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ABSTRACT There is a growing concern about the high degree of non-technical losses (NTL) in developing
countries especially sub-saharan Africa. Whereas several studies have employed artificial intelligence (AI)
to analyze NTL, a major drawback in these studies is the focus on customer data only without considering the
possible contribution of electricity distribution staff to NTL. This study introduces a novel approach to NTL
reduction by analyzing a combined dataset of staff operational processes and customer consumption data.
A deep-learning architecture called non-technical losses convolutional neural network (NTLCONVNET)
was developed which consists of a series of three one-dimensional convolutional neural networks (1D-
CNN) with different depths combined with several fully connected layers. Furthermore, limited or no
research has studied the decision rationale influencing howAImodels interpret the significance of features in
predicting NTL. To achieve the explainability of the model, SHapley Additive exPlanations (SHAP) kernel
and tree-based explainers were used for the deep and ensemble learning models respectively to determine
the relative importance of the variables and how they contribute to the overall model prediction. A novel
ranking framework was used to compute the holistic ranking of the variables across multiple models. The
finding suggests that the staff-related variables omitted in the extant literature are significant predictors of
NTL. The NTLCONVNET was compared with 5 ensemble learning algorithms and the results show that the
NTLCONVNET significantly surpasses all other models, scoring 0.844, 0.838, 0.836 and 0.836 on weighted
average Precision, Recall, f1 and accuracy respectively. This study suggests a policy outcome of introducing
human resource metrics into NTL reduction strategies.

INDEX TERMS Deep learning, ensemble learning, explainable artificial intelligence (XAI), non-technical
loss.

I. INTRODUCTION
There are increasing losses experienced in the electricity
supply value chain. Fig. 1 illustrates the losses which are
defined as the amount of electricity generated and supplied
through the transmission grid into the distribution network,
but not paid for by the consumers. The effective cumulative
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loss comprises two main components: non-technical losses
(NTL) and technical losses (TL). The latter often occur
due to aging or deterioration in the quality of the physical
equipment employed within the generation, transmission and
distribution network. On the other-hand NTL usually occur
as a result of energy theft [1] or non-payment of billed
energy by the consumers. NTL occurs frequently in many
developing countries and is estimated to be in excess of USD
96 billion annually [2]. Given themagnitude of these financial
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FIGURE 1. An illustration of the estimated losses in electricity supply value chain in Nigeria. (Source: National Electricity
Regulatory Commission, Nigeria).

losses and the threat to public safety (for example risk of
death during illegal connections), it is pertinent to explore
an approach that proffers the prowess to curb problems
associated with NTL. One of the widely adopted approaches
is the use of Artificial Intelligence (AI) for analyzing and
detecting anomalies (NTL) in the electricity consumption
pattern from customer data. This AI approach has witnessed
a meteoric rise due to the abundance and availability of
data caused by the rapid embracement of smart metering
technology and the internet of things (IoT) in the electricity
supply chain [3].

The evolution within the field of AI has resulted in the
use of several sub-field of AI such as expert systems [4] and
machine learning (ML) for prediction or anomaly detection
of NTL. Several research efforts have been devoted to
developing, training and deploying classical ML models for
detecting and predicting NTL from customer consumption
data [5]. A review of previous works on this subject indi-
cates that supervised learning algorithms such as K-nearest
neighbors (KNN), support vector machine (SVM), multi-
layer perceptron (MLP), linear regression (LR) and decision
tree (DT) can be employed for training labeled data. Although
success has been recorded for the usage of classical ML [6],
most of the aforementioned methods face model complexity
drawbacks. Consequently, emerging ML techniques such
as ensemble learning techniques mainly rely on multiple
combinations of base learners which undergo majority voting
for boosting predictive performance. Some example of the
ensemble learning include; Light gradient boosting methods
(LightGBM) [7], extreme gradient boosting (XGBoost) [8],
[9], and categorical boosting (CatBoost) [10]. Ensemble
learning methods [3], [11], [12] have aided in tackling some
model complexity (overfitting problem) and have been used
effectively for detecting NTL. Although significant progress

