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ABSTRACT The low-dropout (LDO) regulator is an important component in power management IC (PMIC)
chips and is widely utilized in electronic modules, such as mobile processors and Internet of Things (IoT)
devices. To ensure the proper functionality of these modules, automatic test equipment (ATE) is typically
used to test and calibrate LDOmodules in the mass production stage. During the test process, the presence of
pollutants in the test environment or inappropriate test settings can cause a discrepancy between the expected
performance of the chip and its actual output. When conventional ATE test methods fail to identify these
types of risks, this study proposes a novel self-adaptive screening method that enhances the possibility of
screening out weak chips without the need for additional testing hardware or stages. This screening method
accumulates and analyzes effective test data measured by ATE in real time, and derives a dynamic test limit
to screen weak chips by performing systematic statistical analysis on the collected data, combined with the
chip’s practical application requirements and tolerance. During the experimental stage, the author selected a
chip lot and applied the proposed testing method. The results showed that 90.91% of escape defective chips
were successfully screened, with a reasonable yield impact of 3.38%, compared to the traditional ATE test
methodology which had a low capture rate.

INDEX TERMS Automatic test equipment (ATE), low-dropout (LDO) regulator, self-adaptive method,
outlier elimination.

I. INTRODUCTION
With the increasing number and diversity of electronic
device applications, especially for portable and Internet of
Things (IoT) devices, there has been a skyrocketing demand
for Integrated Circuit chips (ICs) that are utilized in the
manufacturing of these devices. As one of the important
components, power management IC (PMIC) chips play a
crucial role in these types of electronic devices. They can
regulate the overall power consumption of the device by
changing the power supply voltage provided to the other
modules, allowing electronic devices to perform various tasks
with optimal power consumption. PMIC chips commonly
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consist of buck-boost converters or low-dropout regulators
(LDOs). Buck-boost converters can both increase or decrease
voltage, whereas LDOs only output voltages lower than
the input voltage. Although buck-boost converters provide
more voltage regulation, the simple circuit structure and
control logic of LDOs make them popular for use in mobile
devices [1].

As is commonly known, non-ideal factors may occur
during the chip manufacturing process, resulting in differ-
ences between the produced chips and the original design.
Therefore, it is necessary to use automatic test equipment
(ATE) to test the chips during the mass production stage to
ensure that most of the delivered chips can work properly, and
the overall failure rate is below 500 parts per million (PPM).
The failure rate is a reasonable threshold for consumer
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FIGURE 1. Examples of output voltage distribution of the target LDO
chips before and after OTP calibration through ATE test.

electronics. Typically, we need to connect the output pins
of the tested chip’s LDO to the ATE testing channel, and
apply a load current to the ATE testing channel to simulate
the LDO under real application scenarios [2]. Furthermore,
to ensure a more uniform output performance for chips that
have undergone the ATE test, some LDO chip designs utilize
One-Time Programmable (OTP) calibration. During the Final
Test (FT), the output of the LDO under test was measured
and calibrated, and the calibration value is written into the
OTP area of the chip, resulting in a constant performance
of the chip in practical electronic devices [3], [4]. Figure 1
shows a comparison of the output distribution of the target
LDO chip SC2721G before and after calibration during the
normal FT testing stage. As can be seen from the figure,
the output distribution of the calibrated LDO chip was more
concentrated.

However, there is a major defect in the OTP calibration
method in practical tests, that is when the ATE environment
itself is greatly affected (such as the socket being dirty, the
chip under test not in close contact with the equipment,
etc.) The trim code obtained by the test may differ from the
value that the chip needs to be calibrated, causing the output
voltage of the chip to deviate from the designed expectation
when used in real applications. When this error is large
enough, there is a possibility that a chip that passed the test
will not work properly in practical applications, which may
lead to chips being returned through Return Merchandise
Authorization (RMA). Figure 2 displays a dirty socket during
the ATE test and a significant number of RMA chips resulting
from contamination.

