
Received 10 May 2023, accepted 4 July 2023, date of publication 14 July 2023, date of current version 21 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3295496

Energy-Aware Optimum Offloading Strategies in
Fog-Cloud Architectures: A Lyapunov Based
Scheme
NECO VILLEGAS 1, LUIS DIEZ 1, IDOIA DE LA IGLESIA2, MARCO GONZÁLEZ-HIERRO2,
AND RAMÓN AGÜERO 1, (Senior Member, IEEE)
1Communications Engineering Department, University of Cantabria, 39005 Santander, Spain
2IoT and Digital Platforms Department, Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), 20500 Arrasate/Mondragón,
Spain

Corresponding author: Neco Villegas (villegasn@unican.es)

This work was supported by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional,
MINECO-FEDER) by means of the Project SITED: Semantically-enabled Interoperable Trustworthy Enriched Data-spaces under Grant
PID2021-125725OB-I00.

ABSTRACT We introduce offloading policies for fog-cloud architectures that consider different perfor-
mance parameters. We design and develop a three-tier platform, using virtualization techniques, which
can be used to deploy different scenarios, with nodes having distinct features, mimicking fog and cloud
characteristics. We then exploit Lyapunov’s control theory to introduce offloading policies that balance
energy consumption at fog nodes and monetary cost of using the cloud. The proposed scheme is able to
find a trade-off between these two parameters, while ensuring system stability and so delay requirements.
We compare our algorithm with baseline solutions (adapted round-robin), and the results evince that it is
able to yield better performance, even under high loads and stringent energy requirements. By tweaking the
algorithm operational parameters, we show that it is able to adapt its behavior to different goals, and we
assess its performance under realistic configurations.

INDEX TERMS Fog, cloud, offloading, Lyapunov, energy, modeling.

I. INTRODUCTION
Today, the number of cloud services is continuously increas-
ing, especially those offered by key players such as Microsoft
Azure, AWS, and Google Cloud. Their demand has been
fostered, among other applications, by the surge of Internet of
Things (IoT) and Industrial IoT (IIoT) services. In fact, this
demand is rather likely to keep this increasing trend during
the coming years. At the same time, we have witnessed a vast
deployment of 5G networks, whose underlying technologies
bring several advantages, for instance in terms of latency,
availability, or reliability. Hence, many stakeholders and ver-
ticals that were constrained by their strict requirements see
now an opportunity to deploy different IoT and IIoT ser-
vices [1]. Indeed, together with themassive deployment of 5G
cellular networks, the number of IoT connections has already

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Merlino .

reached 14.6 billion, and it is expected to exceed 30 billion
by 2027.1

As a result, there is a growing interest in the strong inte-
gration of IoT with cloud computing, as this combination
brings many new opportunities. However, the expected strong
increase of IoT and IIoT services, their limited energy and
processing capabilities, and their deployment in new sectors
with more stringent requirements lead to situations where
cloud computing may not be affordable in terms of delay,
energy consumption or price, among other aspects. As an
alternative, fog computing has emerged as an extension of
cloud computing, providing high-performance computing
services for IoT applications by offloading tasks to a geo-
graphically nearby fog node instead of a remote cloud [2].
The implementation of offloading mechanisms in distributed

1https://www.ericsson.com/en/reports-and-papers/mobility-
report/dataforecasts/iot-connections-outlook

73116
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0002-5346-2308
https://orcid.org/0000-0001-5817-3308
https://orcid.org/0000-0002-9620-3990
https://orcid.org/0000-0002-1469-7860


N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

computing systems would depend on their particular func-
tionalities. As an example, in the case of the Kubernetes
framework, and those based on it, the load-balancer service
distributes external requests between multiple servers.

One of the main differences between cloud and fog
computing is the scale of hardware components. Cloud com-
puting provides high availability of computing resources
with relatively high power consumption (data centers), while
fog computing provides moderate availability of comput-
ing resources with lower power consumption (small servers,
routers, switches, gateways. . . ). Although both options, cloud
and fog computing, can be used independently, we claim it is
not needed to choose one, since fog and cloud complement
each other, and the cooperation between them leads to an
optimal use of resources, enhancing the capabilities of the
system in terms of energy efficiency, cost reduction, and data
processing, aggregation and storage. An orchestrator could
handle this cooperation between cloud and fog [3].

In this sense, services may experience poor performance,
increasing their latency due to queuing and computation
delays when large numbers of tasks simultaneously arrive at
a resource-constrained fog node. For this reason, cooperation
between fog nodes and the cloudmight bring several benefits.
This combination leads to three-tier (IoT-fog-cloud) architec-
tures, which leverage advantages from the two approaches,
reducing service delay and energy consumption. In addi-
tion, the strong dependency on cloud service providers
is alleviated, thus leading to (monetary) cost reductions.
In order to consolidate these potential advantages, it becomes
necessary to use a workload allocation scheme in an IoT–
fog–cloud cooperation system, which would yield optimal
performance for different scenarios and under heterogeneous
requirements.

Most of the concepts discussed above are also applica-
ble to edge-computing. Although fog and edge computing
both move the computing tasks closer to end-nodes, these
solutions are not identical. OpenFog Consortium (OPC)
establishes a clear distinction, since fog computing follows
a hierarchical paradigm, providing computing, networking,
storage, control, and acceleration anywhere, from cloud to
things, while edge computing tends to be limited to com-
puting at the edge. In this work, we will use the term fog
computing, but everything that will be discussed here is also
applicable to edge.

Along with all the advantages of fog computing, there are
some challenges to be tackled for computation task offloading
mechanisms. The first one is the amount of workload to
offload from fog to cloud instances, considering a potentially
broad range of performance parameters. Another question to
address concerns the place where timely decisions regarding
the offloading take place. In this paper, we focus on the
former, and we propose an adaptive algorithm that jointly
considers delay, together with energy consumption at the fog,
and monetary cost of the cloud.

The main contributions of this work are briefly summa-
rized below:

1) Based on a three-tier IoT–fog–cloud architecture,
we propose a workload dynamic allocation scheme that
considers the energy consumption andmonetary cost in
a random and uncontrolled environment.

