, the neural network algorithms can run within the
framework of this model. In this way, we can employ the con-
textual semantic relations captured by graph neural networks
to attain more precise semantic node features and filter out
more meaningful words for text classification tasks. Thus,
CPGANN has a great degree of advantage in dealing with
multi-task parallelism problems.

The major contributions of this paper are as follows.
1) In this paper, the structures of cells and tissues in

biology are integrated to propose a novel coupled P
system that nests cell-like P systems within tissue-like
P systems. It is combined with an improved graph
neural network so that the neural network model can
run within the P systems framework to improve the
computational effectiveness by exploiting the great par-
allelism characteristic of P systems.

2) We propose an Attention Gated Feature Extraction
(AGFE) module to perform feature extraction sep-
arately. Moreover, different numbers of neighboring
nodes’ information can be integrated by stacking mul-
tiple AGFE layers. For the sake of obtaining a more
accurate representation of the subgraph and reduc-
ing the computational effort, an attention mechanism
before readout is introduced to extract keyword nodes
that are more discriminating for the classification task.

3) Experiments are conducted on four real-world datasets
to validate the effectiveness of CPGANN, and the
results prove that our method outperforms all other
baselines.

4) The newly proposed coupled P systems was abstracted
from real cellular communication mechanism, so it has
practical significance in biology. Since the information
transmission mechanism in neural networks is similar
to the coupled P systems, CPGANN is an innovative
combination that can simultaneously take advantage
of both to solve multi-task parallel classification task
problems.

The remainder of the article is distributed as follows.
In Section II, the related work of this paper will be introduced,
and the cell-like P systems and tissue-like P systems will
be defined specifically in this part. Section III details the
process of CPGANN. The experimental specifics and anal-
ysis of results will be demonstrated in Section IV. Finally,
Section V summarizes the paper and gives a prospection of
future works.

II. RELATED WORK
A. CELL-LIKE P SYSTEMS
The cell-like P systems composed of membrane structure,
objects, and rules was the first to be proposed among all P
systems [27]. It mimics the structure and function of a cell

in biology, whose inner region is split into different small
regions by membrane. Fig.1 demonstrates the fundamental
structure of cell-like P systems. The exosphere membrane
called the skin membrane, isolates cells from their surround-
ings. The elementary membrane refers to the one that doesn’t
contain other membranes inside, otherwise, they are non-
elementary membranes.

The formal definition of the cell-like P systems is as
follows:

Π = (O,H , µ,wi,Ri, i0ut) , (1)

where
1) O represents the alphabet with elements containing all

the objects;
2) H is the collection of membrane labels;
3) µ indicates the membrane structure;
4) wi means the multiple set of objects;
5) Ri refers to the finite set of rules contained within the

membrane;
6) i0ut stands for the output cell.

B. TISSUE-LIKE P SYSTEMS
The tissue-like P systems are proposed based on the way
of object transmission and communication by cell group
structure in tissues [28]. The basic structure of the tissue-like
P systems is expressed in Fig.2 Cell 0 is the input cell,
containing initial objects. Cell n is the output cell, storing
calculation results. Other cells execute evolutionary rules for
message transmission. The rules are triggered only when the
required trigger conditions for the rules are met.

The following is the formal description of the tissue-like P
systems.

Π = (O, σ1, · · · , σn, syn, iout) , (2)

where
1) O represents the alphabet with elements containing all

the objects;
2) σ1, · · · , σn means n cells in the P systems, which is

defined as follows:

σi =
(
Qi, si,0,wi,0,Pi

)
, 1 ≤ i ≤ n

where
Qi stands for finite state set;
si,0 ∈ Qi indicate the initial state;
wi,0 ∈ O∗ refers to the multiset of initial objects;
Pi represents a finite set of all rules of the P

systems;

3) syn ⊆ {0, 1, · · · , n} × {0, 1, · · · , n} refers to the
synapses between cells to transform the information;

4) iout represents the output cell.

C. PRELIMINARY PREPARATIONS
Given an original document, we first need to construct the
document into a graph structure for subsequent operations.
Each document generates a graph, with each unique word
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FIGURE 1. The basic structure of the cell-like P systems.

