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ABSTRACT An improved Alternating-Direction-Implicit iterative algorithm with Gauss-Seidel ideology
for efficient weighted-Laguerre-polynomial finite-difference time-domain method is proposed in 3-D cylin-
drical coordinate system. By transferring the coefficient matrix of the conventional WLP-FDTD equation
to the right-side of its equal sign, a linear equation system with ADI characteristic is formed, which
makes it more flexible. And then, a correction equation is added to the ADI linear equations and the
two-steps Gauss-Seidel procedures are applied to instead of the one-step one in the existing scheme, the
purpose of these operations is to speed up the convergence and improve the computation in the term of
efficiency and accuracy. Meanwhile, a detailed special treatment scheme for on z-axis and ϕ-direction
in 3-D cylindrical coordinate system is introduced and discussed, which demonstrates the importance of
on z-axis and ϕ-direction treatment in the proposed method. In addition, the choice scheme in the term
of the time-scaling factor s and the order of the weighted Laguerre polynomials q is discussed. Finally,
we develop the Perfectly-Matched-Layer implementation to verify the advantage of the proposed method in
accuracy. To validate the term of accuracy and efficiency of the proposedmethod, six numerical examples are
provided. At the same time, the discussions of the convergence speed and stability of the proposed method
are presented.

INDEX TERMS Finite-difference time-domain (FDTD) method, weighted Laguerre polynomial (WLP),
altering-direction implicit (ADI), Gauss–Seidel ideology, correction equation.

I. INTRODUCTION
The basic idea of FDTD (finite-difference time-domain)
method is to replace the first-order partial differential of field
quantity with the central difference in time and space [1], and
to simulate the propagation process of the wave recursively in
time-domain, to obtain the field distribution [2], [3]. In other
words, the wave equation in time-domain can be directly
discredited without any form of derived equation, so its
application scope will not be limited by the mathematical
model [4], [5]. Based on the above advantages, FDTD
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is widely used in the study of electromagnetic scattering
problems [6], [7], [8], and it is very convenient to study
electromagnetic problems with arbitrary structures.

Over the years, scholars have used FDTD to study a lot
of electromagnetic modeling analyses and calculations for
numerous of cylindrical structures in practical applications
[9], [10], [11], [12], such as coaxial line, circular waveg-
uide, antenna, missile, aircraft and so on, consisting two
broad classes: the symmetrical [13] and the asymmetric
structures [14].

(1) Rotating symmetrical structure, also known as the
BOR (Body of Revolution), which utilizes the characteristics
of axisymmetric, makes the field distribution problem from
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three-dimensional (3-D) to two-dimensional (2-D) space.
And then, a pure axisymmetric cylindrical structure is formed
by the accumulation of different modules [15], [16]. As stated
above, it is clear that BOR-FDTD can greatly save computing
time and memory consumption. At present, BOR-FDTD is
mainly limited to analyzing the closed cavity of the body
of revolution in the case of electrically small size and plane
wave incidence at small angle [17], moreover, its stability
condition is much stricter than that of the 3-D conventional
cylindrical coordinate FDTD, which is not only related to
the sizes of the time and space steps, but also related to the
expansion modulus of the fields [18]. However, in practical
engineering applications, the BOR structures are much more
complex, and are usually electrically large size, complex and
subtle in structure, and coated with medium. There are still
many technical problems to be solved before BOR-FDTD
can realize such a complex electromagnetic field problem
[19], [20]. In order to resolve the above problems, numerous
of BOR-FDTD methods are proposed, for example, ADI
(alternating-direction implicit)-BOR-FDTD [21], [22], LOD
(locally one-dimensional)-BOR-FDTD [23], [24], [25],WCS
(weakly conditional stability)-BOR-FDTD [26], [27], HIE
(hybrid implicit-explicit)-BOR-FDTD [28], [29] and WLP
(weighted Laguerre polynomial)-BOR-FDTD [30], [31], [32]
and so on. They can well remove the CFL (courant-friedrichs-
lewy) stability condition of the BOR-FDTD method and
make the simulation toward BOR structure more efficient,
however, the ADI, LOD, WCS and HIE schemes will lead a
large numerical dispersion error when the time step is large,
and the WLP one will lead to a large amount of memory.

(2) 3-D cylindrical coordinate structure, which can perform
central difference operations along the ρ-,φ -and z-directions.
It is also limited by CFL stability condition [33], and it
is obvious that the optimization of FDTD method under
this kind of structure is difficult. In fact, due to the exis-
tence of 1/ρ term in 3-D cylindrical coordinate system, the
decomposition of the field along φ-direction will lead a large
splitting error [34]. How to reduce this kind of error in the
iterative FDTD calculation has become a difficult problem.
In addition, in the special treatment scheme on the z-axis and
φ-direction, how to conduct φ-direction transformation of the
field on z-axis and φ-direction is also a difficult research in
3-D cylindrical coordinate system [35], [36]. According to
the discussion in (1), predecessors have made outstanding
contributions to improve the existing BOR-FDTD methods
for the problems of 3-D structure and solved numerous of
electromagnetic problems. Nevertheless, it should not be
ignored that not all cylindrical coordinate structures have
rotational symmetry in practical engineering applications.
The improved methods of BOR-FDTD in (1) cannot be fully
applied to the 3-D cylindrical coordinate asymmetric struc-
tures. In a word, it can be said that it is very difficult to
study FDTD in 3-D cylindrical coordinate system, perhaps
this is why, since 2000, the FDTDmethods in 3-D cylindrical
coordinate system have not been studied as many as the
BOR-FDTD methods.

To solve the problems in (2), An ADI scheme is proposed
in 3-D cylindrical coordinate system [37], among, the com-
bination of implicit and explicit differences well solves the
stability condition limitation of CFL, which makes the FDTD
method become unconditional stability in 3-D cylindrical
coordinate system. On this basis, in order to further improve
the computational efficiency of the ADI method, a one-step
ADI [38] scheme is proposed, which has a greater improve-
ment in efficiency compared with the original ADI [37].
However, the new scheme still cannot avoid the occurrence of
numerical dispersion error increasing with time step. Based
on the problems in references [37] and [38], we apply aWLP-
FDTD scheme (2-D) [39] to the 3-D cylindrical coordinate
system, its advantage lies in that it cannot only solve the CFL
stability condition limitation, but also reduce the numerical
dispersion error. However, its large memory consumption is
still a problem to be solved.

In order to further solve many problems of the exist-
ing FDTD methods in 3-D cylindrical coordinate system,
this paper proposes an improved scheme, which makes the
WLP-FDTD method more compacter and convergence faster
by using the linear iteration characteristics of ADI and the
Gauss-Seidel ideology. Meanwhile, the LU decomposition
method is further used programmatically to reduce the mem-
ory consumption of the proposed method.

The remaining of this paper is organized as follows.
In Section II, the equations for the initial values and the iter-
ative procedures of the proposed method are introduced, and
some discussions are made about the ADI linear equations.
In Section III, the special treatment scheme for fields on
the z-axis and φ-direction are introduced, and some analyses
and discussions are made about how to determine the final
fields for special treatment on z-axis in the equations of
the proposed method. Among Section IV, The advantages
in the term of convergence speed and stability of the pro-
posed method are proved. In Section V, some analyses and
discussions are given about the choice schemes of s and
q parameters. In Section VI, the Perfectly-Matched-Layer
(PML) implementation for the proposed method is given to
validate the advantage of the proposed method in accuracy.
Throughout Section VII, numerical examples are given to
validate the proposed method. Finally, conclusions are made
in Section VIII.

II. EQUATIONS FOR THE INITIAL VALUES AND THE ITER
ATIVE PROCEDURES AND SOME DISCUSSIONS
A general arrangement of electromagnetic field components
in a 3-D cylindrical coordinate system on the Yee cell is
illustrated in Figure 1. In the discrete FDTD computational
domain, the cell size in radial, azimuthal, and axial directions
are given by 1ρ, 1φ and 1z, respectively.

As discussed in [40], the matrix equation of the conven-
tional WLP-FDTD in 3-D cylindrical coordinate system can
be written in the following form.

(I − A− B)Wq
= Vq−1

+ RqJM (1)

The derivation of Eq. (1) is shown in Appendix A.
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FIGURE 1. Arrangement of electromagnetic field components in
cylindrical Yee cell.

Note that

A =

[
0 Aµχ

Aεχ 0

]
, B =

[
0 Bµχ

Bεχ 0

]
,

Wq
=
[
Wq

E Wq
H

]T
, Vq−1

=

[
Vq−1
E Vq−1

H

]T
,

Wq
E =

[
eqρ eqφ eqz

]T
,

Vq−1
E =

[
−2

∑
eϑρ −2

∑
eϑφ −2

∑
eϑz
]T

,

Wq
H =

[
hqρ hqφ hqz

]T
,

Vq−1
H =

[
−2

∑
hϑ
ρ −2

∑
hϑ
φ −2

∑
hϑ
z

]T
,

Aµχ =


0 −a∂z 0
0 0 −a∂ρ

−a(
1
ρ

∂φ) 0 0

 ,

Aεχ =


0 0 −b(

1
ρ

∂φ)

−b∂z 0 0

0 −b(
1
ρ

∂ρρ) 0

 ,

Bµχ =


0 0 a(

1
ρ

∂φ)

a∂z 0 0

0 a(
1
ρ

∂ρρ) 0

 ,

Bεχ =


0 b∂z 0
0 0 b∂ρ

b(
1
ρ

∂φ) 0 0

 ,

RqJM =
[
RqJ R

q
M

]T
=

[
−aJqeρ −aJqeφ −aJqez
bMq

hρ bMq
hφ bMq

hz

]
,

a =
2
sε

, b =
2
sµ

,

where s > 0 is a positive time-scaling factor, q is the order
of the weighted Laguerre polynomials, ε and µ are the space
permittivity and permeability, respectively. ∂ι is the first-order
central difference operator along ρ-, φ-and z- axes, respec-

tively.
∑

=

q−1∑
ϑ=0

• represents the sum of the electromagnetic

fields of order 0 to q − 1, and RqJM is the excitation source.
Equations for the initial values and the iterative procedures
of the proposed method are given in separate situations as
follows.

A. EQUATIONS FOR THE INITIAL VALUES
As discussed in [41], a huge sparse matrix is involved in
3-D conventional cylindrical coordinate WLP-FDTD
method. In order to solve it efficiently, a new perturbation
AB(Wq

+Wq−1) is introduced into Eq. (1) [42]. This kind of
perturbation show faster convergence, especially at the high-
frequency range. Therefore, we can rewrite Eq. (1) as

(I − A)(I − B)Wq
= −ABWq−1

+ Vq−1
+ RqJM . (2)

In order to form the two sub-calculation parts of ADI
scheme [21], [37] of the proposed method, we intro-
duce the non-physical intermediate variable [43] W∗q

=

[W∗q
E W∗q

H ]T into Eq. (2), and then, the equations after math-
ematical transformation can be obtained

(I − A)W∗q
= −BWq−1

+ Vq−1
+ RqJM (3a)

(I − B)Wq
= AW∗q

+ Vq−1
+ RqJM (3b)

whereW∗q
=
[
W∗q

E W∗q
H

]T
= [ e∗qρ e∗qφ e∗qz h∗q

ρ h∗q
φ h∗q

z ]T .

SubstitutingW∗q
= [W∗q

E W∗q
H ]T ,Vq−1

=

[
Vq−1
E Vq−1

H

]T
and RqJM into Eq. (3a) and Eq. (3b), we can obtain the
expansion forms of them as

W∗q
E − AµχW

∗q
H = −BµχW

q−1
H + Vq−1

E + RqJ (4a)

W∗q
H − AεχW

∗q
E = −BεχW

q−1
E + Vq−1

H + RqM (4b)

Wq
E − BµχW

q
H = AµχW

∗q
H + Vq−1

E + RqJ (4c)

Wq
H − BεχW

q
E = AεχW

∗q
E + Vq−1

H + RqM . (4d)

In order to construct the first and the second ADI compu-
tational steps of the initial values, we substitute the W∗q

H of
Eq. (4b) and the Wq

H of Eq. (4d) into Eq. (4a) and Eq. (4c),
respectively, one can obtain

(I − AµχAεχ )W
∗q
E = − AµχBεχW

q−1
E + AµχV

q−1
H

− BµχW
q−1
H + Vq−1

E + RqJ + AµχR
q
M

(5a)

W∗q
H =AεχW

∗q
E − BεχW

q−1
E + Vq−1

H + RqM
(5b)

(I − BµχBεχ )W
q
E =BµχAεχW

∗q
E + BµχV

q−1
H

+ AµχW
∗q
H + Vq−1

E + RqJ + BµχR
q
M
(6a)

Wq
H = BεχW

q
E + AεχW

∗q
E + Vq−1

H + RqM .