2) We tackle the resulting stochastic optimization prob-
lem by applying Lyapunov’s control theory, so that
it boils down to a queue system stabilization prob-
lem. The resulting optimization problem can be then
solvedwith the drift-plus-penalty algorithm,which cor-
responds to a sequence of integer linear programming
(ILP) problems.

3) We perform a thorough analysis of the proposed
scheme in different scenarios, and under heterogeneous
conditions. The behavior of the proposed scheme is
also compared with benchmark solutions.

The rest of the document is structured as follows.
In Section II, we discuss existing works related to the com-
bination of IoT, fog, and cloud, as well as other workload
offloading algorithms, pointing out how our proposal differs
from them. In Section III, we describe the system model
and the solution proposed for the offloading algorithm. Then,
Section IV describes the platform that was deployed for the
evaluation, while Section V discusses the performance of the
proposed solution. Finally, Section VI concludes the paper,
summarizing its main outcomes, and providing an outlook of
our future work.

II. RELATED WORK
The combination of IoT and IIoT with fog and cloud com-
puting has recently attracted the attention of the scientific
community from different angles. With a global perspec-
tive, some works have proposed suitable architectures. For
instance, the authors in [1] focus on an architectural overview
of Industry 4.0, based on IoT-fog-cloud integrated solutions,
identifying a number of use cases and emerging challenges.
Similarly, Mouradian et al. present in [2] a survey of fog com-
puting, establishing a common and concise set of evaluation
criteria that embraces both architectures and algorithms. The
authors of [4] show an integrated architectural model for com-
bining Mobile Edge Computing (MEC) and fog computing
for 5G networks. They propose to dynamically orchestrate all
functions and needed resources at 5G nodes, without assum-
ing any predefined configuration. Although these works share
the same application scenario as ours, their scope is more at
the architecture level, while our main interest is on the pro-
cessing offloading logic, and algorithmic solutions to yield
optimum behaviors.

Other existing works have focused more specifically on
offloading approaches. Sengupta et al. propose in [5] a solu-
tion to secure a three-tier architecture as well as an offloading
technique to enforce security features. An alternative archi-
tectural solution is presented in [6], where the authors analyze
a hierarchical fog deployment, comparing it with flat topolo-
gies. The authors use queuing theory to analyze the system
performance, and they consider different types of requests,

VOLUME 11, 2023 73117



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

TABLE 1. Parameters and performance metrics considered in recent
literature for similar scenarios.

proposing offloading solutions to tackle high loads. The
authors of [7] discuss a novel SDN/NFV architecture that
embraces edge and cloud, to optimize computation tasks.
SDN is also used in [8] to introduce an algorithm that selects
the optimum access and computation points.

Another interesting group of works focuses on energy
consumption. For instance, computation offloading in a
fog-cloud environment is tackled, from an analytical perspec-
tive, in [9], where the authors seek to optimize the power
consumption using the accelerated gradient algorithm. Sim-
ilarly, deep reinforcement learning is exploited in [10] to
optimize energy consumption in fog architectures, and Iqbal
and Buhnova analyze in [11] the energy efficiency gains
brought by fog computing in smart buildings scenarios.

Besides, several techniques have been applied to fog-cloud
computing sharing. For instance, game theory is used in [12]
to implement resource allocation in a three-tier IoT-fog-
cloud architecture, while a novel auction scheme is adopted
in [13]. Peralta et al. use network coding in [14] to mini-
mize the download time from a fog-cloud architecture, while
meta-heuristic optimization is used in [15] to enhance task
scheduling over these scenarios. In [16], the authors work
with a distributed Alternating DirectionMethod of Multiplier
(ADMM) in order to solve a workload offloading problem
that considers the quality-of-experience (QoE) and power
efficiency as performance parameters. Xiaoting et al. propose
in [17] a drift plus computing cost based on Lyapunov’s
optimization to effectively offload applications to achieve the
trade-off between offloading cost and system performance
in edge computing for IoT. In [18], an offline computa-
tional offloading strategy using a Markov decision process
is proposed. The authors used the available bandwidth as a
constraint for MEC in Vehicular Networks (VNs). Another
algorithm based on Lyapunov’s optimization is developed
in [19]. It works online, without requiring future informa-
tion, and it reduces computation latency while keeping a low
energy consumption. In the same line, in [20] a predictive
offloading and resource allocation scheme is proposed for
multi-tier fog computing systems.

In contrast to these works, our proposal focuses not only
on energy consumption, but also on monetary cost as well,
while maintaining queue stability and so reducing latency.
In addition, as other solutions using Lyapunov’s theory, ours
also takes into account the temporal evolution of the scenario,
where random events can take place. In Table 1 we compare
our proposal with similar approaches from the literature,
at least in their goals. We have selected those works that

TABLE 2. System model symbols and variables.

assume random (uncontrolled) environments and propose
techniques to provide instantaneous adaptation. The compari-
son is in terms of the decision algorithm, and the performance
parameters it considers. We use the following metrics:

• Delay: it refers to the delay suffered by computation
tasks or services, from the moment they are generated
until they are fully processed.

• Energy consumption, which ismostly due to the process-
ing. It is typically considered for fog nodes, which have
more limited capabilities.

• Monetary cost: it corresponds to the cost of using the
processing capacity of the cloud. We consider a ‘‘pay as
you go’’ model, as this is what most providers (Amazon,
Microsoft, IBM, Google, etc) offer.

• Stability of the memory queues in the overall system.
As can be observed, our solution is the only one that jointly

considers energy (at fog nodes) and monetary cost (at cloud
nodes), while keeping system stability. We can thus conclude
that the work presented herewith complements and broadens
the available state-of-the-art related to the distribution of
computing tasks in fog/cloud deployments.

III. SYSTEM MODEL
This section describes the stochastic system model and the
control policy design using Lyapunov’s theory. Table 2 sum-
marizes the symbols used in the proposed model and their
meaning. We use the term service to refer to chunks of bytes
over which we need to apply certain computing process.