FIGURE 2. The basic structure of the tissue-like P systems.

as a vertex and co-occurrence relationships between words
as edges. There is a co-occurrence relationship if the words
appear at the same time within an invariant size of the sliding
window, i.e., there is an edge between two vertices. Oth-
erwise, there is no co-occurrence relationship, i.e., no edge
between two vertices. In this article, the sliding window size
defaults to 3. We define the constructed graph asG = (V ,E).
V is the collection of vertices and E is the collection of edges
between vertices. The adjacency matrix of graphG is defined
as A. Aij = 1 if there is an edge eijϵE between nodes vi and vj,
otherwise Aij = 0.D is the diagonal matrix of graphG, where
Dii = 6jAij. Â = D−

1
2AD−

1
2 is the symmetric normalized

adjacency matrix.
In addition, we need to adopt some traditional methods

to preprocess the text before we input it into the model for
training. Thesemethods include stopwords removal [35], tok-
enization [36] and so on, which will save memory space and
increase computational efficiency. The feature representation
h of the word is defined as the initialization input of the node
embedding, which is initialized by the feature matrix X of the
word. Then, after input h to the attention-gating component
in corresponding cells, the whole coupled P system begins to

propagate the information. The neighbor features are aggre-
gated to extract the features of each central node.

III. METHOD
The overall framework of the improved gated graph neural
network is expressed in Fig.3. The whole process consists of
three steps which are Construct Graph Structure, Attention
Gating Feature Extraction (AGFE), and Readout. The details
of each component will be described in subsequent content.

A. IMPROVED GATED GRAPH NEURAL NETWORK BASED
ON COUPLED P SYSTEMS
The coupled P systems are abstracted from biological mecha-
nisms that integrate the structures of tissues and cells, which
further nest the cell-like P systems within the tissue-like P
systems. In this paper, we put the improved graph neural
network model process into the framework of the coupled
P systems to run. On the one hand, the characteristic of
independent computation without interfering with each other
in the cell-like P systems can be exploited. On the other hand,
the mechanism of information propagation and communica-
tion between cells through synapses in tissue-like P systems
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FIGURE 3. The overall framework of improved gated graph neural network.

can be adopted. The coupled P systems define computa-
tion methods within cells as evolutionary rules, whereupon
we accordingly abstract the corresponding computations in
graph neural networks to these rules. The intracellular objects
are then operated according to the evolutionary rules, and
the obtained results are input to the next cell through the
intercellular synapses. The communication rules exist on the
synapses for intercellular information transfer and interac-
tion. Ultimately, P systems output the results of the desired
classification task. The overall structure of the coupled P
systems is illustrated in Fig.4.

The formal definition of the coupled P systems is as
follows:

Π = (O, η, µ, syn, σ,R, in, out) , (3)

where
1) O represents the alphabet with elements containing all

the objects;
2) η = {G, h11, h

1
2, . . . , h

1
n,A,W ,U , b, yi} ∈ O indicates

all the initial objects;
3) µ stands for the membrane structure;
4) syn = {(0, 1) , (1, 2) , (2, 3) , (3, 4) , (0, 4)} describes

the synapses that connect cells;
5) σ indicates the cells in the P systems, where σ1, σ2, σ3

means the coupled cells, σ 1
1 , . . . , σ n1 , σ 1

2 , . . . , σ n2 ,
σ 1
3 , . . . , σ k3 represent the inner layer cells in the cou-

pled cells, σ4 and σ5 represent the normal cells;
6) R refers to all the rules in coupled P systems, including

evolution rules and communication rules;
7) in is Cell 0, the input cell; out is Cell 4, the output cell.
It can be clearly seen fromFig.4 that there aremultiple cells

contained in the coupled P systems, where within the outer
cells σ1, σ2, and σ3, there are also multiple inner cells σ i1, σ

i
2,

FIGURE 4. The overall structure of the coupled P systems.

and σ i3 nested. σ1, σ2 and σ3 operate independently of each
other according to the rules on their respective intercellular
synapses. These cells can then be triggered and computed
simultaneously by the rules. In addition, the inner layer cells
are also independent of each other, and the operations do
not interfere with each other. Consequently, they do not have
to wait for the end of the previous cell operation before
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turning on the computation. In view of the above computing
mechanism, the coupled P systems can take advantage of
its unique parallelism feature to theoretically improve the
computing efficiency of the model and reduce the computing
time.

