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ABSTRACT With the advancement in intelligent devices, socialmedia, and the Internet of Things, staggering
amounts of new data are being generated, and the pace is continuously accelerating. Real-time analytics
(RTA) has emerged as a distinct branch of big data analytics focusing on the velocity aspect of big data,
in which data is prepared, processed, and analyzed as it arrives, intending to generate insights and create busi-
ness value in near real-time. The objective of this paper is to provide an overview of key concepts and archi-
tectural approaches for designing RTA solutions, including the relevant infrastructure, processing, and
analytics platforms, as well as analytics techniques and tools with the most up-to-date machine learning
and artificial intelligence considerations, and position these in the context of the most prominent platforms
and analytics techniques. The paper develops a logical analytics stack to support the description of key
functionality and relationships between relevant components in RTA solutions based on a thorough literature
review and industrial practice. This provides practitioners with guidance in selecting the most appropriate
solutions for their RTA problems, including the application of emerging AI technologies in this context. The
paper discusses the complex event processing technology that has influenced many recent data streaming
solutions in the analytics stack and highlights the integration of machine learning and artificial intelligence
into RTA solutions. Some real-life application scenarios in the finance and health domains are presented,
including several of the authors’ earlier contributions, to demonstrate the utilization of the techniques and
technologies discussed in this paper. Future research directions and remaining challenges are discussed.

INDEX TERMS Real-time analytics, data streaming, big data analytics, complex event processing, machine
learning.

I. INTRODUCTION
A. BACKGROUND
With the recent advancement in intelligent devices, social
media, sensor networks, and the Internet of Things (IoT),
staggering amounts of new data are being generated every
second, and the pace is continuously accelerating. This has
led to fast-evolving developments in big data analytics in
which data is turned into insights by preparing, processing,
and analyzing data as it arrives, with the continuing advent of
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novel technologies and techniques to deal with the challenges
posed by big data. It has been asserted that ‘the fresher
the data, the more valuable it is,’ especially for data-driven
platforms like Uber [1]. This need has driven the development
of real-time analytics (RTA), a distinct branch of big data
analytics emphasizing the velocity aspect of big data. It is
increasingly prominent in both academia and industry due to
the growing demand to deal with the proliferation of incom-
ing data and event streams and the need to take immediate
or near-immediate action in response to data triggers. Some
examples of RTA include real-time financial data quality con-
trol, real-time decision-making in financial trading, real-time
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health-related data monitoring from wearable devices, and
real-time advertisement recommendation to promote sales.
RTA is sometimes referred to as fast data analytics [2], the
nature of which has introduced challenges in processing it in
real-time, particularly when applying complex data analysis
techniques.

Other increasingly prevalent disciplines related to RTA
are artificial intelligence (AI) and machine learning (ML),
which have been extensively employed in various areas in
the big data era. In particular, ML is a data-driven approach to
knowledge and insight discovery which has achieved remark-
able success in recent years, particularly in well-known
fields like computer vision and natural language processing.
Large-scale data collection, model or function identifica-
tion through training, and prediction (e.g., classification,
regression, or clustering) of fresh data are all components
of ML. Traditional techniques, including regression algo-
rithms, decision trees, random forests, and support vector
machines (SVM), are examples of ML models. More sophis-
ticated artificial neural network-based deep learning (DL)
models are also available, such as multi-layer perceptron
(MLP), convolutional neural network (CNN), recurrent neu-
ral network (RNN), long short-term memory (LSTM), gated
recurrent unit (GRU), autoencoders (AE), and the emerging
large language models (LLM). ML and DL models have
been extensively employed in big data analytics on almost
all fronts of academia and industry, for instance, computer
vision [3], natural language processing [4], finance [5], and
healthcare [6].

There is an overwhelming volume of research work
conducted on big data analytics or ML/AI across many disci-
plines in recent years as well as many high-profile, real-life
applications. However, the combination of real-time analytics
with ML/AI techniques is still insufficiently studied in the
literature. Commonly, practitioners find it challenging to get
started with the design and implementation of RTA software
solutions, especially when the integration ofML/AI technolo-
gies into RTA solutions is required.

B. RESEARCH OBJECTIVES AND CONTRIBUTIONS
The objective of this paper is to provide an overview of
key concepts and architectural approaches for designing RTA
solutions, including the relevant infrastructure, processing,
and analytics platforms, as well as analytics techniques
and tools with the most up-to-date ML and AI consid-
erations and to position them in the context of the most
prominent platforms and analytics techniques in the recent
decade.

This paper attempts to answer the following motivating
research questions:

RQ1: In accordance with recent research and industrial
practice, what are the key concepts, prominent software archi-
tectures, techniques, and tools available for RTA solutions?

RQ2: How can software engineering practitioners design
and implement their own RTA solutions?

RQ3:What are themethods to integrateML or AI into RTA
solutions?

The contributions of this article are as follows:

• Providing an overview of key concepts and architec-
tural approaches for designing RTA solutions.

• Developing a logical analytics stack to support the
description of key functionality and relationships
between relevant components in RTA solutions based
on a thorough literature review and industrial practice.
The most up-to-date solutions are positioned in relation
to various stack layers.

• Highlighting mechanisms for integrating RTAwithML
and AI.

• Presenting some real-life case studies in finance and
health domains to demonstrate the utilization of the
techniques and technologies discussed.

• Discussing key challenges and future research
directions.

C. STRUCTURE OF THE PAPER
This review paper is structured as follows. Section II
describes the process of literature selection according to the
scope of this review and provides some quantitative and qual-
itative analysis of the selected literature. Section III explains
the key concepts and requirements of RTA solutions, which
sets the scene for subsequent sections. Section IV introduces
a hierarchy of abstractions called the analytics stack for big
data based on our earlier work presented in [7]. Each layer of
the stack is described in the following sections: Section V
describes real-time data processing platforms for big data
environments, referred to as data stream processing plat-
forms; Section VI explains data stream analytics platforms
that can utilize analytics techniques against real-time data
streams; Section VII discusses the key analytics tools that
provide specific data analytics solutions based on the plat-
forms discussed in Sections IV and V, with a focus on ML
andAI integration considerations. SectionVIII describes case
studies in the finance and health domains that use specific
analytics platforms, techniques, and tools. Section IX dis-
cusses the lessons learned, remaining challenges, and future
research agenda, and finally, Section X concludes the paper.

II. RELATED WORK
In the discovery phase of this review, we have adopted the
systematic literature review methodology, aiming to develop
and implement a rigorous and repeatable process that will
give a thorough and unbiased review of the body of litera-
ture already in existence. The digital library used is the EI
Compendex database provided by Engineering Village. The
rationale for this selection is that EI Compendex includes
information from a number of leading repositories, such as
IEEE andACM journals, and focuses on engineering research
aspects, fitting the scope of our paper. It also holds high
standards by indexing trustworthy and peer-reviewed sources.
We have collected journal articles on real-time analytics
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FIGURE 1. Selected journal papers by region (Top regions with more than
two papers published).

FIGURE 2. Selected journal papers by publisher (Top publishers with
more than one paper published).

(RTA) within the EI Compendex database by Engineering
Village in the last decade (from 2014 to 2023) written in
English, and 198 articles were identified. Further, we have
limited the publication classification to computer science
and technology-related topics only, resulting in 108 articles.
Figure 1 and Figure 2 describe the distribution of these
108 publications based on the region and the publisher,
respectively. To be specific, the United States, China, India,
and the United Kingdom have published the most papers
in recent years on RTA. IEEE, Elsevier, Springer, MDPI,
Wiley, and Inderscience are the leading publishers that have
published the most RTA-related papers in recent years.

Figure 3 shows the yearly number of publications of these
108 papers, which presents an upward trend of RTA studies in
recent years, especially from 2017, indicating the increasing
prominence of RTA. Note that the year 2023 is not complete
at the time of writing (17 June 2023). This figure also shows
the number of related review papers by year next to the total
number of publications.

Most of the selected papers are research papers concentrat-
ing on concrete real-time data analysis tasks and applications
in various areas, such as IoT, smart cities, and health. The
objective of such research is commonly analyzing certain data
and generating insights and conclusions from the data in real-
time. Interestingly, very few of them discuss the software

FIGURE 3. Selected journal papers by year (2014-2023).

design, architecture, and implementation of RTA solutions,
and most of these papers focus on the ‘‘analytics’’ element
rather than the ‘‘real-time’’ element. Among these publica-
tions, there are eight review/survey papers related to RTA,
but with different focuses. Table 1 lists and compares these
articles.

As can be seen from Table 1, each review article in recent
years has focused on a unique aspect of utilizing RTA. None
of these reviews have details about real-life scenarios in prac-
tice. A review of the most up-to-date software architecture
articles describing components and techniques that can serve
as a guide for practitioners is still lacking. To the best of
our knowledge, there is no such literature focusing on the
practical software architecture and implementation aspects
of RTA, with a thorough discussion on how ML and AI
can be integrated into RTA platforms. Thus, the aforemen-
tioned three research questions in Sections I-B are yet to be
answered.

In addition to the review papers, the rest of the paper will
primarily focus on 72 of the selected papers (8 review papers
and 64 research papers) in the last five years (2019-2023)
to reflect the most up-to-date technologies. Table 2 lists all
72 publications.