(6b)

Combining with Gauss-Seidel ideology, and expanding
Eq. (5a), we can obtain the electric field equations of the
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non-physical intermediate variable as

where

Rqin−1 = − aJqeρ − ab∂zMq
hφ (5a-1s)

Rqin−2 = − aJqeφ − ab∂ρMq
hz (5a-2s)

Rqin−3 = − aJqez − ab(
1
ρ

∂φ)Mq
hρ (5a-3s)

the group of Eq. (5a-1s) to Eq. (5a-3s) consists the excitation
sources of the non-physical intermediate variable in the initial
values.

The applications of Gauss-Seidel ideology have be shown
in the group of Eq. (5a-1) to Eq. (5a-3), namely, we replace
eq−1
ρ in the right-side of Eq. (5a-2) with −e∗qρ as solved by
Eq. (5a-1), similarly, we use −e∗qφ from Eq. (5a-2) to replace

eq−1
φ of Eq. (5a-3). Obviously, the procedures of Eq. (5a-1) to
Eq. (5a-3) will influence the form of Eq. (5b), thus the new
matrix form of Eq. (5b) can be shown as

W∗q
H = AεχW

∗q
E − BεχW

q−1
Enew1

+ Vq−1
H + RqM (5c)

whereWq−1
Enew1

=

[
−e∗qρ −e∗qφ eq−1

z

]T
.

Expanding Eq. (5c), the magnetic field equations of the
non-physical intermediate variable can be obtained as

h∗q
ρ = −b(

1
ρ

∂φ)e∗qz + b∂ze∗qφ − 2
∑

hϑ
ρ + bMq

hρ

(5c-1)

h∗q
φ = −b∂ze∗qρ − b∂ρeq−1

z − 2
∑

hϑ
φ + bMq

hφ

(5c-2)

h∗q
z = −b(

1
ρ
(∂ρ)ρ)e∗qφ + b(

1
ρ

∂φ)e∗qρ − 2
∑

hϑ
z + bMq

hz.

(5c-3)

Clearly, the group of Eq. (5a) and Eq. (5c) form a new
combination, which actually construct the first computational
step of the initial values in the proposed method.

Similarly, referring to Eq. (5c), we can obtain the new form
of Eq. (6b) as

Wq
H = BεχW

q
E + AεχW

∗q
Enew2

+ Vq−1
H + RqM (6c)

whereW∗q
Enew2

=

[
e∗qρ eqφ eqz

]T
.

Obviously, the group of Eq. (6a) and Eq. (6c) form another
new combination, which actually construct the second com-
putational step of the initial values in the proposed method.

Expanding Eq. (6a) and applying the Gauss-Seidel proce-
dures directly, we can obtain

where

Rqin−4 = − aJqez + ab(
1
ρ
(∂ρ)ρ)Mq

hφ (6a-1s)

Rqin−5 = − aJqeφ + ab∂zMq
hρ (6a-2s)

Rqin−6 = − aJqeρ + ab(
1
ρ

∂φ)Mq
hz. (6a-3s)

Eq. (6a-1s) - Eq. (6a-3s) are also the excitation sources.
The procedures of Eq. (6a-1) to Eq. (6a-3) are similar with

the ones of Eq. (5a-1) to Eq. (5a-3), we replace e∗qz in the
right-side of Eq. (6a-2) with eqz , which has been obtained by
Eq. (6a-1). Similarly, e∗qφ in the right-side of Eq. (6a-3) is
replaced by eqφ .

Expanding Eq. (6c), we can obtain the magnetic field
equations as

hqρ = b∂zeqφ − b(
1
ρ

∂φ)eqz − 2
∑

hϑ
ρ + bMq

hρ (6c-1)

hqφ = b∂ρeqz − b∂ze∗qρ − 2
∑

hϑ
φ + bMq

hφ (6c-2)

hqz = b(
1
ρ

∂φ)eqρ − b(
1
ρ
(∂ρ)ρ)eqφ − 2

∑
hϑ
z + bMq

hz.

(6c-3)

So far, the first and second computational steps of the
initial values have been explained completely, and the Gauss-
Seidel ideology has been well applied. However, seeing the
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procedures of Eq. (5a-1) to Eq. (5a-3) again, we find that eq−1
z

in the right-side of Eq. (5a-1) is not replaced by Gauss-Seidel
ideology. This situation will become a hidden trouble which
will affect the convergence speed and calculation in the term
of efficiency and accuracy. To avoid it, we add a correction
term to connect the first and the second computational steps
of the initial values in the proposed method. This correction
equation is given as

(I − ab∂z2)e∗qρ = ab∂z∂ρ(−e∗qz ) + 2a∂z
∑

hϑ
z

− a(
1
ρ

∂φ)hq−1
z − 2

∑
eϑρ + Rqin−7 (7)

in which Rqin−7 = −aJqeρ − ab∂zMq
hφ .

In fact, e∗qz in the right-side of Eq. (7) is solved by
Eq. (5a-3), and then, eq−1

z in the right-side of Eq. (5a-1) is
replaced with −e∗qz .
Therefore, the computation sequence of the initial values in

the proposed method is Eq. (5a-1) to Eq. (5a-3) → Eq. (5c-1)
to Eq. (5c-3) → Eq. (7) → Eq. (6a-1) to Eq. (6a-3) →

Eq. (6c-1) to Eq. (6c-3). Note that, because we add the correc-
tion term Eq. (7), so the computation sequence of Eq. (6a-1)
to Eq. (6a-3) cannot be changed.

B. EQUATIONS FOR THE ITERATIVE PROCEDURES
In retrospect, we have referred to reference [42] and intro-
duced the perturbation term AB(Wq

+Wq−1) into the initial
values. Clearly, the Gauss-Seidel procedures in Eq. (5a) make
the electric field components negative. Therefore, we define
Wq

p as the solved result of the p-th iteration of Eq. (2) after
using the Gauss-Seidel procedure. At the same time, the new
perturbation term AB(Wq

p+1 − Wq
p) is introduced to modify

the original one.
Substituting AB(Wq

p+1 −Wq
p) into Eq. (1), we can obtain

(I − A)(I − B)Wq
p+1 = ABWq

p + Vq−1
+ RqJM . (8)

Eq. (8) can be split into two steps as

(I − A)W∗q
p+1 = BWq

p + Vq−1
+ RqJM (9a)

(I − B)Wq
p+1 = AW∗q

p+1 + Vq−1
+ RqJM (9b)

whereW∗q
p+1 =

[
e∗qρ,p+1 e

∗q
φ,p+1 e

∗q
z,p+1 h

∗q
ρ,p+1 h

∗q
φ,p+1 h

∗q
z,p+1

]T
is the non-physical intermediate variable, and the subscript p
is the p-th iteration.

Defining Wq
p =

[
Wq

E,p W
q
H ,p

]T
and W∗q

p =[
W∗q

E,p W
∗q
H ,p

]T
, Eq. (9a) and Eq. (9b) can be expanded as

W∗q
E,p+1 − AµχW

∗q
H ,p+1 = BµχW

q
H ,p + Vq−1

E + RqJ (10a)

W∗q
H ,p+1 − AεχW

∗q
E,p+1 = BεχW

q
E,p + Vq−1

H + RqM (10b)

Wq
E,p+1 − BµχW

q
H ,p+1 = AµχW

∗q
H ,p+1 + Vq−1

E + RqJ
(10c)

Wq
H ,p+1 − BεχW

q
E,p+1 = AεχW

∗q
E,p+1 + Vq−1

H + RqM .

(10d)

Substituting W∗q
H ,p+1 of Eq. (10b) into Eq. (10a), we can

obtain the first computational step of the iterative proce-
dures as

(I − AµχAεχ )W
∗q
E,p+1

= AµχBεχW
q
E,p + BµχW

q
H ,p + AµχV

q−1
H

+Vq−1
E + AµχR

q
M + RqJ (11a)

W∗q
H ,p+1 = BεχW

q
E,p + AεχW

∗q
E,p+1 + Vq−1

H + RqM . (11b)

Note that, because the applying of the Gauss-Seidel ide-
ology in Eq. (11a), so Eq. (11b) should be modified, the
modification way is similar to Eq. (5c). For simplicity, it is
not listed here, we can obtain directly

W∗q
H ,p+1 = BεχW

q
Enew1,p

+ AεχW
∗q
E,p+1 + Vq−1

H + RqM
(11c)

whereWq
Enew1,p

=

[
e∗qρ,p+1 e

∗q
φ,p+1 e

q
z,p

]T
.

According to the detailed derivation of Eq. (5a-1) to
Eq. (5a-3) in Part A of this section, we can directly expand
Eq. (11a) and apply the Gauss-Seidel procedures

(I − ab∂z2)e∗qρ,p+1

= −ab∂z∂ρeqz,p + a(
1
ρ

∂φ)hqz,p + 2a∂z
∑

hϑ
φ − 2

∑
eϑρ

− ab∂zMq
hφ − aJqeρ (11a-1)(

I − ab∂ρ(
1
ρ
(∂ρ)ρ)

)
e∗qφ,p+1

= −ab∂ρ(
1
ρ

∂φ)e∗qρ,p+1 + a∂zhqρ,p + 2a∂z
∑

hϑ
φ − 2

∑
eϑρ

− ab∂ρMq
hz − aJqeφ (11a-2)(

I − ab(
1
ρ

∂φ)2
)
e∗qz,p+1

= −ab(
1
ρ
(∂ρ)∂ze∗qφ,p+1 + a(

1
ρ
(∂ρ)ρ)hqφ,p

+ 2a(
1
ρ

∂φ)
∑

hϑ
ρ − 2

∑
eϑz − ab(

1
ρ

∂φ)Mq
hρ − aJqez.

(11a-3)

Expanding Eq. (11c), we can obtain

h∗q
ρ,p+1 = b∂ze∗qφ,p+1 − b(

1
ρ

∂φ)e∗qz,p+1 − 2
∑

hϑ
ρ + bMq

hρ

(11c-1)

h∗q
φ,p+1 = b∂ρeqz,p − b∂ze∗qρ,p+1 − 2

∑
hϑ
φ + bMq

hφ

(11c-2)

h∗q
z,p+1 = b(

1
ρ

∂φ)e∗qρ,p+1−b(
1
ρ
(∂ρ)ρ)e∗qφ,p+1−2

∑
hϑ
z+bM

q
hz.

(11c-3)

At this point, we have explained the first computational
step of the iterative procedures completely.
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Similarly, we also need to add a correction term

(I − ab∂z2)e∗qρ,p+1

= −ab∂z∂ρe∗qz,p+1 + a(
1
ρ

∂φ)hqz,p + 2a∂z
∑

hϑ
φ − 2

∑
eϑρ

− ab∂zMq
hφ − aJqeρ (12)

where e∗qz,p+1 of the right-side in Eq. (12) is solved by
Eq. (11a-3), and the solution of Eq. (12) will be used to con-
nect the second computational step of the iterative procedures
of the proposed method.

Then, we substitute Wq
H ,p+1 of Eq. (10d) into Eq. (10c).

We can update the second computational step of the iterative
procedures as

(I − BµχBεχ )W
q
E,p+1

= BµχAεχW
∗q
E,p+1 + AµχW

∗q
H ,p+1 + BµχV

q−1
H

+Vq−1
E + BµχR

q
M + RqJ (13a)

Wq
H ,p+1 = AεχW

∗q
Enew2,p+1 + BεχW

q
E,p+1 + Vq−1

H + RqM .