has been made in using ML for NTL detection, one of the
major challenges still facing this approach is the problem of
class imbalance in the datasets [13]. Class imbalance refers
to a scenario whereby the target variables have an uneven
distribution in the observation space, resulting in one of
the classes having significantly more observations than the
other classes. MostML algorithms assume equal distribution;
hence class imbalance causes the ML algorithms to become
more biased towards the majority class which results in
misclassification of the minority classes. To address this
problem of class imbalance, two types of sampling techniques
are commonly used namely: random undersampling and
random oversampling [14]. Another AI technology that has
gained significant traction is deep learning; and has success-
fully been employed in predicting NTL. The deep learning
architectures can be grouped into multilayer perceptron’s
(MLP), convolutional neural networks (CNN), recurrent
neural networks (RNN), or generative adversarial networks
(GANs). The advances in RNN have led to the development
of new algorithms such as deep RNN that factored meta-
heuristic tuning strategy [15], bidirectional gated recurrent
unit (GRU) compared with Smote Over Sampling Tomik
Link [16], and hybrid integration ofMLP-GRU for prediction
and detection of NTL [17]. For the CNN, the research work
in papers [18], [19], [20], [21] have attempted to develop
models by hybridizing deep learning and ensemble learning
methods for detecting NTL. Recently, the studies by [22]
and [23] created an architecture that combines CNN and
RNN to create a model that predicts NTL. Furthermore, GAN
based on bidirectional Wasserstein generative adversarial
networks has been used for anomaly detection (NTL) [24].
One of the current areas of research that attempt to provide
a decision rationale for ML prediction is the explainable
AI (XAI). An important explainability algorithm: SHAP has
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often been used to interpret ensemble learning techniques
such as CatBoost [25], [26] for the prediction of NTL.

A. RESEARCH GAP
The major conceptual gap and drawback of available
literature onNTL is that the researchworks focus on customer
data (electricity consumption and demographic information).
To the best of our knowledge, no study has attempted to
investigate the potential impact of electricity distribution staff
activities as causes of NTL. Furthermore, there is a population
group gap given that limited studies have used explainable
artificial intelligence to investigate NTL phenomenon in sub-
Saharan Africa.

B. RESEARCH CONTRIBUTIONS
In order to address the gaps identified above, this paper
contributes to extant literature in the following ways

a. To the best of our knowledge, this is the first study that
empirically evaluates the significance, or otherwise,
of the staff contribution to NTL within the electricity
distribution industry.

b. This paper has used explainable artificial intelligence
to investigate NTL phenomenon in sub-Saharan Africa
by developing a deep-learning architecture known as
NTLCONVNET for the prediction of NTL.

To actualize these goals, this study used a dataset (from
Nigeria electricity distribution data) that contains 12 input
features inclusive of both customer and staff activities and
output labels of discretized collection efficiency. The dataset
was partitioned and randomly shuffled for 5-folds cross-
validation. Each of the training sets from the respective folds
was fed as input to the learning algorithms for training and
generation of the predictive models.

In the area of model interpretability, SHAP algorithm with
kernel and tree-based explainers were used to investigate and
interpret the deep-learning and ensemble-learning models
respectively. The results show that our proposed method
significantly surpasses all other approaches on both weighted
and macro averages of the performance metrics (Precision,
Recall, F1-score, and Accuracy) at a p-value p < 0.05.
Furthermore, the SHAP algorithm reveals that accurate
prediction of non-technical losses is often influenced by
these top-ranked six features: energy consumption (kWh),
collection amount, collection index, location, number of
bills, and manager. This study suggests a policy outcome
of introducing human resource (HR) metrics into NTL
reduction strategies. The rest of this paper is organized
as follows. Section II describes the research methodology
which encompasses; the concept of explainable artificial
intelligence, proposed NTLCONVNET, brief description of
ensemble learning techniques, and the evaluation metrics.
Section III discusses the result and provides details about
the dataset used, explainability assessment, novel ranking
framework, and correlation analysis. Section IV presents the
conclusion and provides the basis for future research in this
area.