We consider a computing system composed of fog and
cloud nodes with different processing capabilities. In this
scenario, multiple user applications generate services, com-
prising a number of packets, which are sent to fog nodes.
Then, the services can be either computed locally (at the fog
nodes) or offloaded to the cloud. The system also includes
an orchestrator, or master node, which takes offloading deci-

73118 VOLUME 11, 2023



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

FIGURE 1. System model with 3 applications and 2 CPUs.

sions, depending on the particular implemented policy and
system state.

LetM be the number of applications that generate services.
We assume slotted time, and each application generates one
service at every slot. In turn, the number of packets per service
follows a certain random distribution, so that the service size
is random. The packets of the generated services are locally
stored in application queues. We assume the scenario has N
processing alternatives, including local processors (alterna-
tives {1, . . . ,N − 1}) and one cloud (alternative N ). At every
slot the master node establishes the amount of data of each
application to be processed at either of the two possibilities:
local processing or at the cloud, to satisfy some constraints.
The workload offloading policy must ensure that the appli-
cation queues remain stable, in order to avoid long queuing
delays. In this scenario, we apply Lyapunov’s control theory,
which has been extensively used in stochastic optimization to
guarantee system stability.

Let am(t) be the amount of packets that arrive at the m
application queue, m ∈ {1, . . . ,M}, at slot t , and bm(t) the
number of packets drained from that queue as a consequence
of the policy that is enforced. The queue dynamics are given
by Eq. (1), where Qm(t + 1) is the queue backlog of the m-th
application queue at time t .

Qm(t + 1) = max[Qm(t) − bm(t), 0] + am(t) (1)

We aim to ensure mean rate stability of the application
queues, which is defined in Definition 1.
Definition 1 (Mean Rate Stability): A queue is mean rate

stable if

lim
T→∞

1
T

E{Q(t)} = 0 (2)

where Q(t) is the length of the queue at time t , and E is the
expectation operator.

Let α(t) be a MxN matrix such that the element αm,n(t)
corresponds to the amount of data of the m-th application
that is allocated to the n-th processor in slot t . In each slot,
we make an α(t) decision within a set A(t) of possible
choices. Besides, it is assumed that there is transfer data rate
for each processing option, which dictates how many bytes
can be accepted in a given slot. Then, we can define bm(t)
according to Eq. (3), where ω(t) is the transfer rate of each
processor in slot t , in bytes per slot. In general, we assume
that the transfer rate varies over time, following an arbitrary
distribution. As can be observed, the amount of data drained
for each application is a function of the decision and the

transfer rate of the processors. Figure 1 shows an example of
the system model with 3 applications and 2 processors. It is
worth noting that the transfer rate can be influenced by both
the computation power of the CPU and the communication
capacity between the application queue and the processor.
For instance, in local processing, the transfer rate would be
dominated by the computation capacity, while in the case of
remote processing (data to be sent to the cloud), it would be
bounded by the communication capacity.

bm(t) = b̂(α(t),w1(t),w2(t), . . . ) = b̂(α(t), ω(t)) (3)

In order to avoid assigning non-existent packets, in each
slot we impose that the total amount of bytes allocated from
an application queue i at slot t does not exceed the bytes in
the corresponding queue, as stated in Eq. (4).

In addition, we assure that the assignment does not exceed
the transfer capacity with the constraint defined in Eq. (5),
where gi(t) denotes a generic scaling factor. For instance,
in the case of transfer rate limited by the computation capac-
ity, this parameter would be related to the computation
complexity of the service. This way, more complex services
would yield slower computation times for the same number
of bytes, which is represented by scaling the number of bytes,
while keeping constant the computation capacity.

N∑
j=1

αij(t) ≤ Qi(t) ∀i ∈ {1, . . . ,M}, ∀t (4)

M∑
i=1

gi(t) · αij(t) ≤ ωj(t) ∀t, ∀j (5)

Now we can re-write the departure bm(t), as shown in
Eq. (6).

bm(t) = b̂(α(t), ω(t)) =

N∑
j=1

αm,j(t) (6)

We also consider the penalties of using the different pro-
cessing alternatives. We use the symbol ki(t) to denote the
cost of using the i-th processing alternative at time slot t .
Penalties are defined for the cloud and local fog CPUs in
different ways. For cloud processing we aim to minimize the
monetary cost, which is related to the required computation
power, as defined in Eq. (7):

C(t) = Ĉ

(
M∑
i=1

gi(t) · kN (t) · αi,N (t)

)
(7)

where gi(t) corresponds, as mentioned earlier, to the com-
putation complexity of services generated by application i,
the processing alternative N corresponds to the cloud, and
so kN (t) is the monetary cost of using the cloud at slot t .
As can be seen, the cloud cost is proportional to the amount
of traffic forwarded to the cloud instance, scaled by the
computation complexity. In general, we assume that both the
computational complexity of the services of each application

VOLUME 11, 2023 73119



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

and the cloud fee can vary over time, following arbitrary
random distributions.

On the other hand, in the case of local processing in the fog,
we will focus on energy consumption. In this case, we do not
seek to minimize it, but to ensure that, on average, it remains
below a certain value. This would be needed, for instance, for
battery-driven devices which can be recharged periodically.
We define the energy constraint in Eq. 8 as follows:

Ej(t) =

M∑
i=1

gi(t) · kj · αi,j(t) ∀j ̸= N (8)

where kj holds for a general mapping between the number of
bytes to be processed, scaled by the processing complexity,
and the energy required for that processing. Opposed to the
cloud, the cost associated with the energy (kj) would mostly
depend on the processor hardware characteristics, so we
assume it does not vary: kj(t) = kj ∀t ∀j ̸= N . In both
cases, we account for the penalties over time, so that we use
their time-average-expectations C and E , which are defined
as follows:

C = lim
T→∞

1
T

T∑
t=0

E{C(t)} (9)

E = lim
T→∞

1
T

T∑
t=0

E{E(t)} (10)

Altogether, we want a control policy that minimizes the
following optimization problem::
Problem 1:

min
α(t)

C (11)

s.t. E j ≤ EThj ∀j ∈ {1, . . . ,N − 1} (12)