In the next section, we will review the current state-of-
the-art RTA solutions in the most recent literature, from a
software perspective, with practicality and the integrations
of ML/AI in mind, attempting to address the three defined
research questions. In addition, our review takes industrial
practice into account, which further distinguishes our contri-
bution from the existing literature.

III. CONCEPTS AND REQUIREMENTS FOR REAL-TIME
ANALYTICS
This section introduces key concepts and requirements for
real-time analytics (RTA) solutions in a big data context and
sets the scene for discussion in the subsequent sections.
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TABLE 1. Review articles in recent years.

TABLE 2. Reviewed literature in this paper.

A. KEY CONCEPTS
1) EVENT, EVENT PATTERN, AND STREAMS
The concept of an event plays a fundamental role in RTA
systems. An event is a timestamped record that represents an
environment change in the system. Many real-time systems
detect and report events using sensors, e.g. [40], [72], fol-
lowed by real-time analysis of the reported events to identify
patterns denoting certain opportunities or threats. To enhance
the performance, some applications distribute event data
across multiple processors to enable parallel computation and
horizontal scaling, e.g., [79]. Note that the timestamp of event
data usually signifies the time of event occurrence or, in some
cases, the time of arrival at the processing system. The former

is preferred, particularly in distributed systems where event
data can be delayed or lost. Events arriving at a processing
system are most often referred to as a data stream. In many
scenarios, event data streams are akin to time series data,
so time series processing techniques can be adapted to the
handling of event data [26].

For ease of computation and processing in RTA applica-
tions, an event can be described by an event type encapsu-
lating common attributes of events, typically including the
timestamp and the nature of various data items associated
with the event payload. Event type can also describe the
wire format of a message emitted by a physical sensor or
associated with a particular messaging system.

An event pattern is one of the pivotal concepts adopted
in many current RTA solutions, particularly complex event
processing, which will be discussed in the next subsection.
An event pattern abstracts relationships between events. Real-
life examples of event patterns include unusual structuring
of deposits of large amounts of money into multiple small
transactions at banks, indicating a possible money laundering
activity; unusual pathology orders in eHealth systems; and
‘pairs trading,’ meaning two stocks with a high correlation
between rise and fall. Akin to event type, RTA applications
require the definition of event pattern types to describe and
detect occurrences of event patterns in the environment.

2) COMPLEX EVENT AND EVENT STREAM PROCESSING
Event processing generally means performing operations
on events as they are fed into the system that proactively
monitors the ingress of events from the environment. Com-
mon operations on event data may include reading, creating,
integrating, transforming, and processing events [80]. Event
integration from multiple sources generally involves an ETL
(Extraction, Transformation, and Loading) process [81] used
in both on-premise and cloud environments.

Early research efforts in event processing were driven
by the need to simulate event applications and distributed
systems, e.g., the Stanford Rapide project. Some of these
efforts were later used for the construction of distributed
applications using event-driven approaches [7]. Another type
of application involves different sites processing a stream
over an extended time. These streams may be a continuous
flow of text, image, audio, and video or a sequence of data
related to real-life events, which could be emitted by devices
like sensors or generated by software systems like a stock
ticker. The processing of these streams is commonly defined
as data stream processing or event stream processing.

More recent research into this space has addressed the need
to perform more complex computations over a vast number
of events from a number of data sources, aiming to find
relationships (e.g., temporal, causal relationships) between
events, interpret the implications, and generate insights. This
more complicated event processing is generally referred to
as complex event processing (CEP) [82], [83]. While event
stream processing or data stream processing typically focuses
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on handling one single event stream, which can be considered
a simplified form of CEP, in practice, these three concepts
are often used interchangeably. This paper will not further
distinguish them from each other and will primarily use the
term CEP.

CEP features abstractions of event processing logic, which
is, in most cases, separated from the application components
(event producers and event consumers). The benefit of this
separation is reduced cost of development and maintenance.
Event processing logic is often expressed in domain-specific
languages called event processing languages (EPLs), which
define event pattern types to identify and instruct the opera-
tions on events. A more detailed discussion of CEP systems
is presented in Section VI.

B. REQUIREMENTS OF REAL-TIME ANALYTICS SOLUTIONS
In IT systems, the term real-time emphasizes the requirement
to handle events as they arrive, typically within a very short
time interval. Some researchers focus on ensuring fast, deter-
ministic response times in real-time systems, especially for
safety-critical systems. However, the requirement for deter-
ministic timing can often be relaxed in big data analytics,
and this is referred to as ‘‘near real-time’’. In this paper,
we adopt the more relaxed requirement. In either case, real-
time systems often involve generating notifications to users
about identified occurrences of pre-defined significant events
or event patterns and/or invoking internal and external func-
tions of the system for some further action.

Three key requirements for RTA are low latency, high
availability, and horizontal scalability [84]:

1) Low latency is the core requirement of an RTA solution
to respond to events within very short time limits,
usually within milli-, micro-, or even nano-seconds.
Two measures of latency are of interest in real-time
systems, namely data latency, meaning the delay to
access fresh data, and processing latency, meaning the
delay of its processing after an event arrives or occurs.
The latter includes network latency and computing
latency. To minimize data latency, flash technology,
and data fetching with anticipation from multiple
data streams can be adopted. To minimize processing
latency, in-memory processing, incremental evalua-
tion, and parallel processing in the high-performance
computing world can be applied. It is worth noting
that a recent survey has revealed the importance of
time predictability, i.e., the accuracy of predicting the
overall performance of a real-time system in addition
to the ‘‘low latency’’ requirement. To achieve it, mul-
tiple methods have been applied, such as watchdog
timers, run-time monitors, static schedules, and time
partitions [16].

2) High availability means to what extent a system per-
forms its function as required. This requirement’s
goal is to eliminate single points of failure, so part
of this requirement is sometimes referred to as high

FIGURE 4. The real-time analytics stack.

fault tolerance. A system for RTA without high avail-
ability will leave arriving events unprocessed for a
time interval that is unacceptable for the analytics
needs. Various strategies are used to ensure high avail-
ability for effective RTA, including distributing the
tasks to multiple nodes (one node taking over in case
of failure of another), data backup (storing data on
multiple servers in case one machine fails), and redun-
dant processing (multiple nodes processing the same
data).

3) Horizontal scalability is, in general, the capability of
adding resources to the existing pool for the purpose of
capacity increase and performance improvement. For
RTA, it is of great importance as this allows systems
to dynamically add additional nodes or machines as
the volume of data or processing workload increases
over time, especially when the rate of data ingress is
unpredictable.

IV. REAL-TIME ANALYTICS STACK
In this section, a layered classification of real-time analyt-
ics (RTA) solutions, informally referred to as the analytics
stack [7], is introduced. It allows the positioning of RTA
with the big data analytics context and facilitates discussion
on various analytics infrastructures, platforms, techniques,
and technologies to be described in the subsequent sections.
Figure 4 shows the details of the analytics stack. Note that the
topics in the stack related to RTA are highlighted in green.
Other topics, such as stored/static data analytics, have been
included in the figure for completeness only and will not be
discussed in detail beyond this section.

The first layer of the stack identifies infrastructure plat-
forms, including public and private cloud PaaS offerings by
enterprise vendors such as Amazon, Microsoft, IBM, and
Oracle. They increasingly support container orchestration
technology such as Kubernetes [85], which is particularly
useful in supporting high availability and horizontal scaling.
There are other dedicated infrastructure platforms for con-
structing industrial real-time systems in various application
areas such as utility, transportation, and mining. This layer is
not specific to RTA and has mature but evolving technologies
across academia and industry.
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Big data processing platforms, highlighted in the second
layer, are software platforms operating on the resources
offered by the underlying infrastructure layer and used to
process big data, including both stored data and data streams.
We distinguish the processing of ‘data at rest’ (i.e., stored
data) from ‘data in motion’ (i.e., fast data or data streams),
as displayed separately in the figure. The stored data pro-
cessing platforms, including Hadoop, Spark, and NoSQL
databases, provide processing tools and capabilities for static
data, whereas the data stream processing platforms provide
tools and abstractions for processing data as it arrives or
becomes available and are the foundation for RTA.

The third layer, termed analytics platforms, denotes a
special type of big data processing software platform that
takes advantage of the functionalities offered by Layer 2.
The objective of Layer 3 is to support analytics applica-
tions, and a typical contemporary analytics platform includes
components to support data collection, data storage, data pre-
processing (for handling incorrect data and normalizing them
in a required standard format), database management, and
statistical analysis. Akin to the second layer, we distinguish
stored data analytics platforms, like ElasticSearch [86] and
Pentaho [87], from data stream analytics platforms.

The fourth layer, analytics techniques, and tools, con-
tains high-level methods and solutions for specific analytics
problems. Examples include algorithms or libraries from
the areas of advanced statistics, machine learning, and text
mining. It should be noted that the implementation of
these methods should comply with the specific type of the
layer below, i.e., whether it is for real-time data or stored
data.

The fifth layer denotes the highest-level domain-specific
solutions in various application areas, such as finance, health,
social media, and IoT. The solutions are designed to take
domain knowledge and expertise into consideration on top
of general analytics techniques in the fourth layer.

Note thatmany analytics solutions can hardly be positioned
at one single layer, with some of them, such as Azure and
AWS architectures, offering a full-stack solution to satisfy the
requirements of multiple layers.