II. RESEARCH METHODOLOGY
This section provides explanations about the concept of
explainable Artificial Intelligence (XAI) and the supervised
learning algorithms (proposed deep learning method and five
ensemble learning techniques).

A. CONCEPT OF EXPLAINABLE AI
SHapley Additive exPlanations (SHAP): many traditional
machine learning, and deep learning methods are often con-
sidered black-box as a result of limited internal information
about the rationale behind their model interpretability [27].
In recent times, the exploration of XAI is playing an
important role in understanding the feature importance that
influences machine learning prediction. An example of an
XAI model is SHAP. A SHAP is an explainability tool
that relies on the unification of framework that allows
researchers or experts to gain insightful interpretation of
complex predictive models. The core unit of a SHAP
algorithm involves identifying a novel class by assessing
additive feature relevance and finding the unique solution of
the new class based on a collection of desirable attributes.
Overall, the SHAP estimation approach aligns effectively
with human intuition. In this study, two forms of explainers;
tree-based explainers and kernel-based explainers were used
for interpreting the ensemble learning and deep learning
respectively.

B. THE PROPOSED NTLCONVNET MODEL
This study explored deep learning a sub-field of AI/ML
technology that depends on stacking neural network layers
within the hidden unit of a network architecture. Deep
learning processes involve extracting informative features
and learning continually from a given data. Deep learning
technology has received tremendous achievement in the field
of computer vision; object detection [28], [29], [30], image
classification [31], [32], [33], and video-classification [34].
The concept of deep learning has been applied in >=

2 dimensional CNN architectures for operating unstructured
data (images, signal spectrum, and video data). However,
limited research has attempted to investigate the training of
one-dimensional CNN for generating a model that draws
insight from combined dataset of customer and staff. This
study proposes a deep learning architecture known as
NTLCONVNET which involves stacking a series of three
one-dimensional convolutional neural networks (1D-CNN)
with different depths combined with several fully connected
layers. The final effective feature map generated from the
terminal convolutional layer was flattened and then passed to
a fully connected layer (FC-1) containing 100 network nodes.
The output from the FC-1 is then passed to the last fully-
connected layer (FC-2) which contains 10 network nodes
corresponding to the output labels in the NTL dataset. To train
the deep learning architecture, an adaptive optimization
learning scheme (adam optimizer) was employed. Note that
a SHAP-based deep kernel explainer is used for interpreting
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FIGURE 2. An illustration of our proposed NTLCONVNET architecture
containing three one-dimensional convolutional neural network conv1D
with varying channel of sizes (128, 64, and 32) and fixed kernel 1 × 3; and
two fully connected layers with neural network size 100 and
10 respectively.

the model feature importance. The proposed deep learning
architecture is shown in Fig. 2.
The deep learning architecture uses a kernel of size

1 × 3 during the convolution process. The feature maps
generated from the first layers over 128 channels are
propagated forward to two successive layers with channels
(64, 32). The feature map generated from the conv1D blocks
can be expressed using the equation below.

x lk = blk +

∑Ml−1

j
conv1D(wl−1

jk × sl−1
j ) (1)

The generated feature-map x lk represents the input to the
successive network-layer l, while the variable term blk denotes
bias weights for kth numbers of neurons for each of the layer’s
l, sl−1

j represents effective output in each of the corresponding
j th unit node at layer l − 1. The inception value for sl−1

j (xt)
rely on the training data sample xt. The input weight wl−1

jk
denote a moving rectangular filter at jth node from a previous
layer l − 1 to the terminal layers l. Note that a kernel filter
of size {1 × 3} was investigated, hence the use of a Rectified
Linear Unit (ReLU) operation on the generated feature maps
from each of the convolution layers l. A ReLU can be defined
based on the expression in equation 2;

f (x lk ) = max(0,x lk ) (2)

Note that the terminal activated conv1D features is treated as
an input to the fully connected layer f (x l−1

k ).

yli = bli +
∑Nl−1

k
(wl−1

ki f (x l−1
k )) (3)