(13b)

For the sake of simplicity, we directly update Eq. (10d) to
Eq. (13b), the process will not be repeated here (please refer
to the processes of Eq. (5c), Eq. (6c) and Eq. (11c)). That is to
say, due to the applications of the Gauss-Seidel in Eq. (13a),

we replaceW∗q
E,p+1 =

[
e∗qρ,p+1 e

∗q
φ,p+1 e

∗q
z,p+1

]T
of Eq. (10d)

withW∗q
Enew2,p+1 =

[
e∗qρ,p+1 e

q
φ,p+1 e

q
z,p+1

]T
of Eq. (13b).

Expanding Eq. (13a) and Eq. (13b), we can obtain(
I − ab(

1
ρ
(∂ρ)ρ)∂ρ

)
eqz,p+1

=− ab(
1
ρ
(∂ρ)ρ)∂ze∗qρ,p+1 − a(

1
ρ
(∂φ)h∗q

ρ,p+1 − 2
∑

eϑz

− 2a(
1
ρ
(∂ρ)ρ)

∑
hϑ
φ + ab(

1
ρ
(∂ρ)ρ)Mq

hφ − aJqez (13a-1)(
I − ab∂z2

)
eqφ,p+1

=− ab∂z(
1
ρ

∂φ)eqz,p+1 − a∂ρh∗q
z,p+1 − 2a∂z

∑
hϑ
ρ

− 2
∑

eϑφ + ab∂zMq
hρ − aJqeφ (13a-2)(

I − ab(
1
ρ
(∂φ)2

)
eqρ,p+1

=− ab(
1
ρ
(∂φ)(

1
ρ
(∂ρ)ρ)eqφ,p+1 − a∂zh∗q

φ,p+1

− 2a(
1
ρ
(∂φ)

∑
hϑ
z − 2

∑
eϑρ − ab(

1
ρ
(∂φ)Mq

hz − aJqeρ

(13a-3)

hqρ,p+1

=− b(
1
ρ

∂φ)eqz,p+1 − b∂zeqφ,p+1 − 2
∑

hϑ
ρ + bMq

hρ

(13b-1)

hqφ,p+1

=− b∂ze∗qρ,p+1 + b∂ρeqz,p+1 − 2
∑

hϑ
φ + bMq

hφ (13b-2)

hqz,p+1

=− b(
1
ρ
(∂ρ)ρ)eqφ,p+1 + b(

1
ρ

∂φ)eqρ,p+1 − 2
∑

hϑ
z + bMq

hz.

(13b-3)

So far, the iterative procedures of the proposed method
have been explained completely. For easier understanding,
the overall execution process of the iterative procedures is
presented here, as shown in Figure 2.

FIGURE 2. Overall execution process of the iterative procedures.

The computation sequence of the iterative procedures
in the proposed method is Eq. (11a-1) to Eq. (11a-3) →

Eq. (11c-1) to Eq. (11c-3) → Eq. (12) → Eq. (13a-1) to
Eq. (13a-3) → Eq. (13b-1) to Eq. (13b-3). Similarly, the
computation sequence of Eq. (13a-1) to Eq. (13a-3) cannot
be changed.

The ways of the first-order central difference expansions
are explained in Appendix B.

C. DISCUSSION FOR THE ADI LINEAR EQUATIONS
Eq. (1) is the matrix form of the conventional WLP-FDTD in
3-D cylindrical coordinate system. Here, we convert it into a
general form as follow

[ζ ] [δ] = [ψ] (14)

where [ζ ] is the coefficient matrix associated with the central
difference operation (I − A − B), [δ] is a column vector
constituted by unknown electric- and magnetic- field values,
and [ψ] is a known column vector constituted by the sum
of the electric- and magnetic- fields of order 0 to q-1 on the
right-side of Eq. (1).
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In the following, we take the matrix equations of two
computational steps in the iterative procedures as examples
for discussions.

Seeing Eq. (9a) again, we find that all the vectors of the
right-side in Eq. (9a) are known, thus, Eq. (9a) is actually the
iterative solution of a linear equation system. Analogously,
becauseW∗q

p+1 has been solved by Eq. (9a), so all the vectors
of the right-side in Eq. (9b) are known, further, we can say
that Eq. (9b) is also the iterative solution of a linear equation
system.

Obviously, the non-physical intermediate variable changes
Eq. (1) from the general form of a linear equation system
(see Eq. (14)) to a new one with the characteristics of ADI.
Indeed, the matrix forms of Eq. (9a) and Eq. (9b) can be
understood as Eq. (9a) moves the B operator to the right-side
of Eq. (14), while Eq. (9b) moves the A operator to the right-
side of Eq. (14).

In other words, the two computational steps of the pro-
posed method are actually the ADI iterative linear equations,
and they are more flexible.

III. SPECIAL TREATMENT SCHEME ON THE Z-AXIS AND
THE FDTD DIFFERENCE IN THE ϕ-DIRECTION
According to the characteristics of the Yee cell, the unknown
electric- or magnetic- field on the grid point of integer of
the unit’s Yee cell can be solved by the known electric- or
magnetic- field on its surrounding half grid point. In cylin-
drical architecture shown in Figure 3, when ρ = 0, all
the electric- and the magnetic- fields along the z-axis are
mathematically singularity [35], they should be treated spe-
cially, otherwise, there will be a large splitting error in FDTD
methods [36].

FIGURE 3. Top view of the field components nearby the z-axis.

In addition, the circle of Figure 3 shows that the fields in
the 3-D cylindrical coordinate system are regarded as periodic
in the φ-direction. Therefore, it is necessary to connect the
fields at a specific plane in the φ-direction using the periodic
boundary condition when the FDTD central difference opera-
tion is performed on a field in the φ-direction. We also should
treat them specially, otherwise, there will be a large splitting
error too [44].

A. PRINCIPLE ANALYSIS OF THE SPECIAL TREATMENT
SCHEME FOR ON-AXIS FIELDS
In fact, the special treatment scheme on the z-axis of a 3-D
cylindrical coordinate asymmetric structure is different with
the BOR one. For example, in the BOR structure, because
3-D Yee cells have been converted into 2-D problems for
processing, the fields near the z-axis do not need to consider
the change of φ-direction [15], [16]. However, as shown in
Figure 3, in the 3-D cylindrical coordinate asymmetric struc-
ture, when we analyze the electrical- and the magnetic- fields
near the z-axis, the change of φ-direction must be considered.

In Figure 3, it can be clearly seen that the section ρoφ
of the field units is a partial circular ring. And the section
of the field units adjacent to the z-axis can be degenerated
from a partial circular ring to a sector (such as the purple
sector). Furthermore, as shown in the right-part of Figure 3,
the difference grids on the z-axis can be obtained by adding
up the sectors corresponding to different j. Therefore, all
the electric- and the magnetic- difference equations on the
z-axis require special treatment [35], [36]. However, for all
the electric- and the magnetic- fields near the z-axis, since
the directions of Eρ,Eφ , Hρ and Hφ vary with φ, they are
meaningless on the z-axis. So, there are only Ez(0, j, k +

1
2 )

and Hz( 12 , j +
1
2 , k) in the proposed method need special

treatment on the z-axis.

B. TREATMENT EQUATIONS OF THE SPECIAL TREATMENT
SCHEME FOR ON-AXIS FIELDS
As shown in Figure 3, and according to the Stokes’ theorem,
the integral equation of electric-field in the frequency-domain
can be obtained

jωε

∫
sa

⇀

Ezds =

∮
l

⇀

H · d
⇀

l . (15)

Denoting sa is the area integral region and l is the line
integral path along the sa plane.
In the same way, the integral equation of magnetic-field in

the frequency-domain can be obtained as

jωµ

∫
sa

⇀

Hzds = −

∮
l

⇀

E · d
⇀

l . (16)

Seeing again to the right-part of Figure 3, if radiuses of the
integral region of the circles are 1ρ

2 and1ρ respectively, then
Eq. (15) and Eq. (16) can be transformed into the difference
equations.

επ
1ρ2

4

∂Ez(0, j, k+
1
2 )

∂t
=

1ρ1φ

2

jm∑
jc=1

Hφ(
1
2
, jc, k+

1
2
)

(15a)

µπ1ρ1φ

2π

∂Hz( 12 , j+
1
2 , k)

∂t
=

[
Eρ(

1
2
, j+1, k)−Eρ(

1
2
, j, k)

]
− 1φ

jm∑
jc=1

Eφ(1, jc+
1
2
, k)

(16a)
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It is worth noting that the form of Eq. (16a) is slightly
different from Eq. (15a).The reason is that, as shown in the
orange sector on the right-part of Figure 3, the transmission
directions of Eρ and Eφ form a closed sector. In the process
of adding different sectors, Eρ cancels out each other. There-
fore, Eq. (16a) only left Eφ , and Eφ has no actual physical
significance near the z-axis, that is to say, Hz actually does
not need special treatment.

By introducing the WLP technology [40] into Eq. (15a),
we can obtainEqz (0, j, k +

1
2
)

+2
∑

Eϑ
z (0, j, k +

1
2
)

 =
2a1φ

π1ρ

jm∑
jc=1

Hq
φ(
1
2
, jc, k +

1
2
)

(15b)

where Eqz is e∗qz or eqz , and Hq
φ is h∗q

φ or H∗q
φ ,which are

depended on whether the non-physical intermediate variables
need to be calculated on the z-axis.
For example as Eq. (13b-2) in the Part B of Section II, when

ρ = 0, we can obtain hqφ,p+1(
1
2 , j, k +

1
2 ) as

hqφ,p+1(
1
2
, j, k +

1
2
)

=
b

1ρ

eqz,p+1(1, j, k+
1
2
)

−eqz,p+1(0, j, k+
1
2
)

−
b

1z

e∗qρ,p+1(
1
2
, j, k + 1)

−e∗qρ,p+1(
1
2
, j, k)


− 2

∑
hϑ
φ (

1
2
, j, k +

1
2
) + bMq

hφ(
1
2
, j, k +

1
2
). (17)

Substituting Eq. (17) into Eq. (15b), we can obtain the final
equation of the special treatment for on z-axis in the iterative
procedures of the proposed method.

(1 +
2jmab1φ

π1ρ2 )eqz,p+1(0, jc, k +
1
2
)

−
2ab1φ

π1ρ2

jm∑
jc=1

eqz,p+1(1, jc, k +
1
2
)


= −

2ab1φ

π1ρ1z

jm∑
jc=1

[
e∗qρ,p+1(

1
2
, jc, k + 1) − e∗qρ,p+1(

1
2
, jc, k)

]

−
4a1φ

π1ρ

jm∑
jc=1

[∑
hkφ(

1
2
, jc, k +

1
2
)
]

− 2
∑

eϑz (
1
2
, jc, k +

1
2
)

+
2ab1φ

π1ρ

jm∑
jc=1

Mq
hφ(

1
2
, jc, k +

1
2
) (18)

where (1 +
2jmab1φ

π1ρ2 )eqz,p+1(0, jc, k +
1
2 ) in the left-side of

Eq. (18) is the result of the combination of eqz,p+1(0, j, k +
1
2 )

and
jm∑
jc=1

eqz,p+1(0, jc, k +
1
2 ).

Unfortunately, since eqz,p+1 in the left-side of Eq. (18) has
(jm + 1) terms, it cannot form a tridiagonal equation for easy

solution, so, we need an approximate iterative method here.
Therefore, the left-side of Eq. (18) can be rewritten as (1 +

2jmab1φ

π1ρ2 )eqz,p+1(0, j, k +
1
2
)

−
2ab1φ

π1ρ2 e
q
z,p+1(1, j, k +

1
2
)


=

2ab1φ

π1ρ2

jm∑
jd=1

eqz,p+1(1, jd , k +
1
2
) + L(iL = 0 or

1
2
, j, k).