For instance, Figure 5 [88] displays an end-to-end architec-
ture example involving a selection of services and products on
the Azure infrastructure, referred to as Azure Stream Analyt-
ics. We use this as a reference architecture to illustrate the
layers discussed above. This architecture handles a number
of data types, including streaming data and static data stored
in various databases, which can also be used as input into
various ML models. It involves five principal phases for both
streaming data and stored data, namely Ingest, Store, Process,
Enrich, and Serve. For RTA, the Ingest phase uses Azure
Event Hubs and Azure IoT Hubs as ‘‘Data Stream Processing
Platforms’’ (Layer 2), and Azure Stream Analytics serves
as the ‘‘Data Stream Analytics Platform’’ (Layer 3) in the
Process phase. The Enrich phase has AI services, including
Azure Cognitive Services and Azure Machine Learning as
‘‘Analytics Techniques and Functions’’ (Layer 4). Services

FIGURE 5. An example of end-to-end architecture involving Azure Stream
Analytics.

in the Serve phase can be mapped into Layer 5, the Analytics
Solutions.

More explanation and discussion of the key layers (Layers
2-4) will be provided in the following three sections.

V. DATA STREAM PROCESSING PLATFORMS (LAYER 2)
In this section, we discuss current platforms used for data
stream processing (Layer 2 of the analytics stack, as shown
in Figure 4). Many of these platforms are open-source
and enable the construction of real-time applications, either
message-oriented or event-driven. They read messages or
events with minimal latency, feed them for processing and
promptly generate alerts. They are primarily based on nodes
in distributed or cloud environments, mostly focusing on
processing event-driven data streams. They also serve as the
foundation for the construction of Layer 3 on top.

It should be noted that there are two categories of data
stream processing, namely micro-batching and native stream-
ing. The former takes incoming events every few seconds
and processes them in mini-batches with consequent batch
latency, whereas the latter adopts an event-driven approach
where each incoming event is processed as soon as it arrives
with minimal latency.

A. APACHE HADOOP
Hadoop [89] offers a framework including a group of Apache
projects that handle big data, in general, in a distributed
manner. It was originally developed and used as a batch
processing system, so it does not intrinsically meet real-time
performance requirements. However, it can be extended by
integrating a dedicated real-time component such as Apache
Flume, described in Section V-D, to satisfy the real-time
demand. In recent years, the Hadoop ecosystem (i.e., a set of
tooling in support of buildingHadoop-based applications) has
become increasingly comprehensive and powerful with the
enhancement and development of advancedmodules. The key
modules within the Hadoop ecosystem are shown in Figure 6.
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FIGURE 6. Apache Hadoop ecosystem.

Babar and Arif [71] is an example of using the Hadoop
ecosystem for a real-time analytics (RTA) solution. Some key
modules that are of interest to this paper are described as
follows:

• HDFS (Hadoop Distributed File System) is a dis-
tributed file system that manages vast volumes of data
on large clusters of computers;

• MapReduce, the distributed data processingmodule for
the ecosystem, facilitates parallel computation, divid-
ing bigger jobs into sub-tasks and processing them in
a distributed manner. It is known for its linear scalabil-
ity, meaning that it may take no more time to handle
increased amounts of data with additional nodes or
servers;

• YARN (Yet Another Resource Negotiator), split from
the old version of MapReduce, separating the resource
management function, has resolved some scalability
drawbacks of the earlier MapReduce;

• Hive, a distributed data warehouse that offers an
SQL-like interface for data queries and analysis;

• Pig is a tool for dealing with large datasets repre-
sented as dataflows. Pig features a high-level dedicated
language named Pig Latin. It runs upon HDFS and
MapReduce;

• ZooKeeper is a centralized operational management
service with high availability, featuring a distributed
configuration service, a synchronization service, and a
naming registry for distributed systems.

B. APACHE KAFKA
Kafka [90] is a unified event streaming platform for process-
ing real-time data streams that meets all the requirements
for RTA, as mentioned in Section III-B. Kafka is commonly
known as a message broker that can be used as a Message
Queuing (MQ) system, allowing for message addition to the
queue without waiting for a response. Another example of an
MQ system is RabbitMQ. However, Kafka can also be used
for stream processing as a distributed streaming platform.

Kafka features the following major component concepts:

• Topic: a data stream to be processed;
• Broker: a server on a Kafka cluster that holds multiple
topics with different partitions to ensure availability and
horizontal scalability;

• Consumer: the component that reads topics (data
streams) from the cluster;

• Producer: the component that writes into topics;
• Zookeeper: borrowed from Hadoop for processing node
coordination.

An example found in recent publications is [75], which
deploys a deep-learning weather prediction model based on
the LSTM neural network that continuously learns using
weather data streams through Kafka components.

C. APACHE STORM
Storm [91] is a real-time distributed processing engine for
large data streams. It has two components that adopt native
streaming and micro-batching, respectively. The following
Storm modules enhance its reliability in processing data
streams with highly abstracted simple processing models:

• Spout: serves as a data stream source in a computation,
either from a message broker like Kafka, by generating
the data streams itself or from external sources like the
Twitter API.

• Bolt: an event-driven computation module that is
responsible for processing input streams and generating
output streams, akin to window transformation operators
in Storm. Each bolt encapsulates certain computations,
including functions, stream aggregations, database con-
nections, etc.

• Topology: a directed acyclic graph (DAG) comprised
of nodes (spouts or bolts) and edges (how data flows
in the process between spouts and bolts). A topology
is a multi-stage stream computation that supports par-
allelism. Once deployed, it operates non-stop.

• Trident: a high-level abstraction for real-time comput-
ing using a micro-batching approach on top of Storm.
It supports processing computation and allows for high
throughput and stateful processing against any database
with low latency.

As an example, Cheng et al. [76] has proposed a
high-performance computing (HPC) platform that enables
streaming services for RTA via Storm.

D. APACHE FLUME
Apache Flume [92] is a distributed framework with high
availability for efficient, large-scale log data processing.
Its simple and flexible architecture supports data stream
processing, and its extensive data model facilitates online
analytic applications. It has mechanisms for tunable relia-
bility, failover, and recovery to ensure robustness and fault
tolerance.

Although Flume and Kafka have similarities in terms of
real-time event stream processing, they have their unique
features. Kafka is better suited for high throughput messaging
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FIGURE 7. An abstraction of the data stream analytics process.

platforms on a publish and subscribe basis in which higher
availability and scalability are essential, whereas Flume is
more suited for data ingestion from various sources into a
centralized locationwith limited event processing capabilities
(especially for log data) but is not suitable for CEP. To lever-
age the capabilities of both Flume and Kafka, some real-time
applications have attempted to combine them to get benefits
from both, e.g., [93].

E. COMMERCIAL PLATFORMS
This section briefly describes some commercial platforms for
data stream processing. One of them is Amazon Kinesis [94],
a cloud-based service for real-time data processing over large,
distributed data streams. It has been successfully used for
continuous stream data capture and storage on a large scale
and at a high rate (terabytes per hour), and it supports a
wide variety of data sources like website clicks, social media
feeds, financial transactions, IT logs, etc. Kinesis can also be
integrated with Storm by providing a Kinesis Storm spout.
AWS also offers a stream analytics layer for Kinesis and
Kafka based on Flink (more to be discussed in Section VI-
D). This kind of incorporation can facilitate a reliable and
scalable stream processing service.

Another platform is Confluent [95], a full-scale streaming
platform based on Kafka, featuring a streaming SQL engine
called KSQL that facilitates real-time data processing.

Last but not least, Microsoft Azure Stream Analytics [88]
is a serverless scalable complex event processing engine that
supports RTA through an SQL-based language with tempo-
ral logic embedded. It supports three input sources, namely
Event Hubs (for event data streams in general), IoT Hubs (for
data from IoT devices and applications), and Blob Storage
(for static data). Another feature is that it enables the integra-
tion of PowerBI for real-time dashboarding.

VI. DATA STREAM ANALYTICS PLATFORMS (LAYER 3)
A. OVERVIEW
The Layer 2 platforms described in Section V are the foun-
dation for incorporating additional real-time analytics (RTA)
functionality, which commonly involves some complex event
processing (CEP) capabilities. In this paper, we refer to this
software layer as data stream analytics platforms (Layer 3 of
the analytics stack, as shown in Figure 4). Generally, when an
event stream is fed into an analytics platform, the underlying
event processing language code is triggered or executed,

which in turn generates a list of alerts, actions, or new events
(see Figure 7).
The components of a typical data stream analytics platform

may vary and can include the following:

• Event Metadata: contains event data types and event
processing rules. Currently, there is no common standard
existing for defining and representing event data;

• Event Processing Language (EPL): the language used
to express event pattern types or detect event pattern
occurrences. Event pattern types must be written in EPL
before they can be detected by the Event Processing
Engine in the right way;

• EPL Compiler: translates an event pattern description
from EPL into machine code that the Event Processing
Engine can execute;

• Event Processing Engine: is at the core of a data stream
analytics platform. It matches event pattern types speci-
fied in the EPL code against the incoming event data and
triggers appropriate alerts, actions, and new events. The
matched event pattern occurrences are typically made
available to these downstream actions once they are
detected;

• Event Development and Management Tools: event
development tools allow a user to define event data
and processing rules, and event management tools are
used for managing event data, event generation, event
processing infrastructure, etc.;

• Enterprise Integration Components: provides an inter-
face/API for the system to connect to required external
services. Examples of common Enterprise Integration
Components include event pre-processing, publishing
and subscribing, and business process invocation;

• Sources and Targets: specify the sources of incoming
event data and the targets on which event-driven actions
are performed;

• Event Database: data storage used for storing the event
data that are processed by the Event Processing Engine.
Inmore complex RTA systems, a federated database [96]
might be used to provide a seamless interface to hetero-
geneous data sources with a standardized data model or
data schemas.