At the dense layer (FC-1), the sum weighted input features
added to a bias weights yield an informative pre-activation
feature which is activated with a RELU activation function.
The terminal dense layer (FC-2) was activated by a softmax

activation function. The role of the softmax is to compute
the probability distribution of the target labels (discretized
collection efficiency), in this case, the output nodes are 10 and
the softmax can be defined using the expression;

yd =
exp(yld )∑
z exp(ylz)

(4)

where yd represents the probability of the target class d over
z possible output nodes. We employed the cross-entropy loss
function for computing the predictive approximation error
between the predicted value yd and target class yt . Hence a
cross-entropy loss function can be defined as;

L((yd , yt ) = −
1
Q

∑
t=1

yt log(yd (xt )) (5)

The Q accounts for the number of training examples xt . The
optimal weights of a predictive model play an important role
in the generalization of new examples. For this, we employed
an Adam optimization that operates on the loss function L(xt )
to update the weight. The optimal weight can be computed
using the expression below;

wt = wt−1 −

α
(

β1mt−1+(1−β1)gt
1−β t1

)
√

β2vt−1+(1−β2)g2t
1−β t2

+ ϵ

(6)

where gt = ∇wft (L,wt−1) computes the gradients w.r.t
stochastic objective at a time step t . ft (w) is the stochastic
objective function with parameter w (initialized weighted
parameter vector). The numerator component of the frac-
tional part of the equation computes the bias corrected
first moment estimate, and the denominator component
of this fraction computes the bias corrected second raw
moment estimate.We employed similar optimal experimental
hyperparameter settings as in [35], because they also work
well in our preliminary experiments. The hyper-parameters
are detailed below; the exponential decay rates for the
moment estimates β1= 0.9 and β2= 0.999 and a step-size
learning rate (α= 0.001). The exponential decay rates for
the moment estimates is raised to the power t , thus yielding
β t1 and β t2 respectively. The Adam optimization algorithm
updates the moving average of the gradient (mt ) and squared
gradient (vt ).

C. ENSEMBLE LEARNING ALGORITHMS COMPARED
WITH THE NTLCONVNET MODEL
This subsection describes the five ensemble learning algo-
rithms that are compared to the ID CNN Model used in
this study. An ensemble learning technique involves merging
several base learners to produce an optimal predictive model.
The ensemble learning method often employs sampling
and aggregation of decision trees to produce the final
prediction. The traditional ensemble learning techniques
include bagging [36] and random forest [37]. Some of the
state-of-the-art ensemble techniques which have recorded
good performances in several classification challenges are
described herein.
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i RANDOM FOREST with SHAP Tree-Explainer Ran-
dom Forest [30] is one of the traditional ensemble
learning techniques that was originally derived from
the bagging aggregation principle. This method can be
created by integrating several instances of decorrelated
trees [38]. This method allows majority voting from
the base learners before determining the most probable
target class (estimating an average score from the base
learners).

ii DECISION TREE with SHAP Tree-Explainer A
decision tree is an example of a supervised learning
technique mainly used for solving classification or
regression tasks [39], [40]. Hence, given an input
feature space, the decision trees operate based on the
principle associated with entropy and information gain
in the formation of a supervised learning model.

iii XGBOOST with SHAP Tree-Explainer: eXtreme Gra-
dient Boosting (XGBoost) method is a scalable tree
boosting technique [9]; this method relies on a sparse-
aware learning paradigm that allows multiple base-tree
learners to predict sparse and clustered data. The main
design philosophy of an XGBoost is that it factors;
in data compression, cache accessibility, and sharding
for creating a more scalable decision tree predictive
system.

iv CATBOOST with SHAP Tree-Explainer: The Cat-
boost [10] is an example of the ensemble learning
algorithm. The name CatBoost was derived from the
compound words; ‘‘categorical boosting’’. A typical
CatBoost relies on base learners by ordering and
employing an innovative learning algorithm for oper-
ating categorical features. The main merit of CatBoost
is that it has the prowess to address prediction shifting
arising from output target leakage. This method is
one of the most competitive state-of-the-art ensemble
learning method.

v LIGHTGBM with SHAP Tree-Explainer: The light
gradient boosting method (LightGBM) [7] is another
competitive ensemble learning method that depends
on decision trees that employ two main algorithm
paradigms; gradient-based one-side sampling and an
exclusive feature bundling. This method is often used
for solving classification and regression tasks.