Another scenario is that the output of the device under test
(DUT) falls within the test limits set by the design but deviates
from the majority of other DUTs. Such devices are known
as outliers and, have the potential to cause product failures
in real applications. Because the fact that the LDO output
voltage of the DUT did not exceed the test limit during the
FT phase, these chips were not screened during the FT test
process. To minimize the probability of such occurrences,

FIGURE 2. The presence of severe socket contamination can introduce
abnormalities during the ATE test process, leading to a notable increase
in the number of RMA chips.

this study seeks to identify a mass production testing method
suitable for ATE to effectively filter out potential risk chips.

II. CONVENTIONAL ATE TEST METHOD
To address the challenges identified in the previous section
in mass production, researchers and engineers have proposed
multiple solutions from different perspectives, including
hardware and software. To improve the accuracy of the
measurement hardware, a Kelvin connection structure was
employed to connect theDUT andATE testing equipment [5].

By enabling independent and closer contact with the
output pins of the DUT, this approach achieved more
accurate electrical performance measurements. In alternative
approaches, special built-in self-test (BIST) structures were
introduced into PMIC chip designs to enable self-testing,
allowing these DUTs to obtain target electrical performance
parameters more easily and reliably using straightforward
digital protocols during the ATE test [6], [7]. All of these
attempts are aimed at reducing the influence of external
factors on the testing results during measurements, so that the
values obtained by ATE canmore accurately reflect the actual
performance of the DUT.

The software method to deal with this issue is to learn and
process the ATE testing results, identify chips with abnormal
test results and screen them out to reduce the possibility
of such chips being manufactured into products. For chips
that cannot tolerate area overhead or complex test flow, this
method is the only viable option, or it can serve as an effective
additional check for application scenarios that prioritize chip
quality. This concept evolved from rigorous quality standards
required for automotive electronic chips, which spurred the
development of multiple software-based methodologies such
as the part averaging test (PAT), statistical bin limits (SBL)
and geographical defect detection (GDD) [8]. SBL and GDD
can carry out a comprehensive analysis of the DUT results
without the need for an ATE before customer delivery.
In contrast, the PAT method directly analyzes the raw testing
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data of the DUT during the testing stage, thereby enabling
the early identification of high-risk chips. Consequently, the
PAT method plays a relatively more important role in ATE
testing.

The first PAT method was proposed in [9]. This method
screens the DUT through the following steps: (1) The initial
ATE test is run and all testing values of the passed DUTs are
collected. (2) The distribution range, including the majority
of pass DUTs, was calculated, and the test limit was set to the
same range. (3) Use the new test limit to screen the incoming
fresh chips. (4) The test limit is periodically updated based on
the test results on a monthly or quarterly basis. This method
is also known as static PAT (SPAT) [22] because of its long
update cycle and fixed test limits for each testing process.

To address this issue, researchers and engineers have short-
ened this feedback cycle from quarterly or monthly updates to
a lot or wafer-based intervals, thus leading to the introduction
of the dynamic PAT (DPAT) test method [10], [11]. A shorter
update cycle enables better alignment between the ATE
test limit and the DUT’s actual performance, thus avoiding
the inability of the static test limits to contain DUT’s
true performance due to manufacturing process fluctuations.
Using a more robust statistical calculation method in the
calculation process of the test limit for each round is called
the Robust DPAT (RDPAT) method [12]. The key feature
of this method is the ability to generate more effective and
stable limits that can better handle test data under unexpected
scenarios through high-intensity mathematical calculations,
thereby reducing the probability of ATE testing errors such
as test over kill or test under kill.

In recent years, owing to the rapid development of
artificial intelligence technology, researches have used deep
learning or machine learning algorithms to perform sample-
based learning on the test results of DUTs when facing
more complex test cases, and allow artificial intelligence
to make a judgment on the DUT [13], [14], [15]. Some
studies [16], [17], [18] utilized sequence prediction to predict
the performance of the next DUT based on the collected
sample sequence in the current testing environment. These
methods can be used to screen problematic chips through
iterative learning from the sample data and testing correction.

The ATE testing method mentioned above can be sum-
marized as a process flowchart, as shown in Figure 3. The
chart reveals that the different test methods share a similar
core process. They first collected data, analyzed it, and then
applied the updated test limits to achieve outlier elimination
in the second test round. Advanced techniques can achieve
higher efficiency in filtering or accuracy in screening.