(19)

Here, L(iL = 0 or 1
2 , j, k) is the last term in the right-

side of Eq. (19), which includes all the terms in the right-side

of Eq. (18). 2ab1φ

π1ρ2

jm∑
jd=1

eqz,p+1(1, jd , k +
1
2 ) is the result of

moving the left-side of Eq. (18) to the right-side of Eq. (19),
where j is not included in jd . Undeniably, this is an approxi-
mate iterative method for constructing a tridiagonal equation,
and eqz,p+1(1, jd , k +

1
2 ) is an unknown quantity in Eq. (19).

In order to solve this problem, eqz,p+1 is obtained by the pro-
cess of Eq. (12) to Eq. (13a-1) iteration, and then, the result
of Eq. (13a-1) is used to replace eqz,p+1 in the right-side of
Eq. (19). Obviously, this substitution method not only makes
eqz,p+1 known, but also makes it more and more accurate by
cyclic iteration.

C. ANALYSES AND DISCUSSIONS ARE ABOUT
DETERMINING THE FINAL FIELDS FOR SPECIAL
TREATMENT IN THE EQUATIONS
In Part B, we have explained the way about how to obtain
the final special treatment scheme for on z-axis of the pro-
posed method. It is clear that only Eq. (5a-3), Eq. (6a-1),
Eq. (11a-3) and Eq. (13a-1) in the Part A and Part B of
Section II need to solve Eqz , however, it will be arbitrary and
less rigorous to simply use Eq. (18) to carry out the special
treatments on z-axis for the above equations.

Obviously, whether an equation needs special treatment or
not depends on the existence of Eqz (0, j, k+

1
2 ) (see Eq. (15b))

in the equation. Based on this, we will analyze all the equa-
tions of the proposed method in detail.

In the analyses of Figure 4, the FDTD equations of the
proposed method contain 1

ρ
terms, whose denominators can-

not be set as zero, arbitrarily. Therefore, the analyses of the
unsolved fields for on the z-axis of all the equations in the
proposed method can be divided into two cases: ρ = 0
(i = 0, 1, 2, . . . , imax − 1) and ρ = 1 (i = 1, 2, 3, . . . , imax).
(1) ρ = 0, Eqz fields that need special treatments during the
initial values and the iterative procedures are eq−1

z (0, j, k +
1
2 ), e

q
z (0, j, k +

1
2 ), e

∗q
z (0, j, k +

1
2 ), e

q
z,p+1(0, j, k +

1
2 ) and

e∗qz,p+1(0, j, k +
1
2 ). (2) ρ = 1, obviously, when we make

special treatments of the Eqz fields on the z-axis, if we
directly set the ρ of Eq. (5a-3), (6a-1), Eq. (11a-3) and
Eq. (13a-1) to zero, this operation will inevitably lead to
infinite solutions and exceed the minimum boundary (see
Eq. (B.1.b) in Appendix B). Moreover, the solution processes
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FIGURE 4. Analysis of all the equations in the proposed method on z-axis.

of some magnetic field equations are similar (see Eq. (5c-1),
Eq. (6c-1), Eq. (11c-1) and Eq. (13b-1)).

D. SPECIAL TREATMENT SCHEME WITH PROGRAMMING
DESIGN ON THE FDTD DIFFERENCE IN THE ϕ-DIRECTION
As shown in Figure 5, the beginning and ending grid points
of the φ-direction on a specific plane are φ = 0 and
φ = φmax , and they are overlap, so the purpose of connecting
them with periodic boundary condition is to form a closed
plane. Therefore, according to the thought of cyclic matrix
in [44], we combine the characteristics of FDTD spatial grid
partitioning and realize the connection of the beginning and
ending points in the φ-direction by programming design, and
then, forming a way which is similar to [44] for cyclic solving
the fields in the φ-direction.

FIGURE 5. Special treatment on the ϕ-direction and programming design.

In fact, the way of FDTDmesh partitioning is to realize the
discrete of the fields in space by the solving relation between
the integer grid point and the half grid points around the
integer grid point. Therefore,d =

1
2 on the specific plane

shown in Figure 5 is defined as the distance between the
half grid point and the integer grid point, and at the same
time, i, j, k are defined as the space grid positions in the
direction of ρ, φ and z. Obviously, when j = 0, if the grid
in the φ-direction is discretized by FDTD difference in the
opposite direction ((j = 0) −

1
2 ), it will cause an out-

of-boundary case, and the fields in the φ-direction cannot
form a closed ring on the specific plane. In order to solve
this problem, according to the overlapping characteristics of
j = 0 and j = φmax in the program design, as shown in the
pseudo-code of Figure 5, when j= 0 and FDTD difference is
carried out in the opposite direction, we can make j= φmax to
maintain the calculation of periodic boundary condition in the
solution process of difference discretization, and no boundary
problem will occur.

To sum up, some FDTD equations of the proposed method
indeed need special treatments on z-axis and φ-direction,
but it is worth noting that they need to require independent
special treatments in programming, instead of simply and
crude using the way of making ρ = 0 and φ = 0 ∼ φmax
to solve.

IV. ANALYSES OF CONVERGENCE SPEED AND STABILITY
Because the difference between the initial values and iterative
procedures of the proposed method is the perturbation term,
and the iterative procedures play a decisive role, so, we prove
and discuss the stability and convergence speed with the
iterative procedures as the entry point.

A. DICUSSING THE CONVERGENCE CONDITION OF THE
ITERATIVE PROCEDURES WITH MATRIX THEORY
According to the introductions in Part B of Section II, the
matrix form of the iterative procedures of the proposed
method is Eq. (8). In fact, it can be evolved from the 3-D
conventional cylindrical coordinate WLP-FDTD. To prove
easily, we remove the excitation source in Eq. (1) here, the
matrix form of the conventional WLP-FDTD in 3-D cylindri-
cal coordinate system can be rewritten as

(I − A− B)Wq
= Vq−1. (20)

Adding ABWq to the both sides of Eq. (20), we can obtain

(I − A)(I − B)Wq
= ABWq

− Vq−1. (20a)

By transforming Eq. (20a) into an iterative equation form,
we can obtain again

(I − A)(I − B)Wq
p+1 = ABWq

p − Vq−1. (20b)

Obviously, Eq. (20b) and Eq. (8) are completely
consistent.
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By changing the forms of Eq. (20a) and Eq. (20b), we can
obtain

Wq
= M−1NWq

+M−1C (21a)

Wq
p+1 = M−1NWq

p +M−1C (21b)

whereM = (I − A)(I − B), N = AB,C = Vq−1.
Here,Wq is the exact solution of the q-order WLP-FDTD

method, and the error of the p-th iteration is defined as

Errorqp = Wq
−Wq

p. (22)

In combinationwith Eq. (22), Eq. (21a) subtracts Eq. (21b),
and the following equation can be obtained

Errorqp+1 = M−1NErrorqp. (23)

According to matrix theory [45], after the k-th iteration,
the relation between the error of the solution and the initial
error is ∥∥∥Errorqp∥∥∥ = δ(G)p

∥∥Errorq0∥∥ (24)

where ∥·∥ is the Euclidean norm, δ(·) is the spectral radius,
Errorq0 is the initial error and G = M−1N .
Obviously, Eq. (21b) conforms to the general form of a

linear equation system

x(k+1)
= β(G)x(k) + 0 (25)

where x(k) is the k-th iteration of x, and at the beginning,
k = 0. When k = 0, x(0) is actually the Errorq0 in Eq. (24),
β(G) is a spectral radius, 0 is a known column vector.

Once again, according to Jordan canonical form [46] in
matrix theory, whether a linear equation system converges or
not is independent of the initial error Errorq0 and 0, but only
depends on β(G), that is, when β(G) < 1, the iterative linear
equation system is convergent. Therefore, in order to prove
that the proposed method is convergent, we must prove that
δ(G) < 1 or the eigenvalue of the G matrix is less than one
(see Eq. (21b) and Eq. (24)).

B. TRANSFORMATION OF SPECTRAL RADIUS
The coefficient matrices of the proposed method have been
shown in Part A of Section II, Eq. (9a) and Eq. (9b) are
the initial iteration equations after adding the non-physical
intermediate variables. By simply substituting the coefficient
matrices into Eq. (9a) and Eq. (9b), and removing the excita-
tion source terms and V q−1 terms [28], we can obtain

e∗qρ + a∂zh∗q
φ =a

1
ρ

∂φhqz,p (26a)

e∗qφ + a∂ρh∗q
z =a∂zhqρ,p (26b)

e∗qz + a
1
ρ

∂φh∗q
ρ =a(

1
ρ
(∂ρ)ρ)hqφ,p (26c)

h∗q
ρ + b

1
ρ

∂φe∗qz =b∂zeqφ,p (26d)

h∗q
φ + b∂ze∗qρ =b∂ρeqz,p (26e)

h∗q
z + b(

1
ρ
(∂ρ)ρ)e∗qφ =b

1
ρ

∂φeqρ,p (26f)

eqρ,p+1 − a
1
ρ

∂φhqz,p+1 = − a∂zh∗q
φ (27a)

eqφ,p+1 − a∂zhqρ,p+1 = − a∂ρh∗q
z (27b)

eqz,p+1 − a(
1
ρ
(∂ρ)ρ)hqφ,p+1 = − a

1
ρ

∂φh∗q
ρ (27c)

hqρ,p+1 − b∂zeqφ,p+1 = − b
1
ρ

∂φe∗qz (27d)

hqφ,p+1 − b∂ρeqz,p+1 = − b∂ze∗qρ (27e)

hqz,p+1 − b
1
ρ

∂φeqρ,p+1 = − b(
1
ρ
(∂ρ)ρ)e∗qφ . (27f)

Defining ˜̃eφ = ρeφ and ˜̃hφ = ρhφ , we can rewrite Eq. (9a)
and Eq. (9b) as

(I − A′)W∗q′

= B′W q′

(28a)

(I − B′)Wq′

= A′W∗q′

(28b)

where

W∗q′

= [ e∗qρ ˜̃e∗qφ e∗qz h∗q
ρ

˜̃h∗q
φ h∗q

z ]T ,

Wq′

= [ eqρ ˜̃eqφ eqz h
q
ρ

˜̃hqφ hqz ]
T ,

A′
=

[
0 A′

µχ

A′
εχ 0

]
, B′

=

[
0 B′

µχ

B′
εχ 0

]
,

A′
µχ =


0 −a

1
ρ

∂z 0

0 0 −aρ∂ρ

−a(
1
ρ

∂φ) 0 0

 ,

A′
εχ =


0 0 −b(

1
ρ

∂φ)

−bρ∂z 0 0

0 −b(
1
ρ

∂ρ) 0

 ,

B′
µχ =


0 0 a(

1
ρ

∂φ)

aρ∂z 0 0

0 a(
1
ρ

∂ρ) 0

 ,

B′
εχ =


0 b

1
ρ

∂z 0

0 0 bρ∂ρ

b(
1
ρ

∂φ) 0 0

 .

In a 3-D cylindrical coordinate system, the spectral domain
expressions of the electric- and the magnetic- fields can be
written as

Eqρ = eqρ f (ρ, φ, z) (29a)
˜̃Eqφ = ρeqφ f (ρ, φ, z) (29b)

Eqz = eqz f (ρ, φ, z) (29c)

Hq
ρ = hqρ f (ρ, φ, z) (29d)
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˜̃Hq
φ = ρhqφ f (ρ, φ, z) (29e)

Hq
z = hqz f (ρ, φ, z) (29f)

where f (ρ, φ, z) = Bm(Kρρ)e
⇀
j Kφφe

⇀
j Kzz,

⇀

j =
√

−1, Bm is
the appropriate Bessel function. Kρ , Kφ and Kz are the spatial
frequencies along the ρ-, φ- and z-directions, respectively.
Clearly, there are a and b in the coefficient matrices A′

and B′, and they are not uniform, which will bring some
troubles to the proof. Therefore, in order to normalize a and
b, we’re going to convert the forms of the electric- and the
magnetic- fields into eq

′

ρ,φ,z = eq
′ ′

ρ,φ,z and h
q′

ρ,φ,z =

√
µ
ε
hq

′ ′

ρ,φ,z,
and substituting them into Eq. (28a) and Eq. (28b), we can
obtain a = b = ϒ = 2c/s (c = 1/

√
εµ).