D. EVALUATION METRICS
The following metrics were employed for evaluating the
goodness of our proposed method and the ensemble learning
techniques.

1. Accuracy (A): is a measure of how close/far a given
measurement is from the true value.

A =
TP+ TN

TP+ FP+ TN + FN
(7)

2. Precision (P): is the measure of correct classification to the
number of misclassification.

P =
TP

TP+ FP
(8)

3. Recall (R): is the measure of correct classification to the
number of missed entries.

R =
TP

TP+ FN
(9)

4. F1-Score (F1): is the measure of the harmonic mean of
precision and recall.

F1 = 2 ×
P× R
P+ R

(10)

where TP accounts for true positive for predicting the target
class,FP denotes false positive, andFN means false negative,
the latter two accounts for misclassification. The precision
and recall output per class was used for calculating the
effective macro and weighted score respectively;

macro− average =

∑
k SCOREk
N

(11)

weighted − average =

∑
k
SCOREkWk (12)

The SCOREk denotes either the precision, recall, and f1-score
for each of the target class k= {1, 2, ..10 and Wk is the ratio
of the number of examples per class divided by the total
number of examples in either training or testing examples.
For the experiments, ipython jupyter notebook was used for
the development.

A schematic diagram of the 4-stage processes of the
proposed method is shown in NTL prediction system.

III. RESULTS AND DISCUSSION
This section provides the experimental results obtained
and discussed the research findings for the investigated
supervised learning model.

All the experiments are implemented using Python
3.9.13 on a standard PC with an 11th Gen Intel(R) Core (TM)
i7-1195G7 running at 2.92GHz with 16.0 GB of RAM. The
CNN architecture is constructed based on TensorFlow and all
the codes were run on Jupyter notebook server version 6.4.12.

A. DATASET
This section describes the dataset used in this research
and provides a background and insight to the electricity
distribution processes within the country of study. The dataset
for this research consists of a combination of customer con-
sumption and staff activities data of an electricity distribution
company (DisCo) in northern Nigeria. The consumer-base
of the DisCo consists of two main types of customers
namely: post-paid and pre-paid customers. The pre-paid
consumers purchase electricity units (in kWh) prior to
consumption while those in the post-paid customers consume
electricity and subsequently pay for the quantity of electricity
consumed. The quantity of electricity consumed by the latter
is calculated either by meter reading or by estimated method
by the DisCo (through the staff). This research focuses on
postpaid customers. Preliminary analysis of our dataset reveal
that the DisCo sometimes fail to obtain the meter reading
(or accurate estimate) for the billing thereby causing huge
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FIGURE 3. Schematic diagram of the proposed methodology for prediction of NTL.

losses for the company. This sub-optimal billing phenomenon
is captured using a parameter called Billing Index, which
is computed as a ratio of number of customers billed to
the total number of active customers (billed customers /
total active customers). Another major source of NTL in the
Nigeria electricity distribution landscape is the failure of the
DisCo(staff) to collect the money billed to the consumers.

1) INPUT VARIABLES
The focus of this research is to explore how staff activities
contribute to NTL within the post-paid customers by
analyzing the data generated by the staff during the billing,
collection and documentation processes. Consequently, the
dataset features for this study are classified into two
categories namely: staff related and customer related features.
The following 6 features in the dataset are used as proxies
for staff activities: (a) number of bills generated by the
DisCo (b) number of collections (c) collection amount (d)
billing index (ratio of the number of bills to the number of
active customers) (e) collection index (ratio of the number
of payments to the number of active customers) (f) manager
code (an anonymized unique identifier for managers). The
customer-related features in the dataset include the number of
active customers, kWh consumption, bill amount, customer
location, bill year, and bill month. Table. 1 shows a visual
illustration of the dataset features while Table. 2 shows the
categorization of these dataset features.