These testing methods require two testing stages and
rely on additional human intervention or data training,
leading to relatively high ATE testing costs, particularly
with added expenses related to test time and external
equipment [19]. Although automotive electronic chips may
be able to withstand the cost of such testing methods, they
are too high for consumer electronics to bear. The aim of
this study is to propose a cost-effective testing method that

FIGURE 3. Common flow chart of conventional ATE test method. This type
of flow requires two testing stage (blue blocks) and relies heavily on
external resources (yellow blocks).

focuses on consumer electronics chips while still achieving
optimal test quality.

III. PROPOSED ATE TEST METHOD
To achieve low-cost outlier elimination for ATE testing of
consumer electronic chips, we have made improvements
and innovations based on the testing process and test limit
generation method in traditional methods. The proposed
method can be elaborated on from the following perspectives.

A. MAIN FLOW OF SELF-ADAPTIVE SCREENING METHOD
Given the high cost of ATE, adding a second round of
testing to conventional methods can significantly increase the
testing time and costs. Hence, it is crucial to perform risk-
chip screening within a single round of testing. In addition,
the processing of test data consumes additional resources:
training on datasets requires external servers and updating
test programs requires additional manual intervention. These
steps not only require additional resources, but their imple-
mentation also presents certain difficulties. For commercial
confidentiality, ATE production lines are not connected to
the internet and cannot deploy servers. Furthermore, the
introduction of additional human intervention during the
testing process may result in unforeseen errors that can
interfere with the analysis and research of chip testing results.

Hence, to address the negative factors mentioned earlier,
the proposed testing method employs a single testing
round with dynamic test limits to enhance testing quality.
To evaluate chips, this method uses limited-length test data
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FIGURE 4. Flow chart of proposed ATE test method.

to dynamically generate two distinct test limits during a
single testing run: the initial limit provided by the chip
designer or data sheet and the dynamically generated limit
based on the collected test data, input parameters, and target
screening yield. This is accomplished using lightweight codes
within the ATE program project. A flow-chart is illustrated in
Figure 4.

Compared to the process illustrated in Figure 3, the
proposed method tests each DUT only once, and applies
dynamic test limits specific to each DUT instead of using the
same test limit for the entire lot. This method relies solely
on the targeted screening yield and partial system parameters
as system inputs, and requires no further intervention
during the testing process or external equipment such as
additional servers. This method calculates a limited number
of test data records for use as a database to ensure the
timely convergence of the generated test limits without
compromising performance.

B. SUB FLOW OF CALCULATING DYNAMIC LIMIT
The generation of the dynamic test limit is a critical aspect
of outlier elimination and serves as the core module of the

TABLE 1. Parameters for limit generation.

proposed method. Consequently, it is imperative to provide a
detailed explanation of the process involved in generating the
test limit.

As previously discussed, our objective is to eliminate two
types of chips: those whose test values deviate significantly
from the majority of chip test values and those whose
calibration values deviate from the true values of the tested
chip. For the first type of chip, filtering can be accomplished
by computing the statistics of the test data queue and
comparing the chip test values to this statistical value.
By utilizing the central limit theorem, it can be assumed that
chip test values follow a normal distribution with mean of
µ and standard deviation of σ , as illustrated in Figure 1.
According to the nature of the normal distribution, [µ−σ, µ+

σ ] contains 68% of the samples and [µ−3σ, µ+3σ ] contains
99% of the samples. Consequently, we can evaluate whether
the current DUT belongs to the majority by analyzing the
relationship between the chip test value and the position of
these ranges. This introduces the parameter Cpl and Cph (Cpk
to represent either of them), which are defined as follows:

Cpl =
µ − Low Limit

3σ
(1)

Cph =
High Limit − µ

3σ
(2)

where µ and σ represent the mean and standard deviation
of the test data queue obtained through the proposed
test method, respectively, as illustrated in Figure 4. When
Cpk = 1, it indicates that the sample mean is located in
the exact center of the dynamic test limit range, and the
width of this range is 6σ , thereby encompassing 99% of
the pass chips. By modifying the value of Cpk , we can
regulate the width and relative position of the dynamic test
limit, which determines the percentage of chips rejected,
thereby eliminating the outliers of the DUTs. Hence, Cpk is
an essential input parameter for the test method proposed in
this study.