And then, we can obtain the new forms of A′ and B′ as

Ä =



0

0 −j
1
ρ

3z 0

0 0 −ρ3ρ

−j
1
ρ

3φ 0 0

0 0 −j
1
ρ

3φ

−jρ3z 0 0

0 −
1
ρ

3ρ 0

0


(30a)

B̈ =



0

0 0 j
1
ρ

3φ

jρ3z 0 0

0
1
ρ

3ρ 0

0 j
1
ρ

3z 0

0 0 ρ3ρ

j
1
ρ

3φ 0 0

0


(30b)

where 3ρ = ϒ(B
ρ+

1
2

m − B
ρ−

1
2

m ), 3φ = 2ϒ
sin(Kφ

1φ
2 )

1φ
, 3z =

2ϒ
sin(Kz 1z

2 )
1z (see the way of Eq. (23) in [41]).

C. PROOF OF STABILITY AND CONVERGENCE SPEED
According to the discussions in Part A of this section, the
iteration matrix of the proposed method is actually that

G = (I − B̈)−1(I − Ä)−1ÄB̈. (31)

As long as the eigenvalue |λG| < 1 of the matrix G,
then the iterative equation Eq. (20b) is convergent. Therefore,
we convert the form of Eq. (31) as

G = (I − B̈)−1 [f (Ä)f (B̈)] (I − B̈) (32)

where f (Ä) = (I − Ä)−1Ä, f (B̈) = (I − B̈)−1B̈.
Obviously, G matrix and f (Ä)f (B̈) are similar matrices,

and their eigenvalues are the same. According to matrix
theory [45], the eigenvalue λG should satisfy as

∥λG∥ ≤
∥∥f (Ä)f (B̈)∥∥ ≤

∥∥f (Ä)∥∥ ∥∥f (B̈)∥∥ . (33)

Matrix theory tell us that∥∥f (Ä)∥∥2 = λ(f (Ä)f (Ä)H )max (34)

where f (Ä)H is the conjugate transpose of f (Ä), λmax is the
eigenvalue of f (Ä)f (Ä)H .

Here, using spectral transformation matrices Eq. (30a) and
Eq. (30b), by MATLAB calculation, we can obtain

∣∣λÄ−1,5

∣∣ =
32
z

(3z + 1)2
(35a)

∣∣λÄ−2,6

∣∣ =
32

φ

(3φ + ρ)2
(35b)

∣∣λÄ−3,4

∣∣ =
32

ρ

(3ρ + 1)2
. (35c)

Clearly,
∣∣∣λÄ−(1−6)

∣∣∣ < 1, it can turn out that
∥∥f (Ä)∥∥ < 1.

Similarly, we can obtain∣∣∣λB̈−1,5)

∣∣∣ =
32
z

(3z + 1)2
(36a)

∣∣λB̈−2,6

∣∣ =
32

φ

(3φ + ρ)2
(36b)

∣∣λB̈−3,4

∣∣ =
32

ρ

(3ρ + 1)2
. (36c)

The results of Eq. (36) confirm that
∣∣∣λB̈−(1−6)

∣∣∣ < 1,

namely, it also can turn out that
∥∥f (B̈)∥∥ < 1.

By combining the conclusions of Eq. (35) and Eq. (36),
∥λG∥ < 1 can be confirmed, that is, the proposed method is
stable.

Observing Eq. (25) and Eq. (32) again, combining with
the characteristic of Jordan Canonical Form in matrix the-
ory [45], we know that β(G) ≤ ∥G∥, when ∥G∥ is small,
β(G) will be smaller, then, the convergence speed of iterative
method for linear equation will be faster. Therefore, if we
want to prove which method converges faster, it just has to
prove whose β(G) is smaller.

In order to prove that the convergence speed of the pro-
posed method is faster, we make a comparison between the
iterative scheme in reference [39] (in 3-D case) and the
proposed one.

The iterative procedure equations in reference [39], which
are similar with Eq. (9a) and Eq. (9b) in the proposed method,
are given as follows (see Eq. (24) and Eq. (25) in [39])

(I − A)W∗q
p+1 = BWq

p + Vq−1 (37a)

(I − B)Wq
p+1 = W∗q

p+1 − BWq
p. (37b)

Obviously, Eq. (37a) and Eq. (9a) are identical. Therefore,
by comparing the eigenvalues of Eq. (37b) and Eq. (9b),
we can prove which method has the faster convergence speed.
As discussed in Part A and Part B of this section, becauseWq

p,
W∗q

p+1 and Vq−1 are the known values of both methods, so,
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we can approximately transform Eq. (37b) and Eq. (9b) as the
form of Eq. (25)

Wq
1,p+1 = (I − B̈)−1W∗q

1,p+1 + 01 (38a)

Wq
2,p+1 = (I − B̈)−1ÄW∗q

2,p+1 + 02. (38b)

where, 01 and 02 are the known values of both method.
According to the conclusions above, we can know that

β(G1) = (I − B̈)−1 and β(G2) = (I − B̈)−1Ä. By MATLAB
calculation, we can obtain the similar results.∣∣λG1−1,4

∣∣ =(3ρ + 1)2, (39a)∣∣λG1−2,3
∣∣ =(3z + 1)2, (39b)∣∣λG1−5,6
∣∣ =

(3φ + ρ)2

ρ2 , (39c)

∣∣λG2−1,4
∣∣ =

(3ρ + 1)2

32
ρ

(40a)

∣∣λG2−2,3
∣∣ =

(3z + 1)2

32
z

(40b)

∣∣λG2−5,6
∣∣ =

(3φ + ρ)2

32
φ

(40c)

By comparing Eq. (39) and Eq. (40), it is obvious that
∥G2∥ < ∥G1∥, namely,β(G2) < β(G1). In other words, the
convergence speed of the proposed method is faster than that
in reference [39].

To sum up, the proposed method combines the ADI linear
iteration which eliminates the CFL [37] and theWLP scheme
which eliminates the time 1t [40], it makes the advan-
tages of the proposed method at stability and convergence
speed.

V. DISCUSSIONS OF THE CHOICE SCHEMES
OF PARAMETERS
In a Laguerre-based FDTD method, the choice scheme in the
term of time-scaling factor s and the highest expansion order
of the weighted Laguerre polynomials q has a great influence
on the accuracy of numerical calculation. There is still no
unified conclusion on how to choose the optimal parameter.
In this paper, the choice schemes of s and q parameters will
refer to the method in reference [47].

For any time-domain method, it can be expanded by the
Laguerre function as

ℜ(t) =

∞∑
ϑ

cϑϕϑ (st) (41)

where, ℜ(t) is an arbitrary transient function, s is a time-
scaling factor, and ϕϑ (st) is the Laguerre polynomial of the
ϑ-th degree. s is needed because of the duration of a transient
process usually depends on the type of problem, and it can
vary widely from nanoseconds to several hundred nanosec-
onds [40], [47]. If there is no s, the value of the Laguerre
function is very close to ϕϑ (0), and it is not suitable for
expansion of the transient response. Eq. (41) is a theoretical

formula, but for practical problems, it can only use a finite
number of degrees to expand a function

ℜ(t) =

∑
cϑϕϑ (st). (42)

The summation of the q terms will result in an approximate
error, which is mainly related to the time-scaling factor s and
the highest degree q-1.Therefore, how to choose s and q is
particularly important.

As discussed in [47], we can define the error as

ℑ
2
q=

1

∥ℜ∥
2

∫
∞

0

(
ℜ(t)−

∑
cϑϕϑ (st)

)2
dt=

1

s ∥ℜ∥
2

∞∑
ϑ=q

c2ϑ

(43)

where ∥ℜ∥
2

=
∫

∞

0 ℜ
2(t)dt = ( 1s )

∞∑
ϑ=0

c2ϑ .

If defining

m1 =
1

∥ℜ∥
2

∫
∞

0
tℜ2(t)dt (44a)

m2 =
1

∥ℜ∥
2

∫
∞

0
t
(
d
dt

ℜ(t)
)2

dt (44b)

then, for any function that belongs to the following set

8=

(
ℜ :

1

∥ℜ∥
2

∫
∞

0
tℜ2(t)dt=m1,

1

∥ℜ∥
2

∫
∞

0
t
(
d
dt

ℜ(t)
)2
dt=m2

)
(45)

there is

max
ℜ∈8

ℑ
2
q ≤

s2m1 + 4m2 − 2s
4sq

. (46)

Eq. (46) gives an upper limit of error ℑ
2
q, and it is a

minimum upper limit [47]. Obviously, this minimum upper
limit is closely related to the time-scaling factor s and the
highest order of expansion q. The error ℑ

2
q can be reduced

by increasing the highest expansion order q or selecting the
appropriate s. According to the partial differential processing
method in reference [47], the optimal time-scaling factor can
be obtained as

sopt =

√
4m2

m1
. (47)

In Eq. (47), it should be explained that this optimal time-
scaling factor is obtained in the sense of minimizing the
upper bound of the error, not minimizing the error, still, it is
great significant. When the method itself and the structural
parameters of the scatterer are not taken into account, its
general value range is sopt/5 ≤ s ≤ 5sopt [47].
Here, we use the modulated Gaussian excitation source

as an example to verify. The excitation source is given as
follow

Ei(t) = E0cos(2π f0t)e−4π ((t−t0)/τ )2 (48)
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FIGURE 6. Variations of the error with the highest expansion order when
selecting different time-scaling factors.

where E0 = 103 V/m, f0 = 10 GHz, τ = 1.0/f0 and
t0 = 1.25/f0.
By MATLAB calculation, m1 = 1.8e − 11 and

m2 = 5.0e +11 can be obtained, and then the optimal time-
scaling factor can be obtained by Eq. (47) as 3.33e +11.
Figure 6 shows the variations of the error ℑ

2
q with the high-

est expansion order q when selecting different time-scaling
factors. Where, the curve marked ‘‘Least upper bound’’ rep-
resents the upper limit of the minimum error of the function
set. Obviously, when the excitation source selection conforms
to the situation of Eq. (48), the proposed method in this paper
should be properly adjusted in the range of s = 7e + 11 and
q = 100∼220.

It is worth noting that the premise of the choice schemes of
s and q discussed is not affected by factors such as the method
itself and the structural parameters of the scatterer. Although
there is no final and unified conclusion on the optimal selec-
tion of s and q in the research field [47], these factors have to
be considered and discussed in the numerical simulation of
the following paper. Therefore, there may be slightly deviated
about the final s and q of the proposed method, this does
not mean that we should ignore the choices of s and q.
On the contrary, we should determine their rang in advance,
so that we can locate the factors that affect the accuracy
as soon as possible in the verification of future numeri-
cal simulation examples, rather than blindly trying many
times.

VI. PML IMPLEMENTATION FOR THE
PROPOSED METHOD
To reduce the reflection of the outer boundary and prove
the advantage of the accuracy of the proposed method,
we develop the PML implementation for the proposed
method.

A. PML IMPLEMENTATION OF THE CONVENTIONAL FDTD
METHOD BASED ON STRETCHING COORDINATE
TRANSFORMATION IN 3-D CYLINDRICAL
COORDINATE SYSTEM
As described in [9], the achieved PML of FDTD method
through the transformation of stretching coordinates in the
frequency-domain. Therefore, the following introductions
will begin with the frequency-domain forms of the FDTD
method in 3-D cylindrical coordinate system.

We can directly obtain the frequency-domain forms of
Eq. (3) and Eq. (5) in [48] as

−jωµHρ =
1
ρ̃

∂Ez
∂φ

−
∂Eφ

∂ z̃
−Mhρ (49a)

−jωµHφ =
∂Eρ

∂ z̃
−

∂Ez
∂ρ̃

−Mhφ (49b)

−jωµHz =
1
ρ̃

∂(ρ̃Eφ)
∂ρ̃

−
1
ρ̃

∂Eρ

∂φ
−Mhz (49c)

jωεEρ =
1
ρ̃

∂Hz
∂φ

−
∂Hφ

∂ z̃
− Jeρ (49d)

jωεEφ =
∂Hρ

∂ z̃
−

∂Hz
∂ρ̃

− Jeφ (49e)

jωεEz =
1
ρ̃

∂(ρ̃Hφ)
∂ρ̃

−
1
ρ̃

∂Hρ

∂φ
− Jez (49f)

where
[
Jqeρ Jqeφ Jqez M

q
hρ Mq

hφ Mq
hz
]T

is the excitation source,
ρ̃ and z̃ represent the results of the transformation of stretch-
ing coordinates, and ε, µ and ∂ι are same as above.