Key operations on events by a typical data stream analytics
platform include event expression that allows for defining
matching criteria for one event, filtration that subsets events
to fit processing needs, transformation that alters events from
one form to another by operations like splitting, aggregation,
etc., and event pattern detection that identifies occurrences
of high-level event pattern types. In particular, event pattern
detection can be broken down into three sub-steps, i.e., pre-
detection that validates event pattern types and compiles
them into executable code by the EPL Compiler component;
detection that matches selected event pattern types in incom-
ing data streams and generates event pattern occurrences as
output; and post-detection that handles the storage of detected
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event pattern occurrences and the execution of follow-on
alerts or actions.

As an integral concept of CEP, operations on sliding win-
dows have been introduced to deal with continuously arriving
input streams. Sliding windows are used to group events
from the original unbounded stream – according to a specific
interval – into segments, which can then be manipulated and
analyzedwith reasonable wait time andmemory usage.When
handling sliding windows, a formation model that defines
how a sliding window is formed, and a processing model that
defines when the operation or processing on a sliding window
is triggered, need to be defined. The formation model can be
one of the following:

• Tuple-based: the sliding window is full when a certain
number of tuples/events has entered it;

• Time-based: any event is evicted upon a defined amount
of time after it enters into the sliding window;

• Attribute-based: any event that satisfies a condition
related to the value of specific attributes of the event is
evicted.

Similarly, there are primarily the following four processing
models of sliding windows:

• Event-driven: expressions associated with the window
are updated incrementally and in real-time as individual
events are added/evicted. EventSwarm [97] favors this
model;

• Tuple-driven: The content of the window is processed
every time a set number of tuples/events arrive. Stream-
SQL [98] implements this model;

• Time-driven: The content of the window is processed at
the end of each time interval;

• Attribute-driven: The content of the window is pro-
cessed as soon as a condition in terms of attribute values
of the constituent events in the window is met.

There are three categories of data stream analytics plat-
forms, namely query-based, rule-based, and programmatic
platforms (see Figure 8). Table 3 lists all these categories
and example products. In the following subsections, we will
provide further details about each category listed.

B. QUERY-BASED DATA STREAM ANALYTICS
Query-based data stream analytics platforms often have an
underlying SQL-based EPL to query data streams. The
queries written in such EPLs are applied to incoming event
streams and are also known as continuous queries [109],
which are stored within the database, as opposed to tradi-
tional SQL queries that are non-persistent. The standard steps
of executing these queries typically include query defini-
tion, query processing, and saving results selectively in the
database.

Note that the expressiveness of query-based EPLs varies
due to the different processing models adopted, meaning
that queries expressed in one EPL may be inexpressible
for another language. For example, Azure Stream Ana-
lytics [102] implements a time-driven model for sliding

FIGURE 8. Taxonomy of data stream analytics platforms for RTA.

TABLE 3. Classification of data stream analytics platforms.

windows, whereas StreamSQL adopts a tuple-driven model.
In addition, for a particular event pattern type, the results
of detected event pattern occurrences by these EPLs may
differ, which is hardly controllable by the end user. Therefore,
it is critical to stick to consistent semantics when using one
particular query-based EPL to ensure expected consistent
results.

The advantages of query-based EPLs are that they have
good expressiveness in terms of low-level aggregation on
top of defined event types, and their basis in SQL makes
them easy to learn for most application developers. However,
each of these languages has drawbacks for event pattern
type abstraction. For instance, CQL lacks the capability of
expressing dynamic sliding windows [110], and all have
difficulty with the nested data often found in JSON or XML
payloads due to their tuple-based event type models.
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C. RULE-BASED DATA STREAM ANALYTICS
In contrast to query-based data stream analytics platforms
that have the advantage of expressing low-level abstraction
of events, rule-based ones are better suited for express-
ing conditional event pattern types. Two principal types of
rule-based techniques have been used in rule-based data
stream analytics platforms, namely production rules and ECA
rules.

1) PRODUCTION RULES AND RIPPLE-DOWN RULES
Production rule data stream analytics platforms consist of
a set of IF-THEN rules about behavior that responds to
the environment, i.e., ‘‘if the condition is met, then assert
the action’’. As a common technique within the area of
expert systems since the 1980s, production rules have been
providing an alternative to artificial intelligence to support
knowledge representation and business decision-making in a
broad range of domains, including pathology and computer
system and network troubleshooting.

While production rules have no intrinsic elements of event
stream processing, attempts have been made to introduce
additional features on top of conventional production rule
systems, including objectmodels and fact base, to enable CEP
capabilities, e.g. [111]. Specifically, event types are declared
within the production rules. The ingress of events is initialized
as instances of the defined event types, and the fact base is
used to dynamically add these instances. Functions, including
filtering and event pattern detection, are expressed within
the condition of the rule and are applied to these event type
instances. Tools that adopt this method include Drools [103],
Business Events [104], and some dedicated platforms for
IoT [112].

Forward-chaining inference and procedural processing
have been adopted in most implementations of production
rule systems [113], which has led to a consequence that
the action has to be modified whenever the condition is
updated. In this process, rules may conflict with each other,
and the results of rule executions are not typically preserved
for future improvements. An error-driven, case-based, and
incremental rule acquisition framework called ripple-down
rules (RDR) [114] has emerged to address this issue by
maintaining a knowledge base and facilitating incremental
learning with the domain expert adding rules when a false
conclusion occurs without corrupting the existing knowledge
base. Specifically, domain experts observe the triggering rule
that leads to a wrong conclusion because of a new case (an
observed exception) and then add a new rule accordingly
to rectify the issue. When the domain expert indicates the
conclusion is incorrect, RDR compares the new case with the
cornerstone case(s) that have caused the creation of the parent
rule resulting in the incorrect conclusion. The interface may
ask if each difference is relevant to distinguishing the cases
and then build conditions of the new rule accordingly and
attach it to the existing rule using the ‘‘except’’ logic. With
this approach, essentially, however big the rule base is, no rule

is ‘‘incorrect’’ as the newly added rules revise the knowledge
without collapsing the original knowledge base.

2) ECA RULES
ECA rules [115] were proposed to facilitate the reaction
to events occurring in event-driven architecture and active
databases [116], so they are sometimes referred to as active
rules. There are three components in an ECA rule, including
Event, Condition, and Action, noting the origin of the term
ECA:

• Event: the trigger of rule execution. The event can be a
composite event comprised of various event types.

• Condition: the criterion that needs to be satisfied via a
logic test before the specified action is taken, which is
not checked until the specific relevant event occurs.

• Action: the operation to be executed when the condition
is met.

To automate rule execution, attempts have been made to
integrate some expert systems. Data stream analytics plat-
forms with ECA rules normally support event pattern type
description using complex expressions with event algebra
operators like And, Or, Sequence, etc. Use cases of ECA
rules in data stream analytics platforms include detecting
event pattern occurrences, reacting to them, and executing
business logic on incoming event streams, e.g. [117], [118].
IBM Streams [105] is an example product of a data stream
analytics platform with ECA rules in the in-built EPL.

D. PROGRAMMATIC DATA STREAM ANALYTICS
Programmatic data stream analytics platforms provide com-
prehensive functionality for processing complex events.
Examples include Apama [107], StreamBase [108],
EventSwarm [97], and the Flink DataStream API. These
data stream analytics platforms generally follow a high-level
architecture.

1) APACHE SPARK
Spark [119] is a newer generation framework thanHadoop for
large-scale data analytics that has an execution core engine
for distributing programs across clusters and modules for
writing programs on top using various languages, including
Python, SQL, Scala, Java, and R. It features an interactive
Read-Evaluate-Print Loop (REPL) shell environment and
utilizes a micro-batching processing approach. As shown in
Figure 9, the Spark ecosystem includes a set of tools, includ-
ing the Spark Core Engine (execution), SQL and Dataframes
(interactive SQL), Spark Streaming (the stream processing
library), MLlib (the machine learning library), and GraphX
(graph processing library). These tools facilitate the imple-
mentation of Spark-based applications. For instance, [77]
presents an example of utilizing Spark for building an RTA
forecasting framework in IoT networks.

Spark Streaming is well suited for RTA, with its scala-
bility, high throughput, and fault-tolerant live stream pro-
cessing capabilities. Internally, a continuous data stream is
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FIGURE 9. Apache spark ecosystem.

represented using a high-level abstraction of an immutable,
distributed dataset called DStream (discretized stream),
which is periodically transformed into an RDD (Resilient
Distributed Dataset). RDDs can be processed in a distributed
manner by sliding time window computations. The common
process of Spark is to first source DStreams directly from data
stream sources like Kafka or Flume (discussed in Sections V-
B and V-D respectively), HDFS, and Databases or from other
DStreams output, divide data into micro-batches, process the
data, and finally generate result streams in batches.