One objective of ATE testing of consumer electronic chips
is to avoid any sudden changes in the test yield. Thus,
compensatory parameters must be introduced to ensure the
stability of the yield performance of the proposed test method.
The following parameters listed in Table 1 were introduced
into the proposed test method:

Here Tqueue will be determined by following equation:

Tqueue =

∑L
i=1 (X [i] − X [i− 1])

L
(3)

where L is the length of the test data queue, and the testing
data are recorded in chronological order and in the form of
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FIGURE 5. Flow chart of DTL generation.

a queue using X [i]. When L reaches the maximum value
set in advance, the subsequent X [i + 1] data enters the test
data queue, and X [0] is removed. Using this method, the
system was able to record changes in the test results over
time. The system can self-correct for minor differences in
the testing environment and issue a warning when significant
abnormalities are detected in the testing environment.

The ADT can be defined by the following formula:

ADT = abs

(∑L
i=L−M (X [i])

M + 1
− µ

)
(4)

where M is an integer smaller than L. This formula calculates
the difference between the mean of the last M test data and
the mean of all test data in the test data queue to detect sudden
one-time jumps in the test data. These jumps are often caused
by changes in the testing environment. When there is a jump,
the dynamic test limit range must be immediately adjusted
to avoid a high rate of test overkill, which can significantly
affect the test yield.

We can use the parameters mentioned above to describe the
process of generating the dynamic test limit (DTL), and the
flow chart is shown as Figure 5.

Here Cp_target , Tqueue_setup and ADTsetup are user defined
input parameters at the beginning of the proposed test
method. Every time the testing method receives new test
data, it integrates the existing data in the queue with the new
input data and calculates the Cpk , mean, standard deviation,

and other statistical parameters for this dataset based on the
previous round’s DTL. The algorithm outputs a 6σ DTL
range if there are not enough samples in the current queue,
ensuring that the range covers the majority of the tested
samples. Once sufficient samples are in the queue, the testing
method initiates the compensation discrimination process.

The queue length at this point has a significant impact on
the execution time of the entire test cycle. Because all the
reference samples used in the calculation of the dynamic test
limit are sourced from the queue, even for methods with O(n)
complexity, an increase in nwill lead to a linear increase in the
execution time of the entire system. A smaller n can reduce
the testing time, whereas a larger n can better reflect the
overall state of the DUTs, avoiding the interference of some
abnormal points with the overall evaluation of the DUTs by
the system. Therefore, choosing an appropriate n according
to the actual testing needs is critical.

If the Tqueue does not exceed the preset value, this confirms
that the current test fluctuation is within the range expected
by the user, and the algorithm jumps to step 1. The algorithm
then generates a new DTL based on the previously calculated
statistical parameters, with the benchmark of making the
newly generated DTL result in a Cpk value that is closer to
theCp_target set by the user. This is illustrated by the following
equations:

DTLnew = (1 − α) × DTL last (5)

α =

{
−α0, Cpk < Cptarget
α0, Cpk ≥ Cptarget

(6)

where α0 in (6) is a non-negative variable real number. These
two equations indicate that when the previous DTL range is
slightly wider than expected, the algorithm adjusts the range
of the DTL to decrease the Cpk value, and vice versa.

When Tqueue exceeds the preset value, the proposed
testing method proceeds to step 2 and performs additional
compensation to avoid producing a large number of test
overkills. Initially, the algorithm expands the limit range to
a safety value by using the following equation:

DTLs1 =

{
(1 + C0) · DTLlast , ADT ≤ ADT setup
f (ADT ) · DTLlast , ADT > ADT setup

(7)

After expanding the previous DTL, the algorithm calcu-
lates a fresh Cpk based on the expanded range, with the aim
of ensuring that the updatedCpk value reflects the most recent
condition of the test dataset. To achieve this, the mean used to
compute Cpk values will be different, and will be determined
by the following equation:

Cpk =


|µ − DTLs1|

3σ
, ADT ≤ ADT setup

|PM − DTLs1|
3σ

, ADT > ADT setup

(8)

PM =

∑L
i=L−M (X [i])

M + 1
(9)
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TABLE 2. Performance comparison of various dynamic test screening
methods.