The formulations of the transformation of stretching coor-
dinates can be given as

ρ̃ = ρ0 +

∫ ρ

ρ0

ξρ(ρ′)dρ′ (50a)

z̃ = z0 +

∫ z

z0
ξz(z′)dz′ (50b)

in which ρ0 and z0 are the inner boundaries of the matched
layer, ξι (ι = ρ, φ, z) is the coefficient of stretching
transformation.

Obviously, Eq. (49a) to Eq. (49f) must be transformed into
the formswith the parameter ξι of stretching transformation in
order to perform PML transformation of the FDTD method.
Therefore, we define

ξρ(ρ) = ξρ (51a)
ρ̃

ρ
= ξφ(ρ) = ξφ (51b)

ξz(z) = ξz. (51c)

In fact, ξρ and ξz are given by taking the derivatives for ρ̃

and z̃. At the same time, because the directions of the fields
in the φ-direction are uncertain, they do not participate in the
transformation of stretching coordinates.

The detailed methods for obtaining Eq. (51a) to Eq. (51c)
are shown in Appendix C.
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Furthermore, Eq. (51a) to Eq. (51c) are substituted into
the group of Eq. (49a) to Eq. (49f), we can obtain the basic
equations of PML, which are derived from 3-D conventional
cylindrical coordinate FDTD method. They are given as

−jωµHρ =
1
ρ

1
ξφ

∂Ez
∂φ

−
1
ξz

∂Eφ

∂z
−Mhρ (52a)

−jωµHφ =
1
ξz

∂Eρ

∂z
−

1
ξρ

∂Ez
∂ρ

−Mhφ (52b)

−jωµHz =
1
ξρ

∂Eφ

∂ρ
+

1
ξφ

1
ρ
Eφ −

1
ρ

1
ξφ

∂Eρ

∂φ
−Mhz (52c)

jωεEρ =
1
ρ

1
ξφ

∂Hz
∂φ

−
1
ξz

∂Hφ

∂z
− Jeρ (52d)

jωεEφ =
1
ξz

∂Hρ

∂z
−

1
ξρ

∂Hz
∂ρ

− Jeφ (52e)

jωεEz =
1
ξρ

∂Hφ

∂ρ
+

1
ξφ

1
ρ
Hφ −

1
ρ

1
ξφ

∂Hρ

∂φ
− Jez. (52f)

B. PML IMPLEMENTATION OF THE CONVENTIONAL
WLP-FDTD METHOD IN 3-D CYLINDRICAL
COORDINATE SYSTEM
As discussed in many WLP-FDTD methods [30], [31],
[32], [40], the WLP-FDTD is actually by transforming the
time-domain problems of the FDTD method to the Laguerre-
domain using the Galerkin’s testing procedure. The general
form of the transformation equation is

∂U (r, t)
∂t

= s
∞∑
q=0

(
1
2
Uq(r) +

∑
Uϑ (r)

)
8q(t̄) (53)

where 8q(t̄) is the Laguerre polynomial with weight e−t̄/2,
and t̄ is the time of scaling, and U (r, t) is any field quantity
from the group of Eq. (49a) to Eq. (49f). According to the
property of Laguerre polynomial, Eq. (53) represents the first
partial derivative of U (r, t) with respect to time t .

Nevertheless, if we expand the group of Eq. (52a) to
Eq. (52f) by directly applying Eq. (53), we can obtain the
PML implementation of WLP-FDTD, but it is still a 3-D one.
Since the PML parameters are more complex, they can cause
large memory consumption [48], and the Laguerre function
itself can cause some memory consumption [30]. The com-
bination of them may lead greater memory consumption for
the computation of the PML implementation of WLP-FDTD.
In order to solve this problem, we adopt the split-field tech-
nique [49] to convert the 3-D PML implementation to the 2-D
problem for calculation.

Here, the PML scheme in [50] is applied with

ξι = κι +
σι

jωε0
(ι = ρ, φ, z). (54)

where κι and σι are the parameters of matched layer, ε0 is the
permittivity without dielectric.

By substituting Eq. (54) into Eq. (52a), the difference
between whether to use the split-field technique or not can
be found.

If we use the split-field technique, we can obtain

κφ

∂Hρφ

∂t
+

σφ

ε0
Hρφ = −

1
µ

1
ρ

∂Ez
∂φ

+ ξφ

1
µ
Mρφ (55a)

κz
∂Hρz

∂t
+

σz

ε0
Hρφ =

1
µ

∂Eφ

∂z
+ ξz

1
µ
Mρz (55b)

where Hρ = Hρφ + Hρz,Mρ = Mρφ +Mρz.
Obviously, comparing the term of Eq. (55a) and Eq. (55b)

with Eq. (52a), it can be found that the new field components
of the right-side of Eq. (55a) and Eq. (55b) are only in
φ-and z-directions. If they are taken as solving variables, 2-D
field equations can be derived, which can transform 3-D prob-
lems into 2-D problems for solving, thus effectively reducing
memory and saving computation time. The derivations of
other equations are similar to Eq. (55a) and Eq. (55b), which
will not be described here.

Here, we treat the group of Eq. (52a) to Eq. (52f) by refer-
ring to the split-field expansions of Eq. (55a) and Eq. (55b),
and integrate them through mathematical operations. The
PML implementation equations of the conventional WLP-
FDTD method in 3-D cylindrical coordinate system can be
written as

hqρ = hqρz + hqρφ

=Nz

(
b
κz

∂eqφ
∂z

−2
∑

hϑ
ρz

)
−Nφ

(
b

ρκφ

∂eqz
∂φ

+2
∑

hϑ
ρφ

)
+

(
bNzξz

κz
Mq

ρz +
bNφξφ

κφ

Mq
ρφ

)
(56a)

hqφ = hqφρ + hqφz

=Nρ

(
b
κρ

∂eqz
∂ρ

− 2
∑

hϑ
φρ

)
− Nz

(
b
κz

∂eqρ
∂z

+ 2
∑

hϑ
φz

)
+

(
bNρξρ

κρ

Mq
φρ +

bNzξz
κz

Mq
φz

)
(56b)

hqz = hqzφ + hqzρ

=Nφ

(
−

b
ρκφ

(eqφ −
∂eqρ
∂φ

)

−2
∑
hϑ
zφ

)
− Nρ

(
b
κρ

∂eqφ
∂ρ

+ 2
∑

hϑ
zρ

)

+

(
bNφξφ

κφ

Mq
zφ +

bNρξρ

κρ

Mq
zρ

)
(56c)

eqρ = eqρφ + eqρz

=Nφ

(
a

ρκφ

∂hqz
∂φ

−2
∑

eϑρφ

)
−Nz

(
a
κz

∂hqφ
∂z

+2
∑

eϑρz

)

+

(
aNφξφ

κφ

Jqρφ +
aNzξz

κz
Jqρz

)
(56d)

eqφ = eqφz + eqφρ

=Nz

(
a
κz

∂hqρ
∂z

− 2
∑

eϑφz

)
− Nρ

(
a
κρ

∂hqz
∂ρ

+ 2
∑

eϑφρ

)
+

(
aNzξz

κz
Jqφz +

aNρξρ

κρ

Jqφρ

)
(56e)
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eqz = eqzρ + eqzφ

=Nρ

(
a
κρ

∂hqφ
∂ρ

− 2
∑

eϑzρ

)
− Nφ

(
−

a
ρκφ

(hqφ −
∂hqρ
∂φ

)

+2
∑
eϑzφ

)

−

(
aNρξρ

κρ

Jqzρ +
aNφξφ

κφ

Jqzφ

)
(56f)

where Nι =

(
1 +

2σι

sκιε0

)−1
(ι = ρ, φ, z).

Observing the group of Eq. (56a) to Eq. (56f), it is obvious
that, although the spatial distribution of each electromagnetic
field component is 3-D, it can be updated by 2-D mode. This
will bring some feasibility to the implementation of the PML.

By defining Wq
pml =

[
Wq

E−pml W
q
H−pml

]T
,Vq−1

EH−pml =[
Vq−1
E−pml V

q−1
H−pml

]T
,RqJM−pml =

[
RqJ−pml R

q
M−pml

]T
,

we can write the PML implementation of Eq. (1) as

(I − Apml − Bpml)Wq
pml = Vq−1

EH−pml + RqJM−pml . (57)

Note that,

Apml =

[
0 Apmlµχ

Apmlεχ 0

]
, Bpml =

[
0 Bpmlµχ

Bpmlεχ 0

]
,

Apmlµχ =

 0 −aDz∂z 0
0 0 −aDρ∂ρ

−
a
ρ
Dφ∂φ 0 0

 ,

Apmlεχ =


0 0 −

b
ρ
Dφ∂φ

−bDz∂z 0 0

0 −b
(
Dρ∂ρ +

1
ρ

∂φ

)
0

 ,

Bpmlµχ =


0 0

a
ρ
Dφ∂φ

aDz∂z 0 0

0 a
(
Dρ∂ρ +

1
ρ

∂φ

)
0

 ,

Bpmlεχ =


0 bDz∂z 0
0 0 bDρ∂ρ

b
ρ
Dφ∂φ 0 0

 ,

Vq−1
E−pml =


−2Nφ

∑
eϑρφ − 2Nz

∑
eϑρz

−2Nρ

∑
eϑφρ − 2Nz

∑
eϑφz

−2Nρ

∑
eϑzρ − 2Nφ

∑
eϑzφ

 ,

Vq−1
H−pml =


−2Nφ

∑
hϑ
ρφ − 2Nz

∑
hϑ
ρz

−2Nρ

∑
hϑ
φρ − 2Nz

∑
hϑ
φz

−2Nρ

∑
hϑ
zρ − 2Nφ

∑
hϑ
zφ

 ,

RqJ−pml =


−a

(
DφξφJ

q
ρφ + DzξzJ

q
ρz

)
−a

(
DzξzJ

q
φz + DρξρJ

q
φρ

)
−a

(
DρξρJ

q
zρ + DφξφJ

q
zφ

)
 ,

RqM−pml =


b
(
DφξφM

q
ρφ + DzξzM

q
ρz

)
b
(
DzξzM

q
φz + DρξρM

q
φρ

)
b
(
DρξρM

q
zρ + DφξφM

q
zφ

)
 ,

where Dι =
Nι

κι
(ι = ρ, φ, z).

It is worth explaining that all the fields in Eq. (57) have
been updated by the 2-D models with the parameters of
matched layer, they are not necessary to use the split-field
technique again. Otherwise, this operation will cause the
overlap of the calculation.

At this point, the derivation of PML implementation of
the WLP-FDTD has been completed. The detailed derivation
processes from Eq. (52) to Eq. (57) are shown in Appendix D.

C. PML IMPLEMENTATION OF THE PROPOSED METHOD
Benefitting from the split-field technique using in Part B
of this section, the general form of Eq. (56) is formed.
Obviously, the difference between Eq. (57) and Eq. (1) is
whether there are parameters of matched layer. Therefore,
the coefficient matrices of Eq. (1) can be directly replaced
by the new ones of Eq. (57), and then, by using the ways of
the initial values and the iterative procedures to expand the
PML implementation formulas of the proposed method.