B. THE EVOLUTION RULES IN DIFFERENT CELLS
The Cell 0 contains all the initialization objects of
the P systems and some parameter information. η =

{G, h11, h
1
2, . . . , h

1
n,A,W ,U , b, yi} ∈ O, which consists of the

initial topology graph G constructed from the document, the
initialization node embeddings h11, h

1
2, . . . , h

1
n, the adjacency

matrix A and the trainable parameters W ,U , b. They will all
be passed to the subsequent Cell 1 by the communication
rule Rule(0, 1). The ground-truth node label yi in the initial
graph will be transferred to Cell 4 by the communication
rule Rule(0, 4). The inner layer cells in Cell 0, Cell 1, and
Cell 2 are isolated without interfering with each other. They
independently and in parallel execute evolutionary rules in
their respective cells. Furthermore, Cell 0, Cell 1, Cell 2,
Cell 3, and Cell 4 also execute the evolutionary rules in their
respective cells independently without interfering with each
other. The information can be disseminated and interacted
mutually at any time by rules in the coupled P systems.

1) THE EVOLUTION RULES OF AGFE IN CELL 1
An attention-gated feature extraction operation will be per-
formed in Cell 1. We make use of an attention mechanism
in the gated graph neural network to aggregate the informa-
tion between the central node and its first-order neighbors,
which is more effective in capturing contextual information
and enhancing the semantic information propagation process.
In this part, different weights are assigned depending on
the degree of contribution of the neighbors to the central
node. The hti in Cell 1 denotes the node representation of the
i-th inner cell at t moment. R11 calculates the attention score
of each neighbor node and then normalizes it by softmax
function to obtain att tj , which indicates the importance degree
of neighbor node j to the central node i.

R11 : att tj = softmax
(
ht−1
j

)
=

exp
(
ht−1
i W

)
∑

j∈N exp
(
ht−1
j W

) , (4)

where ht−1
j indicates the node representation of the first-order

neighbor j of node i at t-1 moment. N refers to the set
of all 1-hop neighbors of node i. W refers to the shared
linear transformation matrix. After that, we compute the
attention-weighted representation of each node by R12.

R12 : ĥti =

∑
j∈N

att tjh
t−1
j , (5)

where N still refers to the set of 1-hop neighbors of node i.
By stacking t layers AGFE, we can aggregate the feature
information of t-hop neighbors. In the t-th AGFE layer,
R13,R14,R15,R16 describe the evolution rules of the gating

unit.

R13 : x t = Aht−1Wx , (6)

R14 : zt = σ
(
Wzx t + Uzht−1

+ bz
)

, (7)

R15 : r t = σ
(
Wrx t + Urht−1

+ br
)

, (8)

R16 : h̃t = tanh
(
Whx t + Uh

(
r t ⊙ ht−1

)
+ bh

)
. (9)

The x t obtained by R13 expresses the information aggre-
gated at t moment from the neighbors. zt in R14 is the update
gate which integrates the node representation of the previ-
ous moment and the massage of neighbors, deciding how
much information will be remembered to pass on to the next
unit. r t in R15 is the reset gate which determines how much
information will be forgotten, filtering out excess redundant
massage in order to pass the more important information to
the next unit. σ performs the sigmoid function.W and U are
the trainable weight, b means the bias. h̃t denotes the newly
updated hidden states calculated using the tanh activation
function used to store intermediate information. Eventually,
we can obtain the node embedding matrix ht for layer t
by R17.

R17 : ht = h̃t ⊙ zt + ht−1
⊙

(
1 − zt

)
+ ĥt , (10)

where ⊙ is the Hadamard product. A more intuitive compu-
tational flow is demonstrated in the AGFE module in Fig.3.

2) THE EVOLUTION RULES OF EXTRACTING KEYWORDS IN
CELL 2
In Cell 1, we have computed the embedding representation
of each node in graph G. For a document, the category into
which it is classified is often determined by a few keywords
to a great extent. Sometimes not every word in the document
is necessarily useful for the classification task, which may
instead cause data redundancy and increase computational
effort. It is quite important to extract the discriminable words
that contribute more to the text classification. Therefore,
CPGANN applied an attention mechanism and pooling oper-
ation to extract keyword nodes in the P systems.