Equations (7) and (8) are used to obtain the updated DTL
and Cpk values when the test dataset exhibits jumps. These
values are then substituted into Equations (5) and (6) to
calculate the most recent round of the DTL.

The second factor that may affect the execution time is
the complexity of the calculation. When computing the next
dynamic test limit, we can use a simple calculation formula,
as described in this article, to roughly estimate the correct
performance of the DUT, or we can use convolutions and
matrix operations that are widely used in machine learning
to enhance the confidence in the obtained data. However,
using complex calculationmethodswill result in an additional
execution time of O(n) or even O(n2), which may not be
useful for chips in consumer electronics products that do not
require extremely high product quality.

If ADT or Tqueue exceeds reasonable values by a signif-
icant margin, this implies that the environmental influence
surpasses the correction limits of the algorithm. As a result,
the algorithm terminates ATE testing to notify the user to
inspect and fix the test environment. Given that the test limit
automatically updates under specific conditions, we refer to
this approach as self-adaptive.

In summary, the self-adaptive ATE test method proposed in
this paper has the following significant advantages compared
to other methods: (1) It requires only one testing process
to achieve the goal of accurate dynamic screening. (2) The
computational intensity is relatively low compared with
other methods that involve a large number of square and
square root operations. (3) It has a certain resistance to
abnormal fluctuations because we incorporate fluctuation
compensation factors into this method, which makes the
dynamic test limit more responsive to actual production data.
A brief comparison is presented in Table 2. The other test
methods referenced in the table are all dynamic screening
test methods that have been derived from base methods with
improvements, and some of these test methods have been
used in actual production by companies such as Ampleon or
Philips.

In the software implementation process, we created a
C++ class to record the test data and implement all
the functions mentioned above. Because the target ATE
software platform also uses a C++ architecture, our code
can perfectly fit this ATE testing platform. It should be
noted that, in the current ATE software architecture, different
test items belong to different test classes. To achieve data

interaction between test items, we set the test data queue
to a static type. This ensures that all test items can access
the test dataset under the necessary conditions, to cal-
culate various compensation parameters and dynamic test
limits.

The core class methods include the following: (1) a method
for refreshing the static test result queue; (2) a method
for calculating the statistical parameters of the test result
queue and system compensation parameters; (3) a method for
executing compensation and calculating dynamic test limits;
and (4) a method for providing feedback on dynamic test
limits to the ATE system and updating the test method’s own
parameter records.

It should be noted that there are several obvious factors
limiting to the performance of this testing method that need
to be considered.

First, compared with the rigorous mathematical calcula-
tions used in machine learning, the screening efficiency of
the simple algebraic method used in this study is not as
good as that of machine learning. This means that in sce-
narios that demand strict quality requirements for industrial
electronic products, the proposed method would result in a
serious overkill if we want to achieve the same screening
results.

The second limitation is that the current system still
requires users to input reliable initial conditions for the
system to operate normally, and the calculation of these
parameters must be externally calculated and input by people.
However, the system cannot automatically calculate them
based on historical samples.

Third, the current testing method adopts the same testing
process for all DUTs without selecting characteristics,
whereas other multistage testing methods in previous
research have selected the testing process to some extent for
the DUTs being tested. This means that if the proportion of
abnormal chips in the target lot is very low, the testing time
loss of the current process will be significantly greater than
that of multistage processes. This characteristic makes the
method proposed in this study more suitable for consumer
electronics projects with shorter flows and certain quality
requirements for chips. For chips with long testing flows
and stricter quality requirements, this method may consume
unexpected overhead test times and fail to achieve desired
results.

C. DETECTION OF LDO CALIBRATION OFFSET
As previously mentioned, another goal of the method
proposed in this paper is to effectively screen chips with a
potential risk for LDO calibration anomalies. The previous
analysis indicated that dirty test sockets are a significant cause
of calibration anomalies. Testing the same lot of chips on two
the ATEmachines shows that some chips may have lower test
values when the testing environment is abnormal; however,
the overall distribution of each test run still indicates a normal
distribution, as shown in Figure 6.
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FIGURE 6. Result of LDO test on different ATE and the distribution of 1st

ATE test (with anomalies).