α(t) ∈ A(t) (13)

where EThj is the energy threshold defined for each processor
of a fog node, andA(t) holds for the set of constraints defined
in Eq. (4) and (5) in every slot. Using the stochastic opti-
mization framework developed in [21], inequalities related
to energy consumption limitation can be converted to virtual
queues, alike the application queues defined above. Then, the
update of the virtual queue associated with the energy of fog
processor j, Gj, is defined as:

Gj(t + 1) = max{Gj(t) + (Ej(t) − EThj ), 0} (14)

The virtual queue is introduced as a strong method for
ensuring that the required average energy consumption con-
straint is satisfied. Thus, we can define the set of queues (of
applications and the virtual queue) as 2(t). The Lyapunov’s
function L(2(t)) and the drift 1(2(t)) are defined as shown
below:

L(2(t)) =
1
2

 N∑
j=1

Gj(t) +

M∑
i=1

Qi(t)

 (15)

1(2(t)) = E{L(2(t + 1)) − L(2(t))|2(t)} (16)

The solution to Problem 1 is the drift-plus-penalty
algorithm. At each slot t , the state of the queues is observed,
and a decision that solves Problem 2 is made, where V
is a positive weighting factor that establishes the trade-off
between the drift and the penalty. This is an integer linear pro-
gramming (ILP) problem, which can be solved using existing
tools. The complete process is depicted in Algorithm 1.
Problem 2:

min
α(t)

V · C(t) +

M∑
i=1

Qi(t)[ai(t) − bi(t)]+ (17)

N∑
j=1

Gj(t)(Ej(t) − EThj ) (18)

s.t.
N∑
j=1

αij(t) ≤ Qi(t) ∀i ∈ {1, . . . ,M}, ∀t (19)

M∑
i=1

gi(t) · αij(t) ≤ wj(t) ∀t, ∀j (20)

Algorithm 1 Offloading Decision Based on Drift-Plus-
Penalty
1: Initialization:

Set V and Eth.
2: Repeat:

1) Observe a(t) = [a1(t), . . . , aM (t)], Q(t) =

[Q1(t), . . . ,QM (t)] and ω = [ω1, . . . , ωN ].
2) Choose decisions α(t) to minimize Problem 2 applying

solver scipy.optimize.milp.
3) Update G(t) = [G1, . . . ,GN ] according to Eq. (14).

IV. EVALUATION PLATFORM
There exist several alternatives to deploy and manage fog
and cloud instances. Most of the big technological companies
provide cloud services, such as AWS, Azure, Linode, etc.
In parallel, there are alternatives that allow the deployment
of proprietary and self-managed fog/cloud instances, both
commercial (e.g. VMware) or open source (e.g. OpenStak,
Apache CloudStack, Proxmox). However, these technologies
are not designed for testing or evaluating the performance
of orchestration solutions, but to manage running services.
In this sense, there is a need for frameworks that fill the
gap between analytical evaluation and planning, to address
the evaluation of the expected performance under controlled
environments. There are some related works where three-tier
architecture platforms have been developed, such as [22],
[23], and [24], but they had some limitations for our purposes.
Hence, we opted to develop our own framework, tailored to
the analysis of computation sharing/offloading in fog/cloud
environments.

The developed platform is illustrated in Figure 2.
It embraces three types of elements that mimic fog, cloud,
and a master node. Fog nodes generate independent synthetic
traffic flows belonging to different applications, and using

73120 VOLUME 11, 2023



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

FIGURE 2. General view of the fog/cloud platform.

configurable random distributions (i.e. Poisson, uniform,
Lognormal, etc.). The generated traffic of each application is
stored in an input buffer, illustrated in Figure 2 as step 1. From
the generated traffic, fog nodes define services (processing
tasks) that embrace a number of packets. Service generation,
depicted in Figure 2 with step 2, is also configurable, using
randomdistributions.When services are defined, the fog node
queries the master about which node the corresponding data
has to be sent to be processed, and the master node takes a
decision according to the implemented algorithm (step 3).
The fog node then sends the service data to either local
processors or remote cloud instances (step 4). Finally, per-
formance logs are generated (steps 5 and 6) for each service
and for monitoring temporal evolution of all devices’ states.
It is worth noting that the platform implements a generic
interface to communicate with the master node, which is
independent of the decision algorithm adopted. In addition,
the algorithm of the master node is implemented as a plugin,
which can bemodifiedwithout further changes, thus allowing
the comparison of different decision schemes under the same
circumstances.

In order to ensure a scalable, lightweight platform, where
multiple nodes can be deployed without overloading the host
machine, all nodes have been containerized using Docker.
Containerization allows users to quickly deploy multiple
customized containers in the same host. Each container is
an isolated software unit that packages code and its depen-
dencies, allowing it to run, regardless of the underlying
host. Docker executes container images that are lightweight,
standalone, executable packages of software that include
everything needed to run an application (i.e. code, runtime,
system tools, system libraries, and settings). Images can be
configured with the so-called Dockerfile to execute cus-
tomized applications in isolated containers. Docker runs over
the host operating system, and it acts as an abstraction layer
for the applications.

In the case of the evaluation platform described herewith,
each of the containers works as a fog, cloud, or master node,
which are built from different customized Docker images.
In all cases, the images use Ubuntu 22.04 as their base
operating system, and we make the required modifications
over it. The functionalities of master, fog, and cloud nodes
within Docker containers have been developed in Python

programming language. In the following, we describe the
functionality of each component in more detail:

• Fog node. It implements logic to mimic the behavior of
a real node, and it comprises a set of concurrent func-
tionalities using multi-threading. The first functionality
deals with the emulation of service creation and the
generation of data belonging to those services. In this
sense, instead of receiving traffic from real IoT devices,
the tool emulates such traffic generation. Then, before
storing the packets in the arrival buffer, we add a header
that allows tracking and appropriately processing all
of them, either locally or remotely. As for the traffic
processing, instead of treating each packet individually,
a service model has been implemented. We define a
service as a chunk of related packets. Later, depending
on the information provided by the master node, the
services are transferred from the arrival buffer to the
processing queue at the fog node, or sent to a cloud node,
to be remotely processed. The last functionality of a fog
node is to locally process traffic.