For example, the coefficient matrices of Eq. (5a) are
directly replaced by the new ones, we can obtain

(I − Apmlµχ A
pml
εχ )W∗q

E−pml

= −Apmlµχ B
pml
εχ Wq−1

E−pml + Apmlµχ V
q−1
H−pml + Vq−1

E−pml

−Bpmlµχ W
q−1
H−pml + RqJ−pml + Apmlµχ R

q
M−pml (58)

Expanding Eq. (58) and directly use the Gauss-Seidel ide-
ology to obtain(
I − ab (Dz∂z)2

)
e∗qρ

=− abDz∂zDρ∂ρeq−1
z +aDφ

1
ρ

∂φhq−1
z

+ 2aDz∂z
[
Nρ6hϑ

φρ +Nz6hϑ
φz

]
−2
[
Nφ6eϑρφ+Nz6eϑρz

]
+Rq1
(58a)(

I − abDρ∂ρ

(
Dρ∂ρ +Dφ

1
ρ

))
e∗qφ

=− abDρ∂ρ

(
Dφ

1
ρ

∂φ

)
e∗qρ +aDz∂zhq−1

ρ

+ 2aDρ∂ρ

[
Nρ6hϑ

zρ +Nφ6hϑ
zφ

]
−

[
Nρ6eϑφρ +Nz6eϑφz

]
+Rq2
(58b)(

I − ab
(
Dφ

1
ρ

∂φ

)2
)
e∗qz

=− abDφ

(
1
ρ

∂φ

)
Dz∂ze

∗q
φ +a

(
Dρ∂ρ +Dφ

1
ρ

)
hq−1
φ

+ 2aDφ

1
ρ

∂φ

[
Nφ6hϑ

ρφ+Nz6hϑ
ρz

]
+Rq3 (58c)
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Rq1

=− a
(
bDz∂z

[
FρM

q
φρ +FzM

q
φz

]
+

[
FφJ

q
ρφ+FzJqρz

])
(58a-s)

Rq2

=− a
(
bDρ∂z

[
FφM

q
zφ+FρMq

zρ

]
+

[
FzJ

q
φz+FρJ

q
φρ

])
(58b-s)

Rq3

=− a
(
bDφ

1
ρ

∂φ

[
FzMq

ρz+FφM
q
ρφ

]
+

[
FρJqzρ +FφJ

q
zφ

])
(58c-s)

where Fι = Dιξι (ι = ρ, φ, z).
Other PML implementation expansions of the proposed

method are similar to those of Eq. (58a) to Eq. (58c), and
the execution processes can be seen in Section II, which will
not be described here.

VII. NUMERICAL EXAMPLES
To demonstrate the term of efficiency and accuracy and the
above discussions in the proposed method, Figure 7 shows
an asymmetric scattering field structure in 3-D cylindrical
coordinate system.

FIGURE 7. Illustration of the asymmetric structure with one
wedge-shaped bulge under oblique incident wave.

As shown in Figure 7, there is one wedge-shaped bulge,
the angle of the bulge is β =

π
4 . And the radius of the bulge

is 22 cm, the radius and height of the cylindrical are 20 cm
and 40 cm, respectively. The oblique incident plane wave is
added through Huygens’s surface at ρ = 25 cm and z =

±25 cm, and parallel to the φ = 0 plane, the incident angle
is θi = 45◦. The computational domain are meshed using
the uniform grids with 1ρ = 1z = 1 mm and 1φ =

2π
40 ,

leading to the total mesh of 40(ρ)×40(φ)×80(z), and the first
order Mur absorbing boundary condition is used to truncate
the boundary [51]. It should be noted that the incident electric
field used in the following examples is Eq. (48) in Section V.
In the first example, how to obtain the final choices of s and

q of the proposed method, we choose the observation points

FIGURE 8. Final choices of s and q of the proposed method: (a) P1; (b) P2.

P1 (23, 25, −15) and P2 (30, 20, 0), which are close to and
far away from the scatterer, respectively.

As shown in Figure (8a) and Figure (8b), it is obvious that
when the proposed method and the structural parameters of
the scatterer are taken into account, the resonance intensities
of the waves are different when they are close to and far away
from the scatterer. If s = 7e + 11, then q=170 is the most
appropriate for the proposed method. Although q = 150 is
selected at P2 point, and it is close to the target value, but
there is still a slight deviation. In order to unify the calculation
conditions, s = 7e+ 11 and q = 170 are selected as the final
choices in the proposed method.

In the second example, the importance of the special treat-
ment for on z- axis is verified here, In this case, we’re going
to pick points P3 (1, 3, 23), P4 (1, 0, 25) and P5(1, 10, 30),
and they’re going to have to be very close to the z- axis.

Clearly, the distances between observation points and the
scatterer are different, which will make the intensity of the
field transformation different and make the waveform datum
more valuable for analysis.

In order to reduce the reflection error caused by the
Mur absorption boundary, the 3-D conventional cylindrical
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FIGURE 9. Waveform results with and without special treatment for on
z-axis are compared: (a) P3; (b) P4; (c) P5.

coordinate FDTD method is calculated in large space and
used as a reference value for comparison. As shown in
Figure (9a) to Figure (9c), they have shown the differences
of whether special treatment for on z-axis are performed at
the observation points with different intensity of field trans-
formation, It is clear that the special treatment for on z-axis
of FDTD method in the 3-D cylindrical coordinate system is
very important.

FIGURE 10. Waveforms at P6 of three methods compared with the
reference value.

FIGURE 11. Waveforms at P7 of three methods compared with the
reference value.

In the third example, in order to verify the advantages of
the proposed method in the term of computational efficiency
and accuracy, two other observation points are given as P6(25,
16, 3) and P7(35, 38,−24). The iteration of the computational
domain is denoted by Nt, here, as in the second example,
the conventional FDTDmethod in 3-D cylindrical coordinate
system is still calculated in large space and used as a reference
value for comparison.

As shown in Figure 10 and Figure 11, the reference
value, the one-step ADI-FDTD method [38], the existing
method [39](calculated in 3-D case) and the proposedmethod
can be used to show the time-domain field waveforms, the
numerical results show excellent agreement between the pro-
posed method and the reference value.

In addition, to demonstrate the advantage of the proposed
method in accuracy, two error formulations are given, they
are defined as

Eφ−error (t) = Eφ(t) − Eφ−ref (t)(V/m) (59a)

Eφ−error (t) =

∣∣Eφ(t) − Eφ−ref (t)
∣∣∣∣Eφ−refmax(t)

∣∣ (%) (59b)
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FIGURE 12. Errors at P6 of three methods with different computational
conditions.

FIGURE 13. Errors at P7 of three methods with different computational
conditions.

where Eφ(t) are the simulation datum of the one-step ADI-
FDTD method [38], the existing method [39] and the
proposed method, Eφ−refmax(t) is the simulation data of the
conventional FDTD calculated with large space.

Figure 12 and Figure 13 give the errors obtained by Eφ

of the one-step ADI method (cfln=2 - 8) [38], the existing
method (Nt = 8) [39] and the proposed method (Nt = 1),
and they show that the errors of the existing method and the
proposed method are at same level. Even so, in Figure 12,
when the Nt of the proposed method is equal to one, its
accuracy is 48% higher than that of one-step ADI method
when cfln = 2, and 65%, 74% and 79% higher than that
of cfln = 4, 6 and 8, respectively. Similarly, as shown in
Figure 13, the proposed method also has a greater accuracy
advantage over the one-step ADI method.

Table 1 shows the CPU times and memories of four
methods with different computational conditions. Obviously,
LU decomposition [45] can be programmed to significantly

TABLE 1. Simulation results for the different methods.

reduce thememory consumption associatedwithWLP.More-
over, compared with the existing method (Nt = 8) [39], the
computational efficiency of the proposed method (Nt = 1) is
improved by 51%. While compared with the one-step ADI
method [38], when cfln = 2, 4, 6 and 8, the computational
efficiencies of the proposedmethod can be improved by 70%,
62%, 44% and 24%, respectively. Meanwhile, compared with
the conventional FDTD method, the proposed method can
improve the time step of the conventional FDTD method by
almost four times.

In the fourth example, to validate the performance of the
PML implementation of the proposed method, the scattering
model as shown in Figure 7 is calculated again. The overall
computational domain contains 50(ρ) × 40(φ) × 90(z) cells,
and it includes a 10-layer PML in each direction. Moreover,
the other conditions are the same as the above examples.
Within the PML region, the parameters are scaled using the
polynomial profile, which are given elsewhere [50].

σς = σmax
(ς − ς0)m

dp
(60a)

κς = 1 + κmax
(ς − ς0)m

dp
, ς = ρ, φ, z (60b)

where ς0 is the location of the interface between the PML
region and the inner non-PML region, d = 101ρ = 101z =

101 is the thickness of the PML, and κmax = 3. In order to
minimize reflection error, the best choice of σmax depends on

σmax = λσopt =
λ(m+ 1)
150π1z

. (61)

To validate the proposed method, the relative reflection
error as a function of time is used and defined as

error = 20log10

∣∣Eφ,PML(t) − Eφ,ref (t)
∣∣∣∣Eφ,refmax(t)

∣∣ (dB) (62)

where Eφ,PML(t) is calculated in the test domain, and
Eφ,refmax (t) has the same meaning as Eq. (59).

The observation point of the reflection error is usually the
corner point, so let’s take P8 (25, 0, 25) here. Figure 14
shows the relative reflection errors of the proposed PML
absorbing boundary condition under different m. Obviously,
when λ = 0.9 and m = 4, the proposed PML absorbing
boundary condition is better than that in the other situations.

As can be seen from Figure 15, when d = 10 cm, the
maximum relative reflection errors of the PML absorption
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FIGURE 14. Relative reflection errors of the proposed PML
implementation under different m at P8.

FIGURE 15. Maximum relative reflection errors of different m and λ at
observation point P8.

boundary condition at the observation point P8 can be influ-
enced by the parameters m and λ. It can be seen that when
3 ≤ m ≤ 5 and 0.8 ≤ λ ≤ 1.0, the relative reflection error
of the PML absorption boundary condition of the proposed
method can be reduced to about −63 dB.
In the fifth example, to prove the research significance of

the proposed method, a numerical example is a cylindrical
cavity with a dielectric filling with εr = 35.74. The physical
dimensions of the structure is shown in Figure 16. A uniform
mesh with 1ρ = 0.17272 mm,1z = 0.1524 mm, and the
total mesh dimension is 75(1ρ)× 40(1φ =

2π
40 )× 100(1z).

excitation pulse is a Gaussian pulse, where t0 = 0.6 ns,τ0 =

0.2 ns. Figure 17 and Table 2 show the calculation results of
TM01 mode. Obviously, when the proposed method takes Nt
= 1, 2, 4, 8, it can still obtain higher calculation accuracy, and
when Nt=4, the efficiency of the proposed method is almost
same as that of the conventional FDTD method.

In the sixth example, to further prove the significance of
the proposed method, a numerical example of left-handed
material [53] is provided here.

FIGURE 16. Sizes of dielectric cylinder resonator.

FIGURE 17. Frequency spectrum diagram of Eϕ of TM01 mode.

TABLE 2. The calculation results of TM01 mode.

FIGURE 18. The space calculation area of the left-handed material
cylinder.

The spatial calculation area and the sizes of the left-handed
material cylinder are shown in Figure 18. The electromag-
netic wave is absorbed by the PML absorption boundary
around the calculation area, the thickness of the PML layer
is 10 cm, and the uniform grids are same as the first example.
When the excitation source shown in Eq. (48) is added at point
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FIGURE 19. The negative refraction effect of the proposed method in the
left-handed material cylinder.

FIGURE 20. Frequency response for the proposed method in the
left-handed material cylinder.

I (30, 0, 30), the equivalent permittivity and permeability of
the left-handed material cylinder are εr = −1 and µr = −1,
respectively. The simulation process shows that the excitation
source is refracted from the I point (ε0 and µ0) through the
left-handed material (εr and µr ) cylinder, and then imaged
again at the P (30, 20, −30) point (ε0 and µ0).
As can be seen from Figure 19, the proposed method better

demonstrates the lossless negative refraction characteristic of
the left-handed material, so that the results at the I and P

points are almost opposite. Meanwhile, the S-parameter spec-
trum shown in Figure 20 shows that the frequency response of
the proposed method in the left-handed material is expected
to be around 10 GHz, which is close to the frequency of the
incident excitation source.