Ideally, the test results should be the same for two ATE
testing sessions, and the line formed by plotting the scatter of
the two test results should follow the formula y = x. However,
the figure above shows that the distance between the scatter
points of most RMA chips and the y = x line is noticeably
larger than that of normal chips. This observation could serve
as a valuable starting point for further analysis.

The voltage offset suggests a voltage drop in the testing
circuit, which occurs because of the accumulation of dirt
inside the socket. Thus, there exists an opportunity to
detect sockets that are significantly dirty during the testing
process, provided we are able to capture this voltage drop
in ATE testing. According to the characteristics of the LDO,
increasing the load current within the designated range hardly
affects the output voltage of the LDO [20]. As the voltage
drop generated by resistive dirt significantly increases with
increasing current, we aim to capture this information by
separately measuring the voltage output of the LDO under
half and full-loads during testing.

Assuming that the LDO output voltage measured by ATE
is V1 under load I1 and V2 under load I2 when the resistance
R of the resistive dirt is constant, we can obtain the following
equation:

1V = −1I × R (10)

Therefore, the contact resistance R can be obtained
indirectly from the difference between the twomeasurements.
According to our experiment and the raw data required,
Figure 7 shows that the two measurements of the output
voltage at half-load and full-load for a given LDO can be
approximated to follow a linear relationship of y = kx + b.
If we can assume that the output voltage of the LDO

between two current-load conditions is negligible, and that
the output voltage under load I1 is V1 and under load I2 is V2,
then the following equation is valid:{

V1 = Vout − I1R
V2 = Vout − I2R

(11){
I2 = 2I1
V2 = kV1 + b

(12)

FIGURE 7. Result of LDO output voltage under half load and max load,
and the linear regression of these two results.

TABLE 3. Parameters for linear regression.

When Equations (11) and (12) are combined, the relation-
ship between R and b is given by Equation (13):

b = (1 − k)Vout −

(
1 −

1
2
k
)
I2R (13)

Equation (13) can be rewritten in the following format
because Vout can be considered a constant:

1b =

(
k
2

− 1
)

· I21R (14)

The correlation between b and R is linearly related, and
this enables us to identify abnormal R values by constructing
parameter b and applying the testing method proposed in
this paper. From Figure 7, it is evident that a discrepancy
exists between the intercepts of the linear fits of the RMA
chips and those of normal chips, when the regression slope is
kept constant. Further details regarding this observation are
provided in Table 3.

IV. EXPERIMENTAL RESULT
During the experimental validation stage, we selected the
PMIC chip SC2721G for production verification, and the
corresponding experimental setup is shown in Figure 8.
The figure indicates that the on-site production line does
not require any ancillary equipment, and the test method
presented in this paper can be easily synthesized into
the tester software as well. Consequently, additional test
hardware or software is rendered unnecessary.

In the original test, due to testing environment factors such
as dirty sockets, the tested chip lot did not fully reflect the
actual output performance of the chip in terms of LDO output
voltage. We reconstructed the LDO output voltage during
both the ATE testing and actual application stages based
on the Unique Identification (UID) information of the chip
recorded on the chip OTP. The results are shown in Figure 9.
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FIGURE 8. Experimental environment hardware and software.

FIGURE 9. Relationship between ATE test result and real application
output for same RMA chips.

The above figure demonstrates that the LDOs of most
RMA chips have a higher output voltage at the actual
application end, which is caused by the underestimation
of their output voltage during ATE testing. During testing,
an additional compensation voltage was applied to the chips,
which turned out to be too large because the actual output
voltage of the chips was higher than that obtained during
testing. The initial purpose of this compensation voltage is to
make the output of the chips more uniform. As a result, these
chips output a voltage higher than that originally expected
for actual use. According to observations, when the output
voltage of the chip increases anomalously by approximately
50mV, the actual product encounters usage issues. However,
the 50mV output deviation cannot be detected by the initial
ATE test program because the screening range of the SPAT
test limit is far greater than this value. The abnormal
performance of the entire chip lot is illustrated in Figure 10.