• Cloud node. Inside these nodes a single Python pro-
gram is executed with a simple functionality, to process
incoming services. Each cloud has a receiver that stores
all packets belonging to services sent to the cloud. This
receiver is implemented as an independent thread that
is continuously running throughout the whole experi-
ment. Finally, following the same logic as in fog nodes,
a processor with a configurable processing rate has been
implemented in the cloud node, as another independent
thread.

• Master node. This node enforces offloading policies
using state information gathered from the fog and cloud
nodes and other system parameters. The algorithm
hosted in the master node establishes the particular
processing sharing policy to evaluate, and it would
thus depend on the evaluation goals. The platform
implements a minimum set of control packets that are
exchanged between fog and master nodes. On the one
hand, when deciding where to execute a service, the
information about the fog node state (queue occupancy,
processing rate, etc.) and about the current service (i.e.
size) is sent to the master node. Using that informa-
tion, and the corresponding algorithm, the master node
answers, indicating how to proceed, i.e. whether to use
local processing or the cloud node to forward the task
to. In this sense, the deployment of different processing
policies would boil down to the selection of the appro-
priate algorithm, leading to a very flexible experiment
configuration.

By deploying our own platform, we aim at having the
flexibility to closely inspect the practical aspects of differ-
ent solutions. We thus ensure that our theoretical findings
are aligned with their applicability in real systems. Fur-
thermore, this control allows us to customize the platform
to our specific needs and research goals, and to conduct

VOLUME 11, 2023 73121



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

FIGURE 3. The fog/cloud system model with application queues (Qm),
virtual energy queue (Gn) and processor queues.

experiments and simulations that preciselymatch our require-
ments. In any case, and exploiting the modular design of our
architecture, moving the Docker containers that implement
the cloud functionality to real deployments could be done
rather straightforwardly.

V. RESULTS
This section discusses the performance analysis of our pro-
posal. First, we study the properties of our algorithm in
2 synthetic scenarios, with and without cloud processing
alternative. The former scenario focuses on the trade-off
between energy constraints and monetary cost, while the
latter configuration pays special attention to the impact that
energy limitation may have on the incoming application
traffic. Then, we evaluate the proposed scheme in a more
realistic scenario, in terms of processing capacity and traffic
generation.

In these 3 setups, the performance of our solution
is compared with that observed with a simple round-
robin algorithm, which is thus used as a benchmark. The
round-robin policy allocates packets in equal portions and
in circular order, handling all of them without any priority
whatsoever. Once all the capacity of a processor that can be
used in a slot is used up, this policy moves on to the next
processor. It does not, therefore, consider energy consump-
tion or monetary cost. Moreover, we implement it in a way
that changes the initial application in every slot, in order
to avoid prioritizing one application. Packets that cannot be
processed in the fog due to lack of capacity are sent to the
cloud. In addition, a modified round-robin algorithm is also
used that ensures that the energy threshold is respected in
every slot.

Figure 3 depicts the system setup. In a nutshell, it has a
fog node with 3 applications and 2 processors, one cloud
node, and a master node that runs the algorithms. The base
configuration details that we used for the first two setups are
depicted in Table 3. As can be observed, in all cases, we run
executions elapsing 1000 slots of 1 second each. At every slot,
the applications generate a service consisting of a random
number of packets. Table 3 shows the aggregated average
application rate, while the particular rate for each applica-
tion will be specified in each scenario. As can be observed
in Table 3 some arbitrary random variables are defined as
constants, so that the results can be better understood.

TABLE 3. Simulation setup.

FIGURE 4. Cloud usage evolution vs. total traffic rate.

A. FOG AND CLOUD COLLABORATION ANALYSIS
With the first setup, we aim to analyze the processing balance
between fog and cloud nodes upon different configurations.
It is worth remarking that the processing capacity of the cloud
node, considering the traffic generated by the services, can be
considered infinite.

First, we evaluate the impact of the V parameter over
the computation offloading. It is worth recalling that such
parameter adjusts the trade-off between energy consumption
and monetary cost. Figure 4 shows the ratio of traffic sent
to the cloud node upon different values of the aggregated
average traffic rate. In this setup, we fix the energy threshold
value, Eth, to 2. In addition, simulations are carried out for
different values of V . The figure also shows, with dashed
lines, the results obtained when using the round-robin (RR)
and an energy-aware round-robin variant (RRe). The former
consumes the entire processing capacity of the fog, sending
the surplus to the cloud. The latter performs a round-robin
selection between the fog processors without exceeding the
energy threshold, sending the rest of the packets to the cloud.
For each configuration, Figure 4 shows the cloud usage for
experiments lasting 1000 slots.

As expected, we can observe that a higher traffic rate leads
to more traffic processed in the cloud. In addition, as the value
of V increases, we see a decreasing trend in cloud usage,
as expected.We can also identify 3 different operation regions
of the proposed solution, as we vary V , delimited by the
round-robin algorithms.

73122 VOLUME 11, 2023



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

FIGURE 5. Average energy consumption vs. total traffic rate.

In the first region, we can see that there is more traffic
sent to the cloud than with the RRe policy. This happens
with values of V below 1, where the monetary cost is given
very little importance. This results in not using the maximum
processing capacity of the fog, even if it does not reach the
energy threshold. The second region corresponds to values
of V between 2 and 1000, and the observed performance
lies between the two round-robin versions. In this region,
higher values of V significantly reduce the use of the cloud.
In turn, it leads to an eventual saturation of the fog processors.
In order to fulfill the energy threshold, the proposed solu-
tion keeps traffic in the application queues and balances the
decisions to ensure system stability, considering application
queues, energy, and cost.

We further analyze this effect by studying how the differ-
ent configurations impact the energy performance indicator.
In Figure 5 we represent, with a bar plot, the average energy
consumption yielded by the proposed solutions for different
configurations of the aggregated traffic rate and for various
V values. It is worth remarking that in all cases the energy
threshold is set to 2 and that the aggregated processing capac-
ity at the edge node is 4 pkt/s.
As can be seen, when V is within the first region observed

in Figure 4 (V = 1), the average energy consumption is
well below the threshold, regardless of the traffic rate. As we
increase the value of V we can observe that the proposed
scheme is not able to keep the energy below the threshold,
due to the high cost of using the cloud instance. In addition,
the results evince that the impact of V also varies with the
traffic rate. In this sense, the energy consumption saturates
with V = 1e3 for the lowest traffic rate (6 pkt/s), while this
saturation value increases for higher rates. We can conclude
that moderate V values, with low traffic, enforce the process-
ing of all services at the fog, since the virtual energy queue
does not grow much. On the other hand, with higher rates,
the virtual queue increases, and some services are therefore
eventually sent to the cloud, unless the value of V is also
increased.