In comparison with Hadoop, Spark makes improvements
in the following three ways while maintaining the linear
scalability and fault tolerance characteristics of MapReduce:

• Support of directed acyclic graph (DAG) operators: with
DAG operators supported by the Spark core engine
instead of a strict map-then-reduce format, Spark can
directly forward results onto the following steps in the
workflow while MapReduce must immediately write
results to the distributed filesystem.

• Rich set of transformations: this complements the
capability of MapReduce, facilitating more natural
computation expression by users, including window
transformation operators that utilize a micro-batching
approach, i.e., dissecting data streams in tiny process-
able batches within small time intervals;

• In-memory processing across servers: unlike MapRe-
duce, Spark does not rely on disks for reading and
writing intermediate data but uses random access mem-
ory (RAM). This results in a better performance for
large-scale data processing (at least three times faster,
according to Apache) than Hadoop.

Despite the differences, various modules in the Hadoop
ecosystem can be integrated into the Spark framework. For
instance, Spark can read and write all the data formats
accepted by MapReduce and can link NoSQL databases like
HBase.

2) APACHE FLINK
Flink is a recent framework for stream processing as well as
batch processing with a core, high-throughput, low-latency,
and fault-tolerant streaming engine designed for distributed
native streaming [100]. Akin to Apache Spark (discussed

in Section VI-D), Flink supports multiple programming lan-
guages for the development of applications, including Java,
Python, SQL, and Scala. Even though Flink is only a compu-
tational engine without internal data storage options, external
data storage or platforms can be integrated. Flink supports
various input/output sources, including Kafka, RabbitMQ,
and Kinesis messaging (discussed in Sections V-B and V-E).
Flink can scale horizontally, subject to appropriate partition-
ing in the underlying data stream platform. It supports both
API and SQL queries for pattern matching. In comparison,
Confluent KSQL for Kafka has limitations on scale and only
supports Kafka for input and output.

Compared with Spark, Flink differentiates itself in the
following aspects that make it more suitable for RTA:

• Event-level processing: unlike Spark, which processes
data using micro-batching with second-level latency,
Flink processes data streams in true real-time (sub-
second latency), treating batch processing as bounded
data streaming;

• Flexible windowing: Flink provides operations and
transformation as part of its DataStream API, including
flexible window computations, such as sliding (over-
lapping time-driven windows of fixed length), tumbling
(time-driven windows of specified size without overlap-
ping), and session windows (demarcation of windows
using the period of inactivity), whereas the support of
windowing in Spark is limited by nature;

• Event pattern detection: its FlinkCEP library offers com-
plex event pattern detection capabilities;

• Support of controlled cyclic dependency graph: instead
of DAGs, this approachmakes the iterations in the native
platform more efficient, resulting in better scalability
and performance, which is especially beneficial for the
use of ML algorithms.

While Spark has been dominant in big data analytics for
years with a huge community, Flink has gradually gained
popularity within the RTA world. The Spark community
has recognized the ideas brought by Flink and commenced
attempts to apply them in Spark. As an example, [120]
has proposed a real-time video partitioning tool using Flink
deployed on the cloud.

3) EVENTSWARM
EventSwarm [121] is an open, Java-based programming
framework with a variety of pre-defined event abstractions
and event pattern types implemented in Java. Figure 9
demonstrates its conceptual model. EventSwarm supports
the processing of all types of event streams, including
financial market events like stock trading, Twitter feeds,
and HL7 V2 messages in the eHealth domain. Specifi-
cally, EventSwarm continuously detects event pattern types
and generates an alert or invokes a business action upon
the occurrence of a specific event pattern type. Addition-
ally, it has capabilities for filtering computed abstractions
such as statistical analysis, supporting causal precedence in
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FIGURE 10. EventSwarm architecture.

sequence patterns, and handling time and ordering issues
using a range of mechanisms, including buffering, causal
ordering, flexible relationships, and time skew allowance.
Two types of applications implemented using this framework
include pattern-oriented ones that are designed for partic-
ular pre-defined event patterns and domain user-oriented
ones that allow new event patterns to be defined by domain
users. The latter typically requires a user-friendly graphical
interface.

Note that Drools Fusion [103], a production rule-based
data stream analytics platform, has also adopted similar
semantics.

E. SUMMARY
Overall, event processing technology is broadly applied
in many application domains and is still being actively
researched. Among all the data stream analytics platforms
available, many commonalities exist, but the underlying
EPL and product functionality varies in accordance with
the relevant domain and targeted community and mar-
kets. Each of the languages/products listed in Table 3 and
Figure 8 has its advantages and disadvantages, reflecting
the common trade-off between expressiveness and effi-
ciency. Consequently, the selected EPL can affect the
performance, scalability, availability, and maintainability of
data stream analytics, and there is currently no one-size-
fits-all solution. Each platform has limitations, and it may
be costly and troublesome to switch from one platform
to another. Software engineers and domain experts should
consider the key features discussed in the preceding sec-
tions and select the most appropriate platform for their
needs.

VII. ANALYTICS TOOLS (LAYER 4)
The Analytics Tools layer (Layer 4 of the analytics stack,
as shown in Figure 4) captures many analytics techniques,
augmented with machine learning and AI algorithms, that
can provide support for better data insights and prediction
capabilities.

A. AI/ML FOR DATA ANALYTICS
First of all, the following list shows examples of different
types of data analytics tools for general purposes, matching
various key stages in the usual data analytics lifecycle:

• Data collection tools: survey/data entry tools, e.g.,
Qualtrics [122] and REDCap [123];

• Data pre-processing tools: Data Wrangler [124], Open-
Refine [125];

• Data storage management systems: SQL databases, e.g.,
MySQL [126], PostgreSQL [127]); NoSQL databases,
e.g., Cassandra [128], MongoDB [129];

• Statistical analysis tools: R, SAS [130], Stata [131], and
SPSS [132]. In particular, these tools often have visual-
ization capabilities in-built for a decent presentation of
analytics results. For predictive analysis, many machine
learning tools are available, which will be separately
described as follows.

Further, the proliferation and increasing sophistication of
artificial intelligence (AI) provide an avenue to perform
data analytics tasks with minimal human intervention. There
are two major branches of AI for data analytics, namely
rule-based AI and data-based AI, also known as machine
learning (ML), including artificial neural network-based deep
learning models such as the trending large language models
(LLMs) [133]. Rule-based AI normally involves a set of
human-defined ‘‘if-then’’ rules with conditions and actions
that facilitate inference and decision-making, e.g. [78].
Data-based AI has gained prevalence in recent years and pro-
vides data-driven inference, learning, and creation of models
through training and validation and prediction of activities
in a particular domain, e.g. [70], [72], [73], [74]. The dis-
tinctions between rule-based and data-based AI include the
following:

• Rule-based AI features deterministic models, so the
results are fixed as long as the rules are set. This is
more suitable for cases where the knowledge is well-
established. Data-based AI (ML) models largely rely
on probability and can evolve continuously through
ongoing training. This is particularly important for con-
tinuous data streams;

• The inference of rule-based AI is based on the known
knowledge, whereas ML training can discover new
knowledge or trends from large volumes of data which
is uninterpretable directly, and thus ML training creates
models to capture this discovered knowledge for future
prediction, classification, and other activities;

• ML requires larger amounts of training and testing data
for meaningful results as opposed to rule-based AI,
which requires much less data.

In many cases, ML is well suited for RTA due to its evolv-
ing nature. Much research in ML has focused on accessing,
curating, and pre-processing data sets for training purposes.
Note that some consider ML as a method of data analyt-
ics that automates analytical model building. Specifically,
conventional data analytics uses existing data to generate
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insights. By contrast, ML focuses on building and training
models/algorithms using some existing data and conducting
predictive or classification analyses on other data. There are
many types of ML algorithms, including supervised learning
(classification and regression), unsupervised learning (clus-
tering), self-supervised learning (for processing unlabeled
data to obtain useful representations that can help with down-
stream learning tasks), semi-supervised learning (combining
supervised and unsupervised), and reinforcement learning
(learning from mistakes for reacting to the environment).
Machine learning models range from traditional methods like
regression algorithms, decision trees, random forest (RF),
and support vector machine (SVM) to more advanced neural
network-based deep learning (DL)models such asmulti-layer
perceptron (MLP), convolutional neural network (CNN),
recurrent neural network (RNN), long short-term memory
(LSTM), gated recurrent unit (GRU), and autoencoders (AE).
ML and DL models have been extensively employed in
almost all fronts of academia and industry. The most recent
large language models are mostly based on LSTM with
attention mechanism, and reinforcement learning has been
utilized.

Figure 11 describes the types of AI andML algorithms that
can be integrated into RTA solutions.

In addition, libraries and tools that facilitate ML tasks
include the following:

• Open libraries: TensorFlow, Keras, PyTorch, Scikit-
learn, etc. These libraries are mostly Python-based and
are broadly used in both academia and industry;

• Open tools and frameworks: Weka, KNIME, Apache
Mahout, etc. These tools/frameworks are free to
use and provide integrated platforms for ML-based
analytics;

• Commercial tools: RapidMiner, Google Colab, Google
ML, Amazon ML, etc. These tools are provided by
giants like Google and Amazon, either as a standalone
platform or as an optional service within their cloud
computing offerings.