2) OUTPUT (TARGET) VARIABLE
The target variable in the dataset is the Collection Efficiency
(ratio of collection amount to bill amount) and this variable
is also used as a proxy for NTL. It is important to note that in

TABLE 1. NTL dataset features categories.

TABLE 2. Tabular visualization of some examples of the input variables.

this context, NTL is estimated as:

ηntl = 1 − ηce (13)

ηatc =

(
Ei − Er
Ei

)
× 100 (14)

Er = Eb × ηce (15)

ηatc =

(
Ei − Eb × ηce

Ei

)
× 100 (16)
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FIGURE 4. Confusion matrix visualization of the supervised learning models.

where ηntl is NTL and ηce represent the collection efficiency.
Er represents the energy realized, Ei is the input energy and
Eb is the energy billed. An assessment of the aggregated
technical and commercial (ATC) losses is very vital within the
electricity supply industry. The ATC losses can be described
as the effective summation of both the TL and NTL. An ATC
loss ηatc can be computed using the expression in equation 17.

ηatc = ηtl + ηntl (17)

ηntl = ηatc − ηtl (18)

where ηatc represents an ATC efficiency which can be
calculated by taking the ratio between the residual energy
error (difference between the input energy Ei and the energy
realized Er ) and Ei. The realized energy Er can be computed
by taking a weighted product of the collection efficiency ηce
and the billed energy Eb. The variable ηce = ArA

−1
b ; The (Ar )

represents the total amount of money realized and (Ab) is the
sum of the billed amount. Furthermore, ηatc can be computed
by summing both NTL efficiency ηntl and TL efficiency ηtl
as expressed in equation 18.

The dataset comprises both normalized input variables
(12 fields shown in Table. 1 as F0 to F11) and the output
variable (a discretized ηce shown in Table. 1 as F12). Note that
the input features contain both repetitive and non-repetitive
feature patterns. To discretize the target output, a binning
principle was applied on the continuous output ηce based on
a range {10%, 100%} at a step size of 10%, hence resulting
to creation of 10 possible classes. These classes are 0-10%,
10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%,
70-80%, 80-90%, 90-100%. String variables such asmonth of
the year, year, location code and manager code were decoded
into numeric representation before normalizing the overall
input features. Here the normalized input features are scaled

to a bound [0,1]. An illustration of the normalized energy
consumption (kWh) can be calculated using the expression
in equation 19.

En =

(
Ei − min(Ei)

max(Ei) − min(Ei)

)
(19)

The variable Ei denotes the unnormalized energy con-
sumption (kWh) tokens in the used dataset, En represents
the normalized energy consumption. To actualize the experi-
mentation, we partitioned the normalized data input features
and the output labels into the distribution: training set
(80%) and testing set (20%). This process was repeated
in five possible folds (This was done to enable effective
assessment of model diversity) based on random-state
seeding (20, 40, 50, 80, 100).

B. PERFORMANCE EVALUATION
The report of the confusion matrix for the examined methods
is shown in Fig. 4. From this figure, the diagonalmatrix shows
the degree of accurate prediction of the collection efficiency;
each of the subplots depicts the predictive accuracy when
the actual output (Ya) is plotted against predicted output
(Yp) for our proposed method (NTLCONVNET) compared
with ensemble learning methods. The proposed method
yielded the best accuracy relative to all the other approaches
(ensemble learning techniques) with many of the predictions
skewed towards the lower spectrum of the collection
efficiency. Oversampling has often been used to create data
balance and compensate for the class imbalance. However,
this consideration was not assessed in our study because after
training all the examined models in the training phase, all
the methods yielded 100% scores across accuracy, precision,
f1-score, and recall. Hence it is pertinent to determine each
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TABLE 3. Testing phase effective mean of the weighted average (WA)
performances for the different supervised learning methods based on
five-fold cross-validation (with the corresponding standard deviation, std)
when analyzed on the NTL dataset.