This first set of results validates the behavior of the
proposed scheme, showing that it is able to balance the com-
puting load, considering different parameters (energy, cost,
and application queues). Furthermore, it can be configured
to foster different behaviors, thanks to the V configuration
parameter.

FIGURE 6. Queues evolution vs. energy threshold.

B. FOG PERFORMANCE ANALYSIS
We now focus on the impact that different configurations
have on the energy and applications queues at the fog. As we
have seen in the previous section, low V values would avoid
overloading fog nodes, since they enforce many services to
be sent to the cloud. Having that in mind, we consider a
setup where the cloud is not available, which would be in
fact alike having a high V . Without the cloud, we can assess
more critical configurations in terms of processing capacity,
allowing a closer look at the stability of application queues.

In this case, the average traffic rate is set to 7 packets per
slot. Specifically, the first, second, and third applications gen-
erate 1, 2, and 4 packets per slot, respectively. Figure 6 shows
the temporal queue stability of application and energy queues,
using Eq. 2, for different values of the energy threshold.
It is worth noting that large thresholds lead to not imposing
any limit on energy consumption. For the sake of visibility,
we show the results for the first 100 slots.

Figure 6a illustrates the application queue stability yielded
by our scheme and that obtained with energy-limited round-
robin (dashed lines). The different colors correspond to the
stability of the different application queues.

In general, we can observe that the proposed scheme man-
ages to keep the stability of all application queues regardless
of the limits set on energy consumption. As can be observed,
when using round-robin with the energy threshold set to 3 and
4, there is one highly unstable queue, which corresponds to
the application with the higher rate, while the others show
quite low values.

On the other hand, our scheme is able to adapt to the
application rates, as evinced by the fact that all queues show

VOLUME 11, 2023 73123



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

FIGURE 7. Queues evolution vs. traffic rate of one application.

similar values. When a threshold of 3 is used, stability cannot
be guaranteed, but with softer energy restrictions, stability is
reached quickly. Figure 6b shows the stability of the energy
virtual queue (Gj) of each CPU of the fog node. The results
show a trend similar to that seen for the application queues.
As we relax the energy constraint, the proposed scheme is
able to stabilize both types of queues, while it penalizes those
queues with more stringent requirements.

We now study the impact of the traffic rate on the queues.
Figure 7 uses a queue stability representation similar to the
previous ones. In this case, we set the energy threshold to 3.5,
and we run experiments for different values of the traffic rate
of the third application, while the others do not change (1 and
2pkt/s, respectively). The results show that the round-robin
policy is not able to stabilize the queue corresponding to the
third application as we increase its rate. As can be seen, when
the third application is configured with 4 packets per second,
the stability of the corresponding queue exceeds the graph
limits in slot 15, and it shows a growing trend even when the
application rate is set to 3 pkt/s. In contrast, the proposed
algorithm is able to keep the application queues stable, even
at the highest rate. As can be observed, when the rate of the
third application is set to 4 pkt/s, the queue tends to a stable
value within the analyzed interval. At the same time, we can
observe that the proposed scheme is also able to stabilize the
energy queues, as shown in Figure 7b.

C. REALISTIC SETUP
We now analyze the performance of the proposed scheme
using realistic configuration parameters. In particular,
we adjust the application traffic distributions and device
capabilities as shown in Table 4. These values are taken

TABLE 4. Simulation setup for a realistic environment.

FIGURE 8. Cloud cost and energy consumption vs. Eth for different V
values.

from [25], where the authors collected a two-week input-
output workload traces of 2500 nodes from AliCloud, one
of the largest cloud providers in Asia. Using the collected
data, the authors characterized the distribution of different
parameters of workloads, such as inter-arrival time, or service
size.

The results obtained in [25] revealed that the best-fitting
option for traffic distribution is lognormal. In particular,
the expected value and variance of the underlying normal
distribution are set to 4.5 and 0.8, respectively. In turn,
the corresponding model shows an average traffic rate of
125 pkt/s.2 We also scale the capacity of the fog node
according to the new traffic rates, so that it can cope, on aver-
age, with the traffic generated by the three applications. Thus,
the energy threshold would play an important role in the
simulation results in this scenario.

Under this configuration, we aim to represent optimal
configurations of the algorithm, according to the affordable
monetary cost and energy consumption limitations. In this
sense, Figure 8 shows a two-axis representation of the mone-
tary cost (left axis) and energy consumption (right axis) with
solid and dashed lines, respectively. The lines represent the
average value obtained from 30 independent experiments,
each lasting 1000 slots. Along with the average values we
also represent the maximum and minimum obtained during
the simulations with the shaded background. We show the
results as we increase the value of the energy threshold Eth,
and for different values of the V parameter.
As expected, when relaxing the energy threshold the cost

decreases, since more data is processed at the fog, while
the energy consumption grows. The intersections correspond

2The expected value of the lognormal distribution X is given by E{X } =

exp (µ +
σ2

2 ), where µ and σ 2 are the expected value and variance of the
normal distributionN , so that ln(X ) ∼ N (µ, σ 2).

73124 VOLUME 11, 2023



N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

TABLE 5. Intersection points for different V values.

to points (configurations) at which the two costs are alike.
In this sense, the proposed scheme allows establishing con-
figurations (V and Eth) that equal energy and monetary costs.
As can be observed, for the considered scenario, Eth needs to
be set between 90 and 115 for the whole range of V values.
In Table 5 we indicate the intersection points of more V
values, which were not included in Figure 8. Similar analysis
can be done for different relationships between energy con-
sumption and cloud cost, or by fixing the energy threshold
instead of the cloud cost.