R21 : qt = Att
(
ht

)
, (11)

R21 obtains the attentional score qt for each node, and
Att (.) is defined as the attention function. ht is hidden state
of the node at current moment.

R22 : M t
= Rank

(
qt , k

)
, (12)

Then we rank the attention scores of each node obtained
by R21 from highest to lowest. R22 selects the nodes whose
attention score is top k by the Rank function, and the set of k
nodes isM t .

R23 : h′t
= qt ⊙ ht , (13)

R23 updated attention-weighted hidden state h′t by atten-
tion score qt and current hidden state ht .

R24 : ht+1
= A′th′t , (14)
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The state of the next moment ht+1 is calculated by R24,
where A′t

i = Âti , i ∈ M t . Thus, R24 can iteratively update the
hidden states of nodes in Cell 2.

3) THE EVOLUTION RULES OF READOUT IN CELL 3
In Cell 2, we have attained the updated node representations
and a collection of nodes consisting of keywords. However,
as far as the classification task be concerned, it is far from
enough to just obtain a node-level representation. We need to
aggregate these nodes and readout the node-level represen-
tation to generate a graph-level representation in Cell 3. The
keyword subgraph needs to be constructed by R3.

R3 : hG =
1
k

k∑
v=1

ht+1
v + pooling (h1, · · · , hk) , (15)

R3 contains an average operation and a maxpooling opera-
tion to aggregate node features with important neighboring
node features. On the basis of averaging all nodes in the
subgraph, the keyword information in the text is captured by
employing maxpooling. These operations allow the model to
preserve original features while reducing the parameters of
network training, making the training time decrease. In this
way, we can acquire a more effective subgraph representation
result.

4) THE EVOLUTION RULES OF CLASSIFICATION IN CELL 4
The classification of text will be performed in Cell 4 and the
cross-entropy objective function will be optimized.

R41 : ŷG = softmax (ReLU (WhG + b)) , (16)

R42 : L = −

∑
i

yilog
(
ŷi

)
, (17)

where ŷG is the prediction label of the output in R41, ReLU ,
and softmax are activation functions. W is the matrix of a
linear transformation that maps the embedding representation
to the desired output space. b is the bias term.While in R42, yi
is the i-th element of the one-hot ground truth label of graph
G, ŷi is the i-th element of the predicted label of graph G,
L is devised to calculate the cross-entropy loss. We aim to
minimize the distance between these two labels.

C. THE COMMUNICATION RULES BETWEEN DIFFERENT
CELLS
In the coupled P systems, cells transmit and communicate
information through synapses between each other, which
means that information is only exchanged between different
cells when synapses are present. We define certain commu-
nication rules on the synapse and the rules are directed. The
cells can then communicate with each other in the order
we want. In general, rules are divided into unidirectional
transmission and bidirectional transmission, and in this paper
only rules exist for unidirectional transmission from cells to
other cells or from cells to the environment.
Definition of Communication Rules: Rule (i, j) : (i, u

/
λ, j)

denotes the communication rule from Cell i to Cell j. u refers

to the information passed from Cell i to Cell j, and λ repre-
sents the information transmitted from Cell j to Cell i. Since
the rules in this paper are all unidirectional rules, no informa-
tion is transmitted from Cell j to Cell i, i.e., λ is null.

The communication rules are specified in this paper as:
Rule(0, 1) : (0, u

/
λ, 1) passes the object η from Cell 0 to

Cell 1, which contains initial topology graph G constructed
from the document, the initialization node embedding rep-
resentations h11, h

1
2, . . . , h

1
n, the adjacency matrix A and the

trainable parametersW ,U , b;
Rule(0, 4) : (0, u

/
λ, 4) transfers the ground truth label of

every node fromCell 0 to Cell 4 for the purpose of calculating
the distance between the true label yi and predicted label ŷi in
Cell 4 and optimizing the objective function L.
Rule(1, 2) : (1, u

/
λ, 2) inputs the feature embedding

representation of each node calculated in AGFE module of
Cell 1 into Cell 2. This rule conveys the same amount of node
information as Rule(0, 1) : (0, u

/
λ, 1), both for n nodes.