TABLE 4. Testing phase effective mean of the macro average (MA)
performances for the different supervised learning methods based on
five-fold cross-validation (with the corresponding standard deviation, std)
when analyzed on the reduced NTL dataset.

of the trained models’ goodness and generalization prowess
in the testing phase.

To assess the model diversity and the generalization
potential, five-fold cross-validation was conducted and the
performance metrics in the testing phase within the context
of the effective mean for the weighted-average (WA) and
macro-average (MA) SCOREk for each of the algorithms
used. The summarized report for the WA and MA scores are
presented in Table. 3 and Table. 4 respectively. From the result
tables, the results show that the NTLCONVNET significant
(p < 0.05%) surpasses all other approaches across the
evaluation metrics in both weighted and macro averages. The
success can be attributed to an effective design of the deep
learning architecture. With respect to the ensemble learning
techniques, LightGBMmarginally outperforms CatBoost and
XGBoost but significantly (p < 0.05%) surpasses Random
Forest and Decision Tree models. The worst performing
ensemble learningmethod is the Decision Tree method which
suffers from an over-fitting problem.

C. EXPLAINABILITY ASSESSMENT
In order to provide internal understanding about the examined
supervised learning and provide a decision rationale influenc-
ing the feature importance and model prediction, this study
explored the use of SHAP algorithm with major focus on

TABLE 5. Explainability model feature ranking in the testing phase; the
power index represents the feature positional ranking.

FIGURE 5. A correlation plot showing the relationship between each of
the input features to one another while revealing features with a high
level of co-linearity (R2>0.85).

using tree-explainer for interpreting the ensemble learning
and kernel-explainer for interpreting the NTLCONVNET.
A summary subplot displaying the explainability for all
the methods is shown in Fig. 6 and based on this figure,
each of the methods’ feature importance ranking is reported
on Table. 5.

D. NOVEL RANKING FRAMEWORK
Furthermore, this study developed a hypothesis formulation
to assess each of themethods by counting the frequency of the
feature ranking across all the methods to determine which of
the feature contributes the most from the trained supervised
learning model predictions. This study developed a novel
ranking framework to obtain the holistic features ranking
across the six models. This cumulative feature ranking is
defined as:

Rs(F
p
i ) =

∑
i
count(Fpi ) × p (20)

where Rs is the sum of effective ranking per feature ∀ the
learning models, Fpi represents the input feature, the index
variable p denote the feature positional or ranking value, and
i is number of entries per each of the features. Suppose an
input is given as Fpi = 8, the positional value is p= {1, 2},
the frequency of occurrence of the input feature Fpi = 8 is
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FIGURE 6. Explainability visualization of the supervised learning while showing the feature importance influencing the different model
predictions.

TABLE 6. Holistic feature ranking using all the outcome from an exp.

given as count(Fpi ) = {4, 2} and by performing a calculation
on equation 19 yields a value Rs= 8. By extending the same
principle to the remaining feature, a summarized best feature
ranking is reported in Table. 6.

From Table 6, it can be inferred that the TOP-3 most
useful feature is; collection amount, energy consumption
(kWh), and collection index. These three features played
a very important role in the overall model prediction.
Also, an assessment of the median feature contribution
based on TOP-6 features was conducted, and the result
revealed that the following features: collection amount,
energy consumption (kWh), collection index, billing amount,
location, and manager codes are the top determinants of
the learning algorithm predictive capability. While it was
observed that the impacts of the location and manager
codes were more relevant in ensemble learning modeling:
this was not the case in the NTLCONVNET where the
order of significant features is as follows: collection amount,
collection index, number of bills, number of payments,
energy consumption (kWh), and billing amount.

E. CORRELATION ANALYSIS
After the preliminary experiments, the input feature space
was tested for co-linearity using Pearson’s correlation and
the result is shown in Fig. 5. The bill amount and kWh

TABLE 7. Testing phase effective mean of the weighted average (WA)
performances for the different supervised learning methods based on
five-fold cross-validation (with the corresponding standard deviation, std)
when analyzed on the reduced NTL dataset.