VI. CONCLUSION
In this work, we present a novel multi-objective algorithm
to offload computation load between fog and cloud tiers.
The proposed solution jointly considers metrics related to
applications, fog nodes, and cloud instances. In a nutshell, it is
able to find a trade-off between application queues, energy
consumption in fog nodes, and monetary cost associated with
cloud usage. On the one hand, it ensures that the processing
delay is upper bounded, while keeping the average energy
consumption below a configured threshold. On top of that,
when cloud instances are also available, the algorithm can be
configured to also consider the monetary cost of the cloud,
along with the aforementioned parameters.

We first propose a generic systemmodel that assumes arbi-
trary varying traffic patterns, available computation capacity
and cloud cost. Then, we formulate a stochastic optimization
problem and use Lyapunov’s theory to cast it to a temporal
sequence of Integer Linear Programming (ILP) problems,
which can be easily solved with existing tools. The proposed
scheme is afterwards applied to a variety of fog/cloud sce-
narios, to validate its performance under different system
configurations. The results evince that the proposed scheme
is able to balance the use of fog and cloud instances, ensuring
that the energy consumption remains below the configured
threshold. We have also shown that it is possible to tweak the
behavior of the proposed solution to give more or less rele-
vance to cloud cost or energy consumption limitation.We also
analyzed the response of the proposed solution to balance
traffic queues and energy consumption. We have observed
that it is able to adapt to unbalanced traffic loads, ensuring
system stability even under high loads or more stringent
energy constraints. Finally, we have broadened our analysis
with a more realistic setup, showing that it can be configured
to operate with a given desired response, for instance ensuring
that the energy consumption and cloud monetary cost are
alike.

In our future work, we will extend the model in different
ways. First, we will analyze the performance when adding
more complex functions (for instance, logarithmic) to the

optimization problem, to foster different trade-offs between
cost and energy limitations. In addition, we will analyze the
possibility to take into account the occupancy of the processor
queues within the systemmodel, so that it will evolve to a net-
work of connected queues, where back-pressure algorithms
can be applied. We will also analyze the applicability of
delay-based back-pressure, to foster very low latency system
responses.

Furthermore, besides comparing the performance of the
proposed offloading mechanism against alternative algo-
rithms, considering not only energy and cost, but also other
performance metrics, such as delay or occupancy, we will
broaden the comparison to other optimization frameworks,
such as AI and ML.

REFERENCES
[1] M. Aazam, S. Zeadally, and K. A. Harras, ‘‘Deploying fog computing in

industrial Internet of Things and industry 4.0,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 10, pp. 4674–4682, Oct. 2018.

[2] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[3] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos,
‘‘Fog orchestration for Internet of Things services,’’ IEEE Internet
Comput., vol. 21, no. 2, pp. 16–24, Mar. 2017. [Online]. Available:
https://www.scopus.com

[4] P. Bellavista, L. Foschini, and D. Scotece, ‘‘Converging mobile edge
computing, fog computing, and IoT quality requirements,’’ in Proc.
IEEE 5th Int. Conf. Future Internet Things Cloud (FiCloud), Aug. 2017,
pp. 313–320.

[5] J. Sengupta, S. Ruj, and S. D. Bit, ‘‘A secure fog-based architecture for
industrial Internet of Things and industry 4.0,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 4, pp. 2316–2324, Apr. 2021.

[6] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, ‘‘Industrial IoT data
scheduling based on hierarchical fog computing: A key for enabling smart
factory,’’ IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4590–4602,
Oct. 2018.

[7] S. Garg, K. Kaur, G. Kaddoum, and S. Guo, ‘‘SDN-NFV-aided edge-
cloud interplay for 5G-envisioned energy internet ecosystem,’’ IEEENetw.,
vol. 35, no. 1, pp. 356–364, Jan. 2021.

[8] I. Ahammad, M. A. R. Khan, and Z. U. Salehin, ‘‘QoS performance
enhancement policy through combining fog and SDN,’’ Simul. Model.
Pract. Theory, vol. 109, May 2021, Art. no. 102292. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X21000216

[9] S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K. Wang, ‘‘Energy-optimal
dynamic computation offloading for industrial IoT in fog computing,’’
IEEE Trans. Green Commun. Netw., vol. 4, no. 2, pp. 566–576, Jun. 2020.

[10] Y. Ren, Y. Sun, and M. Peng, ‘‘Deep reinforcement learning based compu-
tation offloading in fog enabled industrial Internet of Things,’’ IEEE Trans.
Ind. Informat., vol. 17, no. 7, pp. 4978–4987, Jul. 2021.

[11] D. Iqbal and B. Buhnova, ‘‘Fog based energy efficient process frame-
work for smart building,’’ in Proc. Eval. Assessment Softw. Eng. (EASE).
New York, NY, USA: Association for Computing Machinery, 2021,
pp. 387–393, doi: 10.1145/3463274.3463364.

[12] Y. Jie, C. Guo, K.-R. Choo, C. Z. Liu, andM. Li, ‘‘Game-theoretic resource
allocation for fog-based industrial Internet of Things environment,’’ IEEE
Internet Things J., vol. 7, no. 4, pp. 3041–3052, Apr. 2020.

[13] A. Aggarwal, N. Kumar, D. P. Vidyarthi, and R. Buyya, ‘‘Fog-integrated
cloud architecture enabledmulti-attribute combinatorial reverse auctioning
framework,’’ Simul. Model. Pract. Theory, vol. 109, May 2021,
Art. no. 102307. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1569190X21000307

[14] G. Peralta, P. Garrido, J. Bilbao, R. Agüero, and P. M. Crespo,
‘‘Fog to cloud and network coded based architecture: Minimiz-
ing data download time for smart mobility,’’ Simul. Model. Pract.
Theory, vol. 101, May 2020, Art. no. 102034. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X19301650

VOLUME 11, 2023 73125

http://dx.doi.org/10.1145/3463274.3463364


N. Villegas et al.: Energy-Aware Optimum Offloading Strategies in Fog-Cloud Architectures

[15] H. Singh, S. Tyagi, P. Kumar, S. S. Gill, and R. Buyya, ‘‘Metaheuristics
for scheduling of heterogeneous tasks in cloud computing environments:
Analysis, performance evaluation, and future directions,’’ Simul. Model.
Pract. Theory, vol. 111, Sep. 2021, Art. no. 102353. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X21000678

[16] Y. Xiao and M. Krunz, ‘‘QoE and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,’’ in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), May 2017, pp. 1–9.