Rule(2, 3) : (2, u
/
λ, 3) transfers keyword set M t includ-

ing k keyword nodes and the updated current hidden state
ht+1 extracted from Cell 2 into Cell 3 to aggregate a graph-
level representation. Since the node-level representation is
not applicable to the text classification task, what we want
to do is to classify the graph G constructed from the text
document;
Rule(3, 4) : (3, u

/
λ, 4) delivers the subgraph representa-

tion hG obtained from the Readout in Cell 3 to Cell 4, which
is composed of k keywords that contribute most to the text
classification task.
Rule(4, e) : (4, u/λ, e) transmits the result of text classifi-

cation and the loss of the whole model calculated by coupled
P systems in Cell 4 to the environment, and one iteration ends.

IV. EXPERIMENTS
A. DATASETS
In the experimental part of this paper, four datasets were
chosen to verify the classification performance of the model.

SST21 (The Stanford Sentiment Treebank) is a dataset
of movie reviews, each sample contains a sentence and the
corresponding label of the sentence. It is divided into 2 cate-
gories, positive sentiment (sample label corresponds to 1) and
negative sentiment (sample label corresponds to 0). Of the
total 9613 documents, 7792 documents are utilized in training
and 1821 documents are used for testing.

R8 and R522 are two subsets of Reuters News. There were
7674 documents in R8, divided into 8 categories, of which
2189 documents are employed for testing and 5485 docu-
ments are employed for training. There are 9100 documents
in R52, divided into 52 classes. 6532 training documents and
2568 test documents are included.

Ohsumed3 is derived from MEDLINE10, a database
of pharmaceutical information, which contains titles and

1http://nlp.stanford.edu/sentiment/
2https:// www. cs. umb. edu/ ∼smima rog/ textm ining/ datas ets/
3http:// disi. unitn. it/ mosch itti/ corpo ra. htm
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TABLE 1. Statistics of datasets.

abstracts from 270 pharmaceutical journals over five years.
The total of 7400 documents contains medical abstracts for
23 cardiovascular disease categories. 3357 documents are
selected for training and 4043 documents are selected for
testing.

TABLE 1 shows the statistic details of the datasets. As we
can see in IV-B, Docs is the number of documents contained
in the dataset, Train and Test denote the number of documents
used for training and testing, respectively. Avg.length means
the average length of sentences in the documents. Among all
the datasets, SST2 and R8 are short text datasets, while R52
and Ohsumed are long text datasets.

B. BASELINES
In this paper, we compare CPGANN with the following
baselines to verify their effectiveness.

LSTM [37]: This is a multi-task shared RNN framework,
which aims to solve the long-term dependence of general
RNN. It exploits multiple different task datasets to train the
same model shared parameters, and has the effect of expand-
ing the dataset.

CNN [24]: Convolutional Neural Networks is applied to
the sentence classification task via a pre-trained word vector
and improves the performance by learning the task-specific
word vectors.

SWEM [38]: The model performs simple pooling opera-
tions on the word vector, and systematically compares the
simple method with pooling based on word embedding with
the complex model such as LSTM and CNN.

Transformer [39]: This is a model that does not use convo-
lutional or recurrent network layers, while is based entirely
on an attention mechanism that combines self-attention and
multi-head attention.

Text-Level-GNN [40]: Instead of constructing a single
graph for the whole corpus, this model constructs a global
parameter sharing graph for each input text. Text-Level-GNN
eliminates the burden of dependencies between a single text
and the whole corpus, supporting online tests but still retain-
ing global information.

Text-GCN [12]: This is a model of GCN model for text
classification tasks. The model builds graphs of text in the
corpus based on word co-occurrence relationship between
words in original text, and then GCN learns the vector rep-
resentation of nodes for text classification.

FastText [41]: It is a simple but effective method of text
classification. By introducing other statistics, it reduces the
accuracy gap between the linear and deep models. The model

has only one hidden layer and one output layer, thus greatly
reducing the training time.

HGAT [42]: This is a new semi-supervised method based
on the heterogeneous graph neural network for short text clas-
sification. HGAT utilizes the heterogeneous graph convolu-
tion to account for the heterogeneity of different information
types and realizes the semi-supervised short text classifica-
tion through the propagation of information along graphs.