TABLE 8. Testing phase effective mean of the macro average (MA)
performances for the different supervised learning methods based on
five-fold cross-validation (with the corresponding standard deviation, std)
when analyzed on the reduced NTL dataset.

consumption show a very significant level of correlation
hence bill amount was dropped during the exploratory data
analysis (EDA). Hence the new NTL dataset contains a
reduced dimension in the input feature space; the new data
is called REDUCED NTL DATASET.
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FIGURE 7. Explainability visualization of the supervised learning while showing the feature importance influencing the different model predictions on the
reduced NTL dataset.

F. PERFORMANCE EVALUATION OF THE REDUCED
DATASET
The macro average (MA) summary of the performance
evaluation for each of the algorithms used on the reduced
NTL dataset is reported in Table. 7 while the weighted
average (WA) summary of the performance evaluation
for the algorithms is reported on Table 8. From the
aforementioned Tables, it is observed that the proposed
method (NTLCONVNET) significantly surpasses all other
approaches in both macro and weighted performance metric
evaluations (precision, recall, f1-score). The success of
the NTLCONVNET can be attributed to the fact that the
deep learning model learned the best feature abstraction
from the reduced NTL dataset. This prowess aided in
accurate prediction of the collection efficiency. Furthermore,
LightGBM, CatBoost, and XGBoost persistently yielded
better performance than the Random Forest and Decision
Tree models. This observation suggests that the state-of-the-
art ensemble learning algorithms (LightGBM, CatBoost, and
XGBoost) learned higher dimensional feature representation
than the Random Forest and Decision Tree methods.
However, this may not be the case for a dataset with a
univariate input feature space.

G. EXPLAINABILITY ASSESSMENT OF THE MODELS ON
the REDUCED INPUT FEATURE SPACE
Further analysis using the SHAP algorithm in trying to
explain the trained machine learning models on the reduced
NTL dataset is shown in Fig. 7. The figure is summarized
on Table. 9; the use of holistic ranking approach analyzed on

TABLE 9. Explainability model feature ranking in the testing phase; the
power index represents the feature positional ranking on the reduced
NTL dataset.

TABLE 10. Holistic feature ranking using all the outcome from an
explained models when analyzed on the reduced NTL
dataset.

the SHAP explained models is reported in Table. 10. From
this result table, the most influential features are ranked in the
order of the T OP−6; energy consumption (kWh), collection
index, collection amount, location code, number of bills,
and manager code. This depicts that 4/6 of the staff-related
activities significantly contribute to most of the ML model
prediction.
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IV. CONCLUSION AND FUTURE WORK
While the customer activities have been the focus of most
previous studies, the results of this research demonstrate that
staff activities significantly contribute to NTL in electricity
distribution in Sub–Saharan Africa. SHAP algorithm and
the novel holistic ranking used in the study reveal that
4 out of the top-6 influential features for the predictive
models are staff-related. This collaborates with the increasing
anecdote that staff of electricity distribution companies are
also major contributors to NTL. This study developed a deep
learning architecture that was compared with five ensemble
learning techniques with a central goal to predict NTL
using 12 input features. The research finding suggests that
the proposed NTLCONVNET surpasses all the ensemble
techniques at a significant level (p < 0.05) across all the
examined evaluation metrics. The proposed method scored
0.844, 0.838, 0.836 and 0.836 on weighted average Precision,
Recall, f1 and accuracy respectively. The closest model
(LightGBM) scored 0.752, 0.754, 0.748 and 0.754 on the
same metrics. This shows that the proposed method learned
more informative feature abstraction from the NTL dataset.
This indicates that the appropriate design of neural network
architecture is significant in obtaining the best performance.
SHAP explainability algorithm and a novel holistic ranking
were used for model global interpretability which provides
the decision rationale for each of the trained models. This is
a good step towards dealing with the challenges of feature
ranking when using different ML algorithms on the same
dataset. This study forms the basis of future research works
to further explore the relationships and measure the impact
of staff activities in causing NTL in electricity distribution.
More improvements can be achieved by employing other
staff-related features and machine learning algorithms in
researching this topic. Future work can assess hybridizing
different deep learning architectures and then compare with
our proposed method.
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