B. DATA ANALYTICS TECHNIQUES FOR STREAM
PROCESSING
Due to the unique requirements of RTA, special techniques
for data stream analytics may be required in addition to
the generic analytics techniques for static data, including
continuous computation updates, data stream sampling, and
out-of-order event handling.

Firstly, mathematical and statistical computation over data
streams must take into account that the data is dynamic
and changing over time. In most cases, the data arrival
can be managed by a sliding window abstraction, enabled
in most data stream analytics platforms, as discussed in
Section VI, meaning that the arrival of new events may result
in the removal of old events based on the type of sliding
window. Therefore, the computation must be continuously

FIGURE 11. Taxonomy of AI used in real-time analytics.

updated over time, including simple calculations like min,
max, mean, average, and standard deviation and more com-
plex algorithms like multivariable regressions. The trigger of
computation updates can be simply time ticks, event arrival,
or event removal.

Secondly, when dealing with an infinite stream of data
or data streams with huge volumes, it is crucial to balance
the cost, performance, and timeliness. Data stream sam-
pling techniques come into play under such circumstances,
meaning extracting a representative sample of events from
a particular data stream. Types of data stream sampling
include sliding window reservoir sampling and biased reser-
voir sampling [134]. For instance, when adopting prediction
algorithms like regression modeling on huge amounts of
incoming data, data stream sampling algorithms need to be
applied.

Lastly, the ordering of events from multiple sources is
always non-deterministic. In particular, events can arrive out
of order, and clock skew across event sources can result
in the source timestamps being inconsistent with causality.
Handling out-of-order events and clock skew is essential for
accurate pattern matching on streaming data [121], [135].
A variety of techniques are available, such as buffering for
a certain amount of time before processing, recalculating
upon receipt of an out-of-order event, adding checkpoints for
incremental aggregation, fuzzy timestamp comparison (e.g.,
events considered concurrent if timestamp difference is<N),
vector clocks in bounded contexts or designing calculation
algorithms that ensure correctness in case of out-of-order
events.

Due to the commonality between real-time data streams
and time series, many techniques for time series analysis can
be used for data stream analytics. However, adjustments to
these techniques may be necessary to satisfy specific data
stream analytics requirements, as discussed in the three points
above.
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C. REAL-TIME ANALYTICS COUPLED WITH MACHINE
LEARNING – A NEW TREND
The recent maturity of AI and ML has pushed data analyt-
ics to a new level with data-driven inference, learning, and
forecasting capabilities. In light of this, applying ML and AI
technologies to real-time predictive analytics has gradually
become a new trend recently. Processing of continuously
changing data streams for ML purposes, however, brings
many additional challenges [136]. One of them is continuous
learning capabilities, meaning the model’s ability to learn
continuously from a data stream. This requires flexible archi-
tectures to support the integration of pre-processing, training,
and prediction tasks.

There are primarily two paths to achieving this, namely,
extending existing ML tools by adding event processing
capabilities and extending existing streaming platforms by
integrating ML capabilities. A case in point for the first path
is that the newest version of TensorFlow 2, a mainstream
Python machine learning library, has supported interfacing
with the Kafka platform to enable RTA [137]. Other exam-
ples include a recent extension of the scikit-learn library
called stream-learn proposed in [138], the River library pro-
posed in [139], a software design that combines Automated
Machine Learning (AutoML) with complex event process-
ing [83], and extending Kafka with artificial neural network
for RTA prediction tasks [75]. Examples of the second path
include the Kafka-ML framework that integratesML capabil-
ities into Kafka to facilitate the management and deployment
of ML/AI pipelines through data streams [140] and Flink ML
API/library [141] to support ML pipelines built on top of
Flink. The architecture proposed in [142] has further com-
bined event pattern detection capabilities from EventSwarm
with Kafka and TensorFlow. In summary, the key components
of such a combined approach include:

• Fetch: a data collection component that delivers data
(events) from external sources for processing.

• Stream Processor: a component for simple event pro-
cessing, e.g., filtering, placing events of specific types
on different event channels, possibly to be persisted via
specific messaging topics, keeping a persistent store of
event occurrences that can subsequently be processed
for analytics purposes. An example of implementing this
component is Kafka.

• Catch: an event pattern detection component that pro-
cesses the events from the Stream Processor and
matches patterns as per CEP rules. This compo-
nent applies sophisticated CEP functionality over the
events.

• Trainer: an ML training component intended to train
models using datasets created incrementally on the
Stream Processor. These datasets consist of either the
data from the raw events received by the Stream Proces-
sor from Fetch or the event pattern instances matched
by Catch. The dataset supplied to the machine learning
model is determined by the user.

TABLE 4. Applications of combining ML/AI and RTA in recent literature.

• Predictor: a component that uses the trained model pro-
duced by the Trainer, applying it to incoming raw events
or detected event patterns to generate predictions. Being
separate from Trainer, the Predictor continues its tasks
without interruption while the ML model is updated
in the background. An example of implementing the
Predictor and Trainer components is TensorFlow.

These components will be described in more detail in the
case study presented in Section VIII-B.

Table 4 lists representative example applications of com-
bining ML/AI and RTA techniques in the selected literature.
Noticeably, the application fields are broad, but the data types
involved were mostly time series or event-based data, includ-
ing financial time series, video streams, Tweets, weather time
series, and IoT events. The RTA solutions vary, but all fall
into the RTA stack we have defined in Section IV. TheML/AI
techniques applied range from traditionalMLmodels to more
advanced deep learning models.

VIII. CASE STUDIES: FINANCE AND HEALTH DOMAINS
To demonstrate the real-life application of the concepts,
methods, and technologies discussed in the sections above,
this section will consider some scenarios in the real-time
financial market and health data analytics and then illustrate
how the implementation of real-time analytics (RTA) solu-
tions can address user requirements in these scenarios. These
case studies will provide relevant researchers and practi-
tioners with more concrete implementation examples, which
further support the answering to RQ2 – ‘‘How can practition-
ers design and implement their ownRTA solutions’’, and RQ3
– ‘‘How can practitioners design and implement their own
RTA solutions’’, as identified in Section I-B.
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TABLE 5. Data quality control rules for duplicate dividend
announcements.

A. FINANCE SCENARIO 1 – RULE-BASED DATA QUALITY
CONTROL
It is commonly seen that finance experts need to spend a
vast amount of time on data collection and pre-processing,
in many cases, manually. Complexity arises when deal-
ing with data quality issues, including non-temporal ones
like missing data, duplication, and inconsistencies, as well
as temporal ones like poor timeliness, out-of-order events,
overlapped events, timestamp conflicts, etc., so data quality
control (also known as data cleansing) is an indispensable
phase of the data pre-processing, as they potentially render
the final analysis results error-prone or unreliable.

In this scenario, a real-time data stream is simulated using
historical data downloaded from Refinitiv tick data that is
part of the Datascope product [144], and we define some
complex event processing rules to detect particular event
pattern occurrences related to the data quality issue called
‘‘duplicate dividend announcements’’. This scenario involves
six rules, as shown in Table 5.

The CEP architecture shown in Figure 10 deals with the
scenario described above. It combines ripple-down rules (as
discussed in Section VI-C) with data stream processing.
It is comprised of four key components: a stream processor
handling incoming real-time event streams (Layer 2 of the
analytics stack), a CEP component responsible for event
pattern detection (Layer 3 of the stack), an RDR Builder
allowing finance experts to define ripple down rules with
domain-specific patterns (Layer 5 of the stack), and an RDR

FIGURE 12. Example CEP application for real-time financial data quality
control.

Engine that executes pre-defined rules, invokes the event
pattern detection function of the CEP component, and con-
ducts further analytics of the results (Layer 4 of the stack).
In summary, the RDR component manages rules to express
the high-level processing logic, and the stream processor and
CEP components facilitate real-time data stream processing
and analytics, whose role is to detect event pattern occur-
rences as defined in each rule in Table 5. The combination
of these technologies allows for flexibility in event pattern
rule definition and management.

A prototype was implemented using EventSwarm, intro-
duced in Section VI-D, as the selected CEP engine and
using Kafka as the stream processor. To facilitate fast and
convenient development, event pattern definition constructs
are provided as Ruby wrappers of the core Java library of
EventSwarm. Event pattern types are defined in Ruby as
directed acyclic graphs with nodes denoting events and edges
denoting relationships and functions such as slidingwindows,
filters, and abstractions. Matched event pattern occurrences
are then sent back to the RDR Engine component to generate
subsequent calculations, actions, or alerts.

Experiments involved a finance expert defining the set of
six event pattern rules as listed in Table 5. The event pattern
types were specified in a natural language (English) and
communicated to the IT expert, who then coded the event
pattern types in the CEP component. The finance expert then
was able to define the six rules using the RDR Builder and
selected the rules to be executed using the RDR Engine,
which then invokes the CEP component, i.e., EventSwarm,
using an HTTPGET request to a configurable URL. Detected
event pattern occurrences are returned in JSON format, which
are then sent back to the RDR Engine for further processing,
giving the option for the finance expert to download and
inspect the results at any time.
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FIGURE 13. Common stock price movement patterns.