BERT [43]: BERT is no longer only focusing on the infor-
mation before or after a word, but on the context information
of the entire layers of its entire model, pre-training the deep
two-way representation by joint context adjustment in all
layers.

TM [44]: Tsetlin Machine (TM) is a pattern recognition
method that applies to propositional formulas. It extracts
semantically related words from pre-trained word represen-
tations and learns features with additional correlations based
on comparing pre-trained word representations using cosine
similarity. In this way, TM can improve the model perfor-
mance while maintaining the model interpretability.

UGformer [45]: Transformer is applied in GNN to extract
the information and learn the representations of the graph in
this paper. Two model variants are designed: one is to use
Transformer on the set of sampled neighbors of each input
node, and the other is to use Transformer on all the input
nodes.

Text-MGNN [46]: Text-MGNN is a novel GNN from the
perspective of multi-granular topic perception. Topic nodes
are introduced to construct a triple node set and build a
multi-granular relationship model on the text graph of this
triple node set. This method not only enhances the dis-
semination of information but also reduces the impact of
heterogeneous information caused by polysemous words.

C. RESULTS AND ANALYSIS
The validity of CPGANN and baselines was evaluated with
accuracy and F1-score in this paper. There are many param-
eters in this paper, where the learning rate was set to 0.01,
the number of iterations was 200, the dropout rate was 0.5,
and the sliding window size was fixed to 3. The number
of layers was set to two layers, that is, two AGFE layers
were stacked to capture the first and second order neighbors’
feature information. All experiments were performed on a
PC with Windows10 64-bit operating system, 2.4 GHz CPU,
16GBMAP, and Intel Core i5-1135G7, running the codewith
python3.7.

Experimental results are demonstrated in TABLE 2, and
some of the baseline experimental results were obtained
from [44], [45], [46], [47], [48], and [49]. It is evident to find
that CPGANN outperforms other baselines in the vast major-
ity of cases. Whether on the two short document datasets,
SST2 and R8, or the two long document datasets, R52 and
Ohsumed, the results of CPGANN are the most optimal.
It is clear in TABLE 2 that these methods generally perform
better on R8 and R52, and slightly worse on the long text
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TABLE 2. Test accuracy(%) of our method against other baselines on four datasets. The results were reported with mean ± standard deviation.

dataset Ohsumed. What’s more, the results of baselines on
R52 were not as good on R8, because R52 has far more
classes than R8 and a longer training time. Both TextGCN and
Text-Level-GNN build a graph for each document rather than
train based on the whole corpus, so this kind of graph neural
network algorithm performs well on all datasets. However,
it is worth noting that since TextGCN updates full graph
when information iterates, it means that its computation time
is slow and memory consumption is large if there are more
nodes and larger graphs. Relatively speaking, the effect of
CPGANN is improved to some extent by using attention
mechanism. Owing to SWEM models for the word vector,
the document-level word frequency information and word
co-occurrence information is insufficient. Besides, SWEM
does not consider the influence of word order factors. As a
consequence, it performsworst on SST2. HGAT takes the het-
erogeneity of different node types into account. Its two-level
attention mechanism can obtain different importance coeffi-
cients of different neighboring nodes. Nevertheless, HGAT is
poor in the processing of long document data and is more suit-
able for short text data. Therefore, its results on SST2 and R8
are better than R52 and Ohsumed. Since Transformer intro-
duces the attention mechanism, the performance is improved
compared to SWEM, but it focuses more on the global cor-
relation. The local information acquisition ability is not as
strong as LSTMandCNN, so the results are worse than theirs.
The performance of Bert turns out to be relatively great due to
it paying attention to the context information, not only aggre-
gating the information of the words before and after. Though
Bert has a stronger semantic understanding capability, the
processing of long text data needs to be strengthened. Fast-
Text averages the word and n-gram vectors over the whole
document to obtain the document vector and then utilizes the
document vector to perform softmaxmulti-classification. The
structure of FastText compared with CPGANN is too simple
to capture the word order features, so its capability is less
effective than CPGANN. It is also clear from TABLE 2 that
the results of TM are much worse than that of CPGANN.