In order to detect and screen out these potentially risky
abnormal chips during the ATE stage, the testing method
proposed in this paper has been integrated into the current
testing program. All the important parameter values used
in this method can be obtained from Table 4. We use this
parameter set and the flow illustrated as Figure 5 to generate
the first dynamic screening result.

After testing the chips of the sample lot using the testing
method proposed in this paper, we obtained the chip test
value, as well as the dynamic low limit (DLL) and dynamic

FIGURE 10. Overall performance of normal chips and RMA chips in target
chip lot.

TABLE 4. Key parameters used in proposed test method.

FIGURE 11. Relationship between ATE test result and dynamic test limits.

high limit (DHL) generated based on the chip test value,
as shown in Figure 11.
As depicted in the figure, the DTL range was relatively

wide during testing of the initial few DUTs. As the number of
samples in the test data queue became sufficient, DTL started
to converge rapidly for dynamic screening. In this particular
case, because failure was more likely to result in a lower
LDO output voltage, the Cpl was set smaller than the Cph
when configuring the system parameters. This is reflected in
the figure, where the DLL is closer to the test data than the
DHL is.

This sample lot was selected from an abnormal lot
that had undergone routine ATE testing, indicating that
the conventional ATE testing program failed to screen out
potentially defective chips. On the other hand, our proposed
testing method successfully identified some abnormalities.
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FIGURE 12. Result of sample lot based on proposed test method,
k = 1.0442.

TABLE 5. Performance of proposed test method based on Figure 12.

It can be observed from Figure 6 that utilizing the proposed
testing method presented in this paper on the unprocessed
output voltage data of the LDO may lead to considerable test
over kill or test under kill. This is because the test data of the
RMA chips is highly comparable to the mean test data of the
regular chips.

Thus, during the experimental phase, we employed the
testing method proposed in this study by selecting a specific
fitting line slope based on Equation (14), with intercept b as
the target of analysis. In this experimental process, the fitting
line slope k , together with Cp_target , Tqueue and other related
parameters, served as an initial input parameter. The result are
shown in Figure 12.

It can be seen that there is a lot of small jitter in the
generated DTL at this parameter setting. This is because,
during the calculation process, the sample value happens to
be within the loop of Judgment Step 2 in Figure 5, and the
system switches between dynamic compensation and fixed
compensation. The specific performance of the testing system
proposed in this study under this parameter is presented
in Table 5.
To evaluate the effectiveness of this testing method,

we present two parameters, namely, the Hit Rate (HR) and
Actual Yield (AY), which are defined as follows:

HR =
Captured Fail
Actual Fail

(15)

AY = 1 −
Overkilled Fail

Total Count − Actual Fail
(16)

‘‘Captured Fail’’ refers to the DUTs that truly failed and
were identified by the proposed test method, ‘‘Actual Fail’’
refers to the DUTs that truly failed and were tested in the
laboratory, and ‘‘Overkilled Fail’’ refers to the DUTs that
were screened out by the proposed test method but were
actually good dies. Hence, HR reflects the capability of
the testing method to capture abnormal chips, whereas AY

TABLE 6. Performance of proposed test method based on different k
value.

FIGURE 13. Result of sample lot based on proposed test method,
k = 1.02.

represents the efficiency of the testing method in capturing
such chips. To comprehensively evaluate both these abilities,
we introduce parameter M as an additional evaluation metric,
which is defined as follows:

M = HR× AY × 100 (17)

In an ideal scenario, HR could achieve 100%, indicating
that all failed chips can be captured by the screening method,
and AY would also be 100%, indicating that all failures are
true fail DUTs, and no ‘‘false’’ errors have been mistakenly
captured. In the example shown in Figure 12, the HR is
81.82%, AY is 96.54%, and the value of M is 78.98. Because
Cp_target determines the statistical properties of the chips to
be retained, it cannot be adjusted, whereas Tqueue has been
found to have a limited impact on M in other experiments.
Therefore, for the current testing scenario, the k value is a
crucial metric. Table 6 lists the performance metrics of the
proposed testing method for different k values:
Based on the experimental results shown above, it can be

seen that the system has an HR of 81.82% when k equals
1.04 or 1.06; however, when k is further increased, the HR
decreases to 77.27%. This implies that an excessively large
k value cannot effectively screen potential abnormal chips.
Neglecting the negative intercept compensation, a larger
value of k implies that the DUT has a higher full-load output
voltage at the same half-load output voltage, clearly deviating
from the normal LDO output characteristic curve. Thus, it is
logical that an excessively large k value results in a decrease
in the M value of the testing system, according to both the
experimental results and physical theory.
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TABLE 7. Performance of proposed test method based on Figure 13.