The experimental results have shown the advantages of
this application, including a simple and easy-to-use API that
enables easy integration of EventSwarm into various applica-
tions; speedy and efficient complex event processing with an
average of over 10,000 events processed per second on tick
history daily stock market data, which is in line with the per-
formance of a locally deployed bespoke program dedicated
to a fixed event processing computation; rapid definitions of
new event patterns (approximately one day for all the six
patterns in Table 5 ); and well-structured output in the JSON
format that is convenient for further analysis.

A couple of limitations of this RTA application need to be
highlighted. First, the natural language (English) was used
by finance experts to define event patterns, and communi-
cation between the finance experts and the IT practitioners
is required. To fully automate the event pattern definition
process, natural language processing techniques can be inte-
grated. Second, only one type of CEP was available in the
application, which can be extended by wrapping multiple
CEP services using a service-oriented architecture.

This scenario highlights the capability of employing
rule-based inferencing (rule-based AI) for RTA and how this
architecture can be implemented in real life. This approach
works best when the rules, part of the domain knowl-
edge, are already established or easy to identify and explain
(e.g., the rules for data quality control in this scenario
are well-identified and established). In such cases, domain
experts and IT practitioners can define the rules based on
existing domain knowledge without training, as opposed to
machine learningmethods (data-drivenAI), where the knowl-
edge and patterns are determined based on large amounts of
data. More cases like this, including this scenario, can be
found in our previous work [145], [146].

B. FINANCE SCENARIO 2 – ML-BASED PAIRS TRADING
DETECTION
Pairs trading detection analysis has gained popularity as a
profitable investment strategy over the last decades. The
goal is to identify correlated securities whose trade prices
move in the same direction, i.e., following similar patterns.

FIGURE 14. An instance application for real-time analytics with machine
learning capabilities.

Common patterns of stock price movement are described in
Figure 11 [142], including Rectangle, Flag, Double Top, and
Double Bottom. Key elements of these patterns are gradients
of movement which can be up, down, or flat. Each gradient
line segment denotes the stock prices carried by quote events
in the financial market data. Pairs trading detection is benefi-
cial for investors to monitor specific trading opportunities in
real-time or select assets during portfolio construction.

In this scenario, machine learning was used to facilitate the
detection of pairs trading event patterns. The datawas sourced
from Yahoo Finance. An event pattern to be detected in this
scenario is two or more events in the same direction. We used
the method of combining event pattern detection capabilities
from EventSwarm with Kafka and TensorFlow, as described
in Section VII-C.

The key components used to implement this method are
shown in Figure 14 [142]. In addition to the components
described in Section VII-C, the Dashboard is the user inter-
face (implemented by React.js) that allows users to specify
event patterns, which serves as the domain-specific solution
(Layer 5 of the analytics stack). The Orchestrator (imple-
mented by Express.js) is the component that coordinates
the activities of other components and manages the internal
state of the application. Continuous learning is supported by
collecting the event pattern instances detected by the Catch
component (implemented using the EventSwarm frame-
work), which serves as Layer 3 of the analytics stack. These
event pattern instances are then persisted in the messaging
layer of the Stream Processor (implemented using Kafka, cor-
responding to Layer 2 of the analytics stack) and can be used
as training data sets for the Trainer component and testing
data sets for the Predictor component. The Trainer and Pre-
dictor correspond to Layer 4 of the analytics stack and are
both implemented using TensorFlow. In addition, Flask has
been used to facilitate communication between components
through APIs.

Training data is either sourced from Yahoo Finance by
the Fetch component every minute, encoded in a JSON
message, and published on the corresponding Kafka topic,
or retrieved from event patterns captured by the Catch
component.
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In this experiment, a prototype has been implemented,
including two graphical user interfaces (GUIs), namely the
Define Tile and the Display Tile. The Define Tile allows
a user to choose the ‘‘Analytics Type’’, including the ML
algorithm type and the CEP type. In particular, for ML
algorithm types, a finance expert could select one of the
ML Algorithms, including the LSTM neural network and
Dynamic Time Warping (DTW), in this implementation,
which can be extended with other algorithms easily. The
Display Tile enables the user to specify the stock code of
the stocks in question and the data source that the Training
component can train on, initiate the training process, and
download the real-time dataset in CSV format; this interface
shows a counter for the number of detected event patterns,
which ticks when a match is found by the Catch component,
together with the result of predictions.

From the technical perspective, the Trainer pulls data from
a Kafka topic based on the Data Source specified, then per-
forms the training, after which the trainedmodel is transferred
to the Predictor for predictions on the new incoming data from
the same Data Source.

In our experiment, the finance expert was able to cre-
ate RTA tasks on pair trading for two different companies,
namely Microsoft (stock code ‘‘msft’’) and Apple (stock
code ‘‘aapl’’). In this scenario, DTW was selected as the
ML algorithm type, and the GUI showed that the calculated
DTW value was approximately 3.84, meaning that these two
stocks tended to peak together during the experiment period.
It should be noted that the smaller the distance, the more
correlated these event patterns are, i.e., these two stocks
tend to move in a similar way during this scenario. If the
DTW equals 0, it indicates identical event patterns. This
experiment has proven the functionality of the method, and
finance experts or investors can test with various stock pairs
and identify their correlations, i.e., to what extent their prices
move in a related manner in real-time.

This scenario reveals the feasibility of integrating
data-driven AI (machine learning) into an RTA solution,
enabling continuous real-time training and forecasting, and
how this architecture can be implemented in practice.
More detail of this scenario can be found in our previous
work [142].

C. HEALTH SCENARIOS AND APPLICATIONS
Typically, healthcare information is held in different reposi-
tories, and in many situations, real-time access and analytics
are required to improve the safety, quality, and efficiency
of healthcare. This access is enabled through improved
interoperability owing to the emergence of the HL7 FHIR
standard [147], both in terms of the common data model and
API specification of the standard. So, the analysis of large
amounts of health data from different sources, including the
detection of clinical patterns of interest, can provide action-
able insights to improve operational quality and efficiency
for providers, ultimately leading to consumer benefits [148].

This ability is also important in support of the shift from
volume-based to value-based healthcare [149].

For example, in our previous work [121], we used
EventSwarm CEP for monitoring a stream of health data
carried by healthcare messages arriving from pathology labs
and generating notifications when certain conditions were
detected to assist parties involved in healthcare delivery. The
purpose of this work was to detect unusual or inappropriate
lab ordering, critical clinical conditions related to patients’
health conditions, and data quality issues with laboratory
equipment.

For unusual or inappropriate lab ordering detection,
we used the sliding time window pattern to immediately
identify orders for a test that has recently been ordered by
another clinician (i.e., duplicate orders). Detecting such con-
ditions can lead to reduced costs associated with unnecessary
requests, which do not add any further clinical value. For
example, there is no clinical value in repeating a request
for an INR test (which measures the time for the blood to
clot) within some threshold time interval (e.g., three days),
and thus we use a time-window mechanism to implement
this rule, where a clinician changes the threshold value as
required. This is essentially Layer 3 of the RTA stack, as we
relied on the available EventSwarm constructs, but through
the use of statistical analysis, it can be extended to detect
where a clinician is ordering higher-than-usual volumes of
tests, which can indicate either disease outbreak or over-
servicing, which is an example of Layer 4 of the RTA stack.

For critical clinical condition detection, the application
provides the basis for a real-time clinical decision support
system for situations that require rapid reaction (also Layer
4). This is achieved through applying rule-based AI to com-
bine pathology results arriving in a stream of data messages
and patient data stored in a clinical repository to iden-
tify patient clinical risks. Examples of detecting such risks
include monitoring Haemoglobin A1c results and combining
them with patient age, diagnoses, and medications to identify
high-risk diabetes patients; and monitoring blood creatinine
results and, again, combining them with patient age, diag-
noses, and medications to identify patients at risk of kidney
failure. The detection of such clinical conditions has been
achieved by combining rule-based AI with EventSwarm,
akin to the architecture shown in the first finance scenario
(Figure 12). The processing capability of EventSwarm (e.g.,
the order of 1000 messages/sec) is much higher than what is
required in a typical laboratory environment at present, but we
expect that the increasing number of patients and test results
will require such functionality in the near future.

For data quality issue detection, we implemented statistical
analysis of pathology messages and rule-based inference into
RTA to detect ‘‘outliers’’. Syndromic surveillance in real-time
was implemented by calculating continuous and incremental
statistics for pathology results in messages, then evaluating
configurable syndromic surveillance rules. Examples of rules
are: when a single data point is great than three standard
deviations (SD) from the mean; or when 2 of 3 successive
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FIGURE 15. Real-time architecture for pathology analytics in a typical
laboratory setup.

points are greater than 2 SD from the mean. These conditions
can identify data quality issues in source systems and allow
healthcare providers to improve patient safety through early
detection. Figure 13 depicts the overall RTA architecture for
this implementation, deployed as an add-in to a typical labo-
ratory setup. From a technical perspective, Pathology orders
or results are exchanged via a message bus between a request-
ing system and a laboratory information system. In this case,
the RTA solution treats each of the messages as an event and
applies the required rules as themessages flow to and from the
laboratory system. EventSwarm (corresponding to Layer 3 of
the RTA stack) was used to intercept messages sent between
the requestor and the laboratory system and applies rules
for ordering (e.g., detecting duplicate orders) or for results
(e.g., for the CDS and data quality issues). Here, the system
intercepts and creates a copy of each message transmitted to
and from a laboratory to EventSwarm processing components
that implement rules for data quality and duplicate orders.
In case of an event pattern match, the EventSwarm then sends
an alert to a clinician in the case of the CDS or duplicate order
or to the laboratory operator when a new message matches a
data quality alerting rule.