Since UGformer applies transformer to GNN, it has more
advantages in the process of representing graphs. In addition,
it also introduces a self-attention mechanism, so the perfor-
mance of UGformer is better than Transformer. In particular,
it performs best on the Ohsumed dataset, even exceeding
CPGANN. The triple node set introduced by Text-MGNN
can strengthen the semantic propagation process of words in
documents, and further promote the representation learning
of graphs. The performance of this method is worse than that
of CPGANN on SST2, R8, and R52 datasets. On the other
hand, CPGANN is inferior to Text-MGNN because of its
shortcomings in handling long text datasets.

In summary, CPGANN consistently outperforms other
baseline algorithms in general. The above results verify
that CPGANN does have an outstanding ability to process
and classify text information. Fig.5 expresses the accuracy
comparison on different models, which can more intuitively
indicate the improvement degree of CPGANN.

D. PARAMETER SENSITIVITY
In this section, we will analyze the impact of different param-
eter settings on the model performance in terms of sliding
window size, learning rate, the number of AGFE layers, and
dropout on SST2, Ohsumed, R8, and R52 datasets. Experi-
ments were carried out on four datasets in the first section, and
only sliding window or learning rate were changed respec-
tively to verify the impact on model performance. The second
section takes SST2 as an example, discussing the influence
of two parameters changing at the same time. We combine
the four parameters mentioned above in pairs, and there are
6 kinds of ways of permutation. All other parameter settings
are identical except for the parameter to be analyzed.

1) THE EFFECT OF SINGLE PARAMETER
a: SLIDING WINDOW SIZE
Word co-occurrence information is counted using a fixed-size
sliding window sliding through the corpus. If two words
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FIGURE 5. Comparison of accuracy(%) between different methods on four datasets.

appear in the same window all at once, indicating that there
is a co-occurrence relationship between two words and an
edge is added between them. A suitable size of the sliding
window is significant for constructing the graph structure of
the documents.We conducted experiments on each of the four
datasets to verify which window size is best for CPGANN.
The F1-score is illustrated in Fig.6.

When the sliding window size is 3, the F1-score signifi-
cantly improves on four datasets, indicating that the model
performs best at this time. When the window size continues
to increase, the F1-score evidently shows a decreasing trend
for bothMacro-F1 andMicro-F1. Finally, we choose a sliding
window size of 3.

b: LEARNING RATE
We perform experiments to explore the learning rate that best
fits this model, and the obtained F1-score is expressed in
Fig.7. As is illustrated that the model performance starts to
improve with the increase of the learning rate from 0.001,
and decreases after reaching a certain value. Most of the
datasets have optimal results when the learning rate reaches
0.01, F1-score starts to decrease as the learning rate continues
to increase. The trend of the results on SST2 and R8 is not
particularly obvious, while R52 and Ohsumed are relatively
sensitive to the change of learning rate. Eventually, we set the
learning rate to 0.01.

2) THE EFFECT OF TWO PARAMETERS
We take SST2 as an example to explore the influence of any
two parameter changes on the experimental accuracy. The
results are similar for other datasets. As shown in Fig.8(a),

it exhibits the influence on classification accuracy under
the combination of sliding window and learning rate. The
result is slightly better when the sliding window is 2 and the
learning rate is 0.01. Other else changed little. The effects
of simultaneous changes in sliding window and dropout are
expressed in Fig.8(b). The overall fluctuation is also insignif-
icant. Fig.8(c) and (d) indicate the effects of the changes of
the two pairs of parameters which include sliding windows
and AGFE layer, learning rate, and AGFE layer, respectively.
When the number of AGFE layers is fixed, the variation
brought by dropout appears to be larger than that brought
by the sliding window size. In addition, Fig.8(e) exhibits
the impact of changes in learning rate and dropout. Fig.8(f)
displays the changes caused by dropout and AGFE layer.
Different from several other plots, (e) and(f) have more sig-
nificant changes when the learning rate is 0.1, especially
when combined with the AGFE layer, the results are more
volatile. This phenomenon manifests that learning rate and
the number of AGFE layers have a greater effect on the
model.

In conclusion, the performance of the model does not
change dramatically in most cases when any two parameters
are changed at the same time. It is also testified that CPGANN
has good robustness that adapts well to changes in parameters
and can make adjustment to output more stable classification
results.