VIII. CONCLUSION
In this work, an improved ADI iterative algorithm with
Gauss-Seidel ideology for efficient WLP-FDTD method is
proposed in 3-D cylindrical coordinate system. Through the
existing scheme, it can be seen that the perturbation term
and one-step Gauss-Seidel procedure are used to well solve
the huge large sparse matrix problem of conventional WLP-
FDTD in 3-D cylindrical coordinate system. However, the
introduction of the perturbation term will still lead to some
splitting errors, so it has to use multiple iterations to reduce
the errors. In order to solve the problems, the proposed
method uses the characteristics of ADI algorithm to form the
ADI linear iterative equations based on the WLP technique,
and uses two-step Gauss-Seidel procedures to weaken the
influence of the perturbation term in the existing scheme.
Numerical examples show that the correction term added
by the proposed method can better connect the two-step
Gauss-Seidel procedures, which makes the proposed method
stable and fast in convergence. In other words, only once
iteration of the proposed method can achieve the accuracy
of the existing method in eight times iterations. And, the
efficiency will be greatly improved. At the same time, there
are similar advantages in comparison with the one-step ADI
method. Moreover, the proposed method compares with the
conventional FDTD method, the efficiency can increase four
times step. The PML implementation of the proposed method
also shows that the proposed method has certain advantage
in accuracy. In addition, the applications of the proposed
method in the simulations of dielectric cavity cylinder and
left-handed material cylinder can verify the research signifi-
cance of the proposed method again. Theoretical analysis and
several examples prove that the proposed method has obvious
improvement compared with previous methods, and can also
solve the special structural problems of FDTD method that
require special treatment of FDTD differential fields on z-axis
and φ-direction under 3-D cylindrical coordinate system.

APPENDIX A
In this appendix, Eq. (1) will be derived.

According to the discussion in [48], the basic equations of
FDTD in 3-D cylindrical coordinate system are

∂eρ
∂t

=
1
ε

(
1
ρ

∂φhz − ∂zhφ

)
−

1
ε
Jeρ (A.1.a)

∂eφ
∂t

=
1
ε

(
∂zhρ − ∂ρhz

)
−

1
ε
Jeφ (A.1.b)

∂ez
∂t

=
1
ε

(
1
ρ

∂ρ(ρhφ) −
1
ρ

∂φhρ

)
−

1
ε
Jez (A.1.c)

∂hρ

∂t
= −

1
µ

(
1
ρ

∂φez − ∂zeφ

)
+

1
µ
Mhρ (A.1.d)
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∂hφ

∂t
= −

1
µ

(
∂zeρ − ∂ρez

)
+

1
µ
Mhφ (A.1.e)

∂hz
∂t

= −
1
µ

(
1
ρ

∂ρ(ρeφ) −
1
ρ

∂φeρ

)
+

1
µ
Mhz .(A.1.f)

For example, we use Eq. (53) to expand Eq. (A.1.a), ∂eρ
∂t

can be expanded as

eqρ + 2
∑

eϑρ . (A.2)

Therefore, the basic equations ofWLP-FDTD in 3-D cylin-
drical coordinate system can be obtained as follows

eqρ + 2
∑

eϑρ = a
(
1
ρ

∂φhqz − ∂zhqφ − Jqeρ

)
(A.3.a)

eqφ + 2
∑

eϑφ = a
(
∂zhqρ − ∂ρhqz − Jqeφ

)
(A.3.b)

eqz + 2
∑

eϑz = a

(
1
ρ

∂(ρhqφ)

∂ρ
−

1
ρ

∂φhqρ − Jqez

)
(A.3.c)

hqρ + 2
∑

hϑ
ρ = b

(
∂zeqφ −

1
ρ

∂φeqz +Mq
hρ

)
(A.3.d)

hqφ + 2
∑

hϑ
φ = b

(
∂ρeqz − ∂zeqρ +Mq

hφ

)
(A.3.e)

hqz + 2
∑

hϑ
z = b

(
1
ρ

∂φeqρ −
1
ρ

∂(ρeqφ)

∂ρ
+Mq

hz

)
. (A.3.f)

where a and b are same as Eq. (1), substituting the coefficient
matrices into Eq. (1), the group of Eq. (A.3.a)-Eq. (A.3.f) can

be written as matrix multiplication.[
Wq

E
Wq

H

]
−

[
Vq−1
E

Vq−1
H

]
=

[
0 Aµχ + Bµχ

Aεχ + Bεχ 0

] [
Wq

E
Wq

H

]
+

[
RqJ
RqM

]
(A.4.a)

that is

Wq
− V q−1

= (A+ B)Wq
+ RqJM . (A.4.b)

Furthermore, Eq. (1) can be obtained by transforming the
form of Eq. (A.4.b).

APPENDIX B
Because the formulas of the first-order central difference
expansions in the proposed method is huge and complex, so,
we only take some operation terms to explain.

Eq. (B.1.a) has shown that how to obtain the e∗qφ,p+1 term
of Eq. (11a-2) by using first-order central difference as
in (B.1.a), shown at the bottom of the page.

Taking eqz,p+1 and e
q
φ,p+1 of Eq. (13a-1) and Eq. (13a-3) as

another examples, their expansions are, (B.1.b) and (B.1.c),
as shown at the bottom of the page.

It must be explained that, in Eq. (B.1.c), the spatial position
of eqφ,p+1 in the φ-direction must be same as the spatial
position of eqρ,p+1 in Eq. (13a-3) before it is expanded in the
φ-direction.

ab∂ρ(
1
ρ
(∂ρ)ρ)e∗qφ,p+1 = ab∂ρ

 1

(i+ 1
2 )1ρ

 (i+ 1)e∗qφ,p+1(i+ 1, j+
1
2
, k)

−ie∗qφ,p+1(i, j+
1
2
, k)




=
ab

1ρ2


1

(i+ 1
2 )

[
(i+ 1)e∗qφ,p+1(i+ 1, j+

1
2
, k) − ie∗qφ,p+1(i, j+

1
2
, k)
]

−
1

(i− 1
2 )

[
ie∗qφ,p+1(i, j+

1
2
, k) − (i− 1)e∗qφ,p+1(i− 1, j+

1
2
, k)
]
 (B.1.a)

ab(
1
ρ
(∂ρ)ρ)∂ρeqz,p+1 =

ab
1ρ

(
1
ρ
(∂ρ)ρ)

{
eqz,p+1(i+ 1, j, k +

1
2
) − eqz,p+1(i, j, k +

1
2
)
}

=
ab
i1ρ2


(i+

1
2
)
[
eqz,p+1(i+ 1, j, k +

1
2
) − eqz,p+1(i, j, k +

1
2
)
]

−(i−
1
2
)
[
eqz,p+1(i, j, k +

1
2
) − eqz,p+1(i− 1, j, k +

1
2
)
]
 (B.1.b)

(
1
ρ
(∂φ)(

1
ρ
(∂ρ)ρ)eqφ,p+1 = ab

1
ρ
(∂φ)

1

(i+ 1
2 )1ρ

{
(i+ 1)eqφ,p+1(i+ 1, j, k)
−ieqφ,p+1(i, j, k)

}

=
ab

(i+ 1
2 )

21ρ21φ



 (i+ 1)eqφ,p+1(i+ 1, j+
1
2
, k)

−(i+ 1)eqφ,p+1(i+ 1, j−
1
2
, k)


−

 ieqφ,p+1(i, j+
1
2
, k)

−ieqφ,p+1(i, j−
1
2
, k)




. (B.1.c)
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APPENDIX C
In this appendix, the detailed methods for obtaining Eq. (51a)
to Eq. (51c) are explained.

Here, Eq. (49a) and Eq. (49b) are taken as examples to
explain, seeing the ∂Eρ

∂ z̃ term of Eq. (49b), we can find that
the derivative of the field with respect to z̃ can be written as

∂ρ

∂ z̃
=

∂ρ

∂z
·
∂z
∂ z̃

. (C.1.a)

Obviously, we can get from (50b)

∂ z̃
∂z

= ξz(z) = ξz. (C.1.b)

Substituting Eq. (C.1.b) into Eq. (C.1.a), we can obtain

∂ρ

∂ z̃
=

1
ξz

∂ρ

∂z
. (C.1.c)

Similarly, seeing the ∂Ez
∂ρ̃

term of Eq. (49b), we also can
find that the derivative of the field with respect to ρ̃ can be
written as

∂z
∂ρ̃

=
∂z
∂ρ

·
∂ρ

∂ρ̃
. (C.2.a)

The derivative of Eq. (50a) is obtained as

∂ρ̃

∂ρ
= ξρ(ρ) = ξρ . (C.2.b)

Substituting Eq. (C.2.b) into Eq. (C.2.a), we can obtain

∂z
∂ρ̃

=
1
ξρ

∂z
∂ρ

. (C.2.c)

Clearly, we substitute Eq. (C.1.c) and Eq. (C.2.c) into
Eq. (49b), Eq. (52b) is formed.

Next, let’s define

ρ̃

ρ
= ξφ(ρ) = ξφ . (C.3.a)

Therefore, the 1
ρ̃

∂Ez
∂φ

term of Eq. (49a) can be written as

ρ

ρ̃

1
ρ

∂Ez
∂φ

=
1
ρ

1
ξφ

∂Ez
∂φ

. (C.3.b)

Clearly, we substitute Eq. (C.1.b) and Eq. (C.3.b) into
Eq. (49a), Eq. (52a) is formed.

APPENDIX D
In this appendix, the detailed derivation processes from
Eq. (52) to Eq. (57) are shown.

Here, Eq. (52c) and Eq. (52f) are taken as examples to
derive.

According to Eq. (54), we can expand Eq. (52c) and Eq.
(52f) by using the splitting field technique as

κρ

∂hzρ
∂t

+
σρ

ε0
hzρ = −

1
µ

∂eφ
∂ρ

+
1
µ

ξρMzρ (D.1.a1)

κφ

∂hzφ
∂t

+
σφ

ε0
hzφ = −

1
µ

1
ρ

(
eφ −

∂eρ
∂φ

)
+

1
µ

ξφMzφ

(D.1.a2)

κρ

∂ezρ
∂t

+
σρ

ε0
ezρ =

1
ε

∂hφ

∂ρ
−

1
ε
ξρJzρ (D.2.a1)

κφ

∂ezφ
∂t

+
σφ

ε0
ezφ =

1
ε

1
ρ

(
hφ −

∂hρ

∂φ

)
−

1
ε
ξφJzφ (D.2.a2)

in which, Eq. (D.1.a1) and Eq. (D.1.a2) are the two sub-items
of Eq. (52c) after using the splitting field technique. Similarly,
Eq. (D.2.a1) and Eq. (D.2.a2) are the sub-items of Eq. (52f).

According to Eq. (A.2), we can directly obtain the Laguerre
equations of Eq. (D.1.a1)-Eq. (D.2.a2) as

hqzρ =

(
1 +

2σρ

κρsε0

)−1

×

(
−

1
κρ

2
sµ

∂ρeqφ − 2
∑

hϑ
zρ +

ξρ

κρ

2
sµ
Mq
zρ

)
(D.3.a1)

hqzφ =

(
1 +

2σφ

κφsε0

)−1

×

−
1
κφ

2
sµ

1
ρ

(
eqφ − ∂φeqρ

)
− 2

∑
hϑ
zφ

+
ξφ

κφ

2
sµM

q
zφ

 (D.3.a2)

eqzρ =

(
1 +

2σρ

κρsε0

)−1

×

(
1
κρ

2
sε

∂ρhqφ − 2
∑

eϑzρ −
ξρ

κρ

2
sε
Jqzρ

)
(D.4.a1)

eqzφ =

(
1 +

2σφ

κφsε0

)−1

×

 1
κφ

2
sε

1
ρ

(
hqφ − ∂φhqρ

)
− 2

∑
eϑzφ

−
ξφ

κφ

2
sε J

q
zφ

 . (D.4.a2)

We combine Eq. (D.3.a1) and Eq. (D.3.a2), and Eq. (56c)
is formed, the Eq. (56f) is formed similarly.
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