TABLE 8. Performance comparison of different testing method.

Selecting a k value of 1.02 or 1 indicates that the output
characteristic curve of the LDO is considered the primary
factor, whereas the uncertain additional factor is the contact
resistance introduced by dirty socket contact. Experimental
results indicate that both k value have a high HR but a
k value of 1 has a higher overkill rate than a k value of
1.02. This is due to the fact that in the measured LDO half-
load to full-load characteristic curve, the intercept is always
negative. Therefore, a k value of 1 implies that even with
an ideal socket contact, the full-load output of the LDO
decreases significantly compared to the half-load output,
which deviates from the actual test conditions.

After considering various experiments, we ultimately
selected a k value of 1.02 in the actual production of the
2721G, achieving a capture rate of 90.91% of potential risk
chips while ensuring that the proposed testing method has an
impact on yield of less than 3.38%, compared to the zero
capture rate of the risk chips produced by the SPAT ATE
test method in previous production. The results are shown
in Figure 13. The specific performance of the testing system
proposed in this study under this parameter is presented
in Table 7.

Compared to the initial testing method and some of
the referenced testing methods that listed detailed testing
performance, the current testing method showed competitive
testing performance for the cases encountered in this chapter.
The relevant comparisons are shown in Table 8.

It should be noted that for overhead time, because the
testing method designed in this study only performs one test
for all DUTs, using this systemwill lead to an overall increase
in testing time. For the testing method described in [10],
three tests were performed only when abnormal chips were
detected. The overhead time presented in the table represents
the ratio of the testing time for abnormal chips to that for
normal chips.

In general, there are two common ways to utilize chips
screened by the dynamic test method. The first is to conduct
retesting, where the details are carefully checked and the
test environment is finely set up to recycle chips that can
work properly. The second is to sell these degraded chips
to customers who require less stringent quality standards,

to improve the yield and maximize the utilization of the
finished chip products.

V. CONCLUSION
The basic ATE testing method of screening chips using fixed
test limits is no longer sufficient to meet the demands of chip
production as the demand for chip quality continues to rise.
To address this problem, various solutions have been pro-
posed using traditional testing methods. Unfavorable factors,
such as excessive test time overhead, the need for additional
hardware devices, or complex software implantations, hinder
the implementation of methods such as RDPAT and machine
learning, especially in the mass production of consumer
electronics.

By performing laboratory analysis on the failed samples,
we found that it was difficult to completely screen out
abnormal chips. However, if we only aim to eliminate 90%
of them, we can avoid using current complex ML algorithms.
This is an acceptable RMA PPM level for consumer
electronic products. The testing method proposed in this
study can effectively eliminate potential risk chips during
the ATE testing stage with lower test cost overhead, thereby
significantly enhancing the product quality of consumer
electronic chips.

The key advantage of this method lies in its simple
mathematical model which can be directly integrated into
the ATE tester software and hardware. This allows rapid
deployment and has parameters that can bemanually adjusted
within a certain range to optimize the system performance,
which can be used to adjust the dynamic test limit in real time
to achieve fine-grained screening at the per DUT level.

Through the analysis of the characteristics of LDO chips,
we established a simple physical model to create an effective
physical quantity for identifying potentially risky chips.
With fine-tuning and experimental testing, we were able to
eliminate 90.91% of the potential risk chips with minimal test
cost overhead.

This method is not limited to the testing of LDO chips,
as the ATE testing method proposed in this study for
generating dynamic test limits can effectively screen potential
risk chips for other parameter types. For instance, it can
be applied to the RF output power of RF chips and the
run time frequency of digital ASIC chips, among others.
Given its potential to test different types of chips, this testing
method can serve as a versatile and cost-effective approach
for enhancing testing quality, thusmaking it ideal for themass
production of diverse types of consumer-grade chips.
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