[17] X. Duan, F. Xu, and Y. Sun, ‘‘Research on offloading strategy in edge
computing of Internet of Things,’’ in Proc. Int. Conf. Comput. Netw.,
Electron. Autom. (ICCNEA), Sep. 2020, pp. 206–210.

[18] Y. Qi, L. Tian, Y. Zhou, and J. Yuan, ‘‘Mobile edge computing-assisted
admission control in vehicular networks: The convergence of communica-
tion and computation,’’ IEEE Veh. Technol. Mag., vol. 14, no. 1, pp. 37–44,
Mar. 2019.

[19] J. Xu, L. Chen, and P. Zhou, ‘‘Joint service caching and task offloading for
mobile edge computing in dense networks,’’ in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), Apr. 2018, pp. 207–215.

[20] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, ‘‘PORA: Predictive
offloading and resource allocation in dynamic fog computing systems,’’
IEEE Internet Things J., vol. 7, no. 1, pp. 72–87, Jan. 2020.

[21] M. J. Neely, Stochastic Network Optimization with Application to Commu-
nication and Queueing Systems, (Synthesis Lectures on Communication
Networks). San Rafael, CA, USA: Morgan & Claypool, 2010, doi:
10.2200/S00271ED1V01Y201006CNT007.

[22] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,’’ Softw.,
Pract. Exp., vol. 47, no. 9, pp. 1275–1296, Sep. 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509

[23] A. Kertesz, T. Pflanzner, and T. Gyimothy, ‘‘Amobile IoT device simulator
for IoT-fog-cloud systems,’’ J. Grid Comput., vol. 17, no. 3, pp. 529–551,
Sep. 2019.

[24] I. Lera, C. Guerrero, and C. Juiz, ‘‘YAFS: A simulator for IoT scenarios in
fog computing,’’ IEEE Access, vol. 7, pp. 91745–91758, 2019.

[25] Z. Ren, W. Shi, J. Wan, F. Cao, and J. Lin, ‘‘Realistic and scalable bench-
marking cloud file systems: Practices and lessons from AliCloud,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 11, pp. 3272–3285, Nov. 2017.

NECO VILLEGAS received the B.Sc. degree
(Hons.) in telecommunications engineering from
the University of Cantabria, in 2021, where he is
currently pursuing theM.Sc. degree. He has been a
Researcher with the Communications Engineering
Department, University of Cantabria, since 2022.
His research interests include edge/cloud com-
puting, task offloading, and Lyapunov’s stability
theory.

LUIS DIEZ received the M.Sc. and Ph.D. degrees
from the University of Cantabria, in 2013 and
2018, respectively. He is currently an Assistant
Professor with the Communications Engineering
Department, University of Cantabria. As for teach-
ing, he has supervised 30 B.Sc. and M.Sc. thesis.
He teaches in courses related to cellular networks,
network dimensioning, and service management.
He has been involved in different international and
industrial research projects. His research interests

include future network architectures, resource management in wireless het-
erogeneous networks, and the IoT solutions and services. He has published
more than 55 scientific and technical papers in those areas. He has served as
a TPC member and a reviewer for a number of international conferences and
journals.

IDOIA DE LA IGLESIA received the degree in
telecommunications engineering from the Uni-
versity of Deusto, in 2013, the master’s degree
in transport systems from the University of the
Basque Country, in 2014, and the Ph.D. degree
in vehicular communications from the Univer-
sity of Deusto, in January 2019. Throughout her
research career, she was an Intern in prestigious
centers, such as Nokia Bell Labs or NEC Lab-
oratories Europe. During the last years, she has

been involved in different projects related to the IoT and edge computing
in different business sectors. She has been with the Ikerlan Technology
Research Centre, since 2018. Since November 2022, she has been leading
the IoT and Digital Platforms Team with the Ikerlan Technology Research
Centre. She received the Best Academic Record and Best Final Project
Award from the University of Deusto.

MARCO GONZÁLEZ-HIERRO received the
M.Sc. degree in telecommunications engineer-
ing from the University of the Basque Country
(UPV/EHU). He has been a Researcher with the
Ikerlan Technology Research Centre, since 2016,
and has extensive experience as a Project Manager
and a Software Developer. He is currently the
Head of the Information and Communications
Technologies (ICT) Department, leading over
60 researchers focused on the IoT, edge-to-cloud

continuum, and machine learning/artificial intelligence research with over
3Me portfolio in research and development projects for companies. He also
has expertise in edge/cloud systems architecture, mobile connectivity, and
cybersecurity. He has participated in numerous technology transfer projects
for industry, mainly in the energy, railway, and elevation sectors.

RAMÓN AGÜERO (Senior Member, IEEE)
received the M.Sc. degree (Hons.) in telecom-
munications engineering from the University of
Cantabria, in 2001, and the Ph.D. degree (Hons.),
in 2008. Since 2016, he has been the Head of the
IT Area (Deputy CIO), University of Cantabria.
He is currently a Professor with the Commu-
nications Engineering Department, University of
Cantabria. He has supervised five Ph.D. and more
than 70 B.Sc. and M.Sc. thesis. He is the main

instructor in courses dealing with networks, and traffic modeling, both
at B.Sc. and M.Sc. levels. His research interests include future network
architectures, especially regarding the (wireless) access part of the network
and its management, multihop (mesh) networks, and network coding. He has
published more than 200 scientific papers in such areas. He is a regular
TPC member and a reviewer of various related conferences and journals.
He serves on the editorial board for IEEE COMMUNICATION LETTERS (Senior
Editor, since 2019), IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY,
Wireless Networks (Springer), and Mobile Information Systems (Hindawi).

73126 VOLUME 11, 2023

http://dx.doi.org/10.2200/S00271ED1V01Y201006CNT007