E. ABLATION STUDY
Two more ablation experiments were conducted to compare
the performance in this section. The aim of this part is to
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FIGURE 6. Performance of different sliding window sizes on the CPGANN. (a) Macro-F1 (b) Micro-F1.

FIGURE 7. Performance of different learning rates on the CPGANN. (a) Macro-F1 (b) Micro-F1.

confirm whether the attention mechanism plays a role in the
model and how significant the role is.

1) THE INFLUENCE OF ATTENTION MECHANISM IN AGFE
We propose a variant CPGANN-NA to verify the influence
of attention mechanism on feature extraction in the gating
unit. NA denotes that there is no attention mechanism in
the gating unit and only contains a reset gate and a update
gate for information propagation. The comparison results
are displayed in V in comparison with the original model
CPGANN. We discover that the results are not as good as
those of CPGANNwith the attention mechanism, which may
be due to the fact that the original gating mechanism controls
only the selection of individual information and the elements
are independent, while the attention mechanism selects the
most valuable elements after comparing multiple contextual
information. It can be seen that the attention mechanism in
the gating unit can improve the performance in the feature
extraction and promote the effective aggregation of neighbor
information.

2) THE INFLUENCE OF ATTENTION MECHANISM IN
EXTRACTING KEYWORDS
We proposed a variant CPGANN-TF to attest the influence
of attention mechanism on the effect of extracting keywords,
which calculate the term frequency of words without using
the attention mechanism. The words are then ranked from
highest to lowest frequency, and those with high scores are
selected as keywords. The comparison results are presented
in 0. It is obvious that the results are worse than the method
of using attention to extract keywords. The words with high
term frequency that CPGANN-TF selects do not necessarily
mean that they are most relevant to the corresponding docu-
ment, while the attention mechanism assigns weights based
on the degree of contribution of words to the central node.
Therefore, the extracted keywords are more differentiated for
text classification.

From Fig.9, we can see more distinctly that the perfor-
mance of the two variants is worse than that of CPGANN.
This evidences that the attention mechanism does produce
a marked effect in calculating node feature representation
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FIGURE 8. The impact of changing any two parameters simultaneously on SST2 dataset.

TABLE 3. Test accuracy (%) comparisons of our method with the variant CPGANN-NA that without attention mechanism in the gating unit on four
datasets. The results were reported with mean ± standard deviation.

TABLE 4. Test accuracy (%) comparisons of our method with the variant CPGANN-TF that adopting term frequency of word to select keywords on four
datasets. The results were reported with mean ± standard deviation.

FIGURE 9. Comparison of accuracy (%) between CPGANN and two
variants on four datasets.

and extracting keywords, enabling effective integration of
node contextual information. It can also more effectively
interact with neighbor nodes, and generate more accurate

feature embeddings. Besides, the attention mechanism also
enhances the expression and propagation of semantics, and
the extracted keyword nodes are more discriminative for
classification tasks. In conclusion, the adoption of attention
mechanism can indeed improve the classification efficiency
of the model to some extent.

V. CONCLUSION
This paper proposes a novel gated graph neural network
with attention mechanism for text classification in the frame-
work of coupled P systems. The improved network can not
only employ the characteristics of independent operation
between cells of cell-like P systems but also make use of
the mechanism of information exchange and transmission
through synapses of tissue-like P systems. The parallelism
of the coupled P systems is exploited in general to improve
model performance. Specifically, we process the text data into
graph structure and put it into an attention-based gated neural
network for feature extraction. The reset gate is designed for
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forgetting irrelevant information, the update gate is designed
for remembering useful information, and an attention mech-
anism is utilized for assigning different weights to neighbor
feature information to generate more accurate node features.
Since the features may contain some redundant and irrele-
vant information at this time, we design to extract keyword
nodes by applying the attention mechanism before readout.
Experimental results on all datasets prove that CPGANN is
superior to other state-of-the-art algorithms. It also testifies
that the attention mechanism can produce a notable influence
in integrating contextual information and enhance semantic
expression to a large extent. Furthermore, we need to consider
the time series problem of the text in future studies and take
the position order of the text into account for classification.
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