The health scenarios discussed above highlight the use of
CEP and rule-based AI to improve healthcare messaging,
safety, and efficiency. By monitoring quality metrics and
detecting duplicates in pathology orders, alerts are gener-
ated to notify relevant parties. The implemented solution
demonstrates efficient processing of HL7 v2 messages and
suggests potential applications in monitoring medical terms
and detecting various issues in healthcare settings. Despite
the successful application in real life, improvements can be
achieved by implementing data-driven AI (ML) techniques
when the rules are unknown to the domain, especially when
a large amount of clinical data is available.

In addition, two other applications in the industry are
worth noting. The first one is Beamtree [150], an Australian
company that provides real-time clinical and health data

management with ripple-down rules (RDR, a special rule
management technique discussed in Section VI-C) integrated
into the RTA implementation. Taking advantage of RDR, the
rule base stores clinical knowledge, and expertise, supporting
decision-making at scale. The second application is Path-
ling [151], used for the development of health data analytics
applications and workflows used in digital health. It leverages
the increasingly-used HL7 FHIR standard and makes use of
the RTA features of Apache Spark (Layer 3 of the RTA stack).

IX. LESSONS LEARNT, CHALLENGES AND FUTURE
DIRECTIONS
A. LESSONS LEARNT AND REMAINING CHALLENGES
There are several lessons learned from this review. First of all,
integrating ML and AI into real-time analytics (RTA) solu-
tions has become increasingly prominent in recent literature
and practice. As illustrated in Section II and as can be seen in
Table 4 in Section VII-C, there are not many applications with
integration of ML/AI techniques into RTA, although indus-
trial systems such as digital twins are increasingly adopting
ML/AI and RTA in various manufacturing and industrial
applications [152]. In addition, despite the proliferation of
deep neural networks in recent years, more than half of these
existing attempts merely used traditional ML algorithms or
rule-based AI rather than advanced deep learning models.
However, in many cases, traditional ML and rule-based AI
would satisfy the real-life requirements, as described in our
case studies in Section VIII.

Several research challenges remain in the area of real-time
analytics (RTA). First of all, machine learning and complex
event processing are still two distinct areas that have not been
integrated to their full potential. Mechanisms for incremen-
tal learning in real-time using existing technologies are yet
to be investigated. Automating user choices related to ML
technique selection and fine-tuning by integrating additional
external components for data profiling, transformation, and
mining may enable more complex ML techniques, e.g., deep
learning and large language models (LLM), to be deployed
with CEP-established techniques. This requires applying
complex data transformations as required by these tech-
niques. In particular, despite the potential to integrate LLM
into RTA systems, this area is still largely unexplored.

Secondly, in many cases, domain users and IT practitioners
still have to communicate with each other either verbally or
in writing to implement components of RTA solutions. For
instance, in the first finance scenario in Section VIII-A, the
finance expert had to write in a natural language (English in
this case), and then the IT practitioner could then implement
the event patterns to detect data quality issues in EventSwarm,
which was non-trivial work for both finance experts and IT
practitioners. Improvements should be made to simplify and
automate such processes.

Thirdly, the data quality of the event streams used in RTA
is a key determinant of the quality of analytics results, espe-
cially the performance of ML models. The need for ensuring
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data quality while executing machine learning algorithms
is worth noting, especially when event streams consist of a
large number of low-level features. Real-time dimensionality
reduction to represent domain knowledgemore preciselymay
be necessary, and this remains challenging.

Another challenge is that there is a gap between the exper-
tise level needed to use RTA techniques and the capabilities of
domain experts. Domain experts are not able to complete such
analytics tasks by themselves without the intervention of IT
experts. Therefore, it is critical to develop user-friendly and
domain-specific solutions that have domain-specific models
integrated into existing methods.

Last but not least, standards are lacking for supporting
interoperation between systems across the various layers or
components of the analytics stack discussed in Section IV or
even various RTA platforms. Specifically, no standard exists
for the representation of event-based abstractions, including
event types and event pattern types. It is essential to propose
generic models and standards for accurate abstraction repre-
sentation, domain knowledge representation, and facilitating
interoperability between relevant platforms.

B. RESEARCH AGENDA
Based on the remaining challenges discussed, we highlight
the following future research directions, which require explo-
ration from the broader research community.

1) SYNERGY WITH LLM
This is inspired by the benefits of increasingly popular large
languagemodels (LLMs). For example, event pattern descrip-
tions in CEP could be considered knowledge graphs that
capture real-time semantics like temporal and causal relation-
ships. Incorporating such knowledge graphs into LLM may
add more formal semantics to the LLM in a way suitable for
the real-time analytics domain, leveraging CEP experience
and solutions. On the other hand, LLM can be leveraged
to feed the natural language processing results into RTA
solutions, such as converting domain experts’ statements into
the required syntax within the RTA solution. One example is
the use of CEP constructs as a target language for conversion
from natural language expressions of domain experts. Again,
in the first finance scenario in Section VIII-A, this would be
a conversion from the natural language expressions of event
patterns provided by finance experts into EventSwarm code
constructs that describe the event patterns. This would min-
imize the time-consuming and inefficient communications
between finance experts and IT practitioners.

2) EXPLORATION OF REAL-TIME FEATURE EXTRACTION
To ensure data quality of continuously arriving data streams,
real-time feature extraction is a topic worthy of extensive
research. This could be achieved, for example, by deploying
and applying feature extraction techniques in a distributed
manner upon low-latency and high-performance infrastruc-
ture. Sufficient experiments and appropriate evaluation met-
rics are required to assess any proposed method in this regard.

TABLE 6. Summary of core sections in this paper.

3) ENHANCING USER INTERFACE AND EXPERIENCE.
RTA and ML/AI are both highly technical fields that require
deep understanding, programming expertise, and competent
technical skills. Thus, in many scenarios, domain users may
find RTA systems difficult to use. More research on improv-
ing the user interface to enhance the user experience is
needed. One possible solution could be encapsulating all
technical details into fully automated systems. For instance,
in our recent work [83], we attempted to combine CEP with
AutoML instead of traditional ML or DL, so domain users do
not need to be concerned about setting up and fine-tuningML
models, such as data preparation, feature selection, feature
extraction, hyperparameter tuning, etc.
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4) FORMULATION OF INTEROPERATION STANDARDS
To facilitate smooth communication between components of
one RTA system or between multiple various RTA systems,
standards of data modeling abstracting domain knowledge,
events, and event patterns should be formulated. This could be
achieved by discussions in conferences gathering top experts
in the RTA field, setting the protocols to agree on world-
wide, augmented by promoting these solutions in an open
community manner, and possibly leveraging other related
repositories and communities such as Hugging Face [153].

It is our intent to continue exploring new academic and
industry trends related to AI developments, formal knowl-
edge ontologies, and techniques, such as knowledge graphs,
as well as new architecture and software language develop-
ments, such as Elixir [152] and applying them in finance,
health, and other domains, as we have been doing in the past.

X. CONCLUSION
This paper has provided an overview of real-time analyt-
ics (RTA) solutions, including the relevant infrastructure,
processing, and analytics platforms, as well as analytics
techniques and software tools. They were described in the
context of a logical analytics stack we developed to sup-
port the description of key functionality and relationships
between components. Several application scenarios in the
finance and health domains have been illustrated as case
studies to demonstrate the utilization of the techniques and
technologies discussed in this paper. Table 6 summarizes
the content of the core sections. Key research questions for
designing RTA solutions have been answered. Specifically,
RQ 1 - ‘‘In accordance with recent research and industrial
practice, what are the key concepts, prominent software archi-
tectures, techniques, and tools available for RTA solutions’’
is addressed by reviewing, illustrating, and summarizing the
RTA-related technologies seen in themost recent publications
and industrial applications. RQ 2 – ‘‘How can software engi-
neering practitioners design and implement their own RTA
solutions?’’ is addressed by thoroughly discussing different
RTA architectures and their components. Furthermore, the
real-life case studies enhance the focus on practicality. RQ3
– ‘‘What are the methods to integrate machine learning or
artificial intelligence into RTA solutions’’ has been addressed
by reviewing, classifying, and discussing different ways of
combining RTA and ML/AI, which is again supported by
real-life applications demonstrated in the case studies.

This review paper focuses on a unique software perspective
of the RTA topic. The novelty of this paper is three-fold.
First, our review highlights the methods to integrate ML/AI
techniques into RTA solutions. Second, practicality is kept
in mind throughout the paper, so we have reviewed both
research publications and industrial applications. Last, the
demonstrated real-life case studies in finance and health
enhance the paper by giving more concrete guidelines
for practitioners. Remaining challenges and future research
directions, including integration of machine learning and

complex event processing to their full potential (e.g., the
potential ways of incorporating LLM), data quality, stan-
dards for interoperation between components, and domain
user-friendly solutions, have been discussed. The content of
this paper is significant in that it answers all the identified
research questions, and it provides not only a scholarly review
of the related state-of-the-art research work but also industrial
practices, including real-life implementations and potential
future directions, which would benefit both academia and
industry in the broader RTA-related community.
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