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ABSTRACT Homomorphic Encryption (HE) allows performing specific algebraic computations on
encrypted data without the need for decryption. For this reason, HE is emerging as a strong
privacy-preserving solution in cloud computing environments since it allows to keep data secure even in
the case the cloud server is not trusted. HE libraries such as Microsoft SEAL have been recently released;
however, such libraries are not specifically designed for resource-constrained platforms and they are often
expensive in terms of computational resources and memory consumption, which limits their usage in edge
devices. This limitation is contained by the SEAL-Embedded library, the first C-basedHE library specifically
designed for embedded platforms. In this article, we propose a hardware accelerator specifically designed for
the SEAL-Embedded library and its implementation of the CKKS scheme: the proposed hardware presents
a configurable Number Theoretic Transform (NTT) unit for all the polynomial degrees available on the
SEAL-Embedded, a memory architecture able to reduce the I/O latency and a dedicated module for the
generation of roots of unity. A complete system that includes a 32-bit RISC-V (RI5CY) processor has been
implemented on a Xilinx ZCU106 FPGA board to test the functionality of the hardware accelerator and to
measure performance improvements. The results showed a speed-up of around x1000 with the hardware
acceleration respect to the pure software implementation of the SEAL-Embedded library for the symmetric
encryption function.

INDEX TERMS Hardware accelerator, homomorphic encryption, number theoretic transform, ring learning
with errors, RISC-V, SEAL-Embedded, FPGA.

I. INTRODUCTION
Storing private data in encrypted form on server or cloud
can be considered secure if no one has access to the secret
key. But when our data need to be processed or updated it is
necessary to decrypt them, opening a window of possibility
for cyber attackers to take them over as long as they are in
plain form. Homomorphic Encryption (HE) is born with the
intention of keeping data encryptedwhile performing specific
operations: given two messages m1,m2 and their encryp-
tion c1, c2, with HE is possible to obtain a new ciphertext
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c3 = c1 ⋆ c2 which is the encryption of m3 = m1 ⋆ m2,
where ⋆ is a generic operation applied to data. HE is nowadays
considered a solution that allows users to share data on cloud
or on any non-trusted server denying any chance for the
attackers or even cloud owners to learn anything about them
since the private key is unknown to everyone except for the
data owner. In the last decade, many open-source HE libraries
have been developed, including lattice-based libraries such
as Microsoft SEAL [1], [2] or PALISADE, whose security
relies on the assumption that lattice problems are considered
intractable for both quantum and classical computers. Their
proven hardness and resistance even against quantum com-
puter attacks make lattice-based cryptographic constructions
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a valid alternative to modern cryptosystems; in fact, three
out of four of the standardized algorithms for the NIST
Post-Quantum Cryptography (PQC) competition are lattice-
based: CRYSTALS-Kyber [3], CRYSTALS-Dilithium [4],
and FALCON [5].

Even if HE guarantees data security, on the other hand,
it requires high computational resources and memory con-
sumption, which limits its use on resource-constrained
devices; edge devices, for instance, could not be able to run
HE libraries, or the execution time and the energy consump-
tion of HE encryption functions could be very high in such
devices where computational and energy resources could
be constrained. This fact limits edge-cloud interoperability
and suggests the need for designing ad hoc libraries and/or
integrating dedicated hardware accelerators for the most
computing-intensive operations of HE encryption functions.
From the aforementioned Microsoft SEAL, an embedded-
oriented spin-off library has been developed in 2021, the
SEAL-Embedded (SE), which is the first lattice-based HE
library specifically designed for embedded devices. Follow-
ing theRing LearningWith Errors (RLWE) decision problem,
which is recognized to be quantum resistant, this library
implements a particular HE scheme called CKKS [6] that
allows encryption over floating point numbers. The RLWE
algorithm is built on arithmetic of polynomials where coef-
ficients belong to a cyclotomic ring R modulo Q; given a
secret key s, the ciphertext is composed of two polynomials
(a, −a·s+m+e) where a is sampled from a discrete gaussian
distribution over R, e is sampled from a uniform distribution
and m is the plaintext. All the modular polynomial opera-
tions employed to evaluate the ciphertext require time and
resources to be performed. In order to evaluate fast polyno-
mial multiplication SE library employs theNumber Theoretic
Transform (NTT), which is a specialized Discrete Fourier
Transform. Different acceleration strategies for HE and NTT
can be found in the literature; an example is the Intel Homo-
morphic Encryption Acceleration Library (Intel HEXL),
which is a C++ library that provides optimized imple-
mentations of polynomial arithmetic for Intel processors
exploiting the Intel Advanced Vector Extensions 512 (Intel
AVX512) [7]. This solution concerns Intel 64-bit processors
and can be applied to HE schemes on the cloud side but is not
suitable for the edge side where low-power microcontrollers
with limited computational resources are usually employed.
Other Hardware/Software solutions exploit Instruction Set
Extensions dedicated to NTT such as [8], [9], and [10].
These lead to limited hardware resource consumption but
also limited performance gain. Another approach is to design
dedicated hardware accelerators connected to the microcon-
troller as peripherals through standard interfaces (e.g. AXI4
or others): this solution can lead to excellent gains in terms
of execution time and energy efficiency as reported in [11],
but hardware resource consumption can be high depend-
ing on the adopted design strategies. Some examples of
this approach can be found in [12], [13], and [14]. In this
case, most of the hardware resources are devoted to storing

polynomial coefficients, performing arithmetic operations on
them, and interfacing the hardware accelerator with the pro-
cessor/microcontroller. In this paper, we propose a dedicated
hardware accelerator for symmetric encryption of the SE
library able to support all the polynomial degrees of the SE.
The main contributions of this paper include but are not
limited to:

• Design and implementation of the first hardware accel-
erator for the SE library: it shows a speed-up of around
x1000 with respect to the SW implementation of the SE
on a RISC-V 32-bit processor; the proposed hardware
accelerator includes a standard AXI4 slave interface,
so it can be connected to any CPU or microcontroller;

• A parametrizable (at synthesis level) architecture to
support all or only a subset of the polynomial degrees
of the SE library. The proposed memory scheduling
for NTT-based operations allows parallelizing the data
exchange between the processor-accelerator and the data
processing and allows saving memory thanks to a dedi-
cated module for the generation of the roots of unity for
NTT.

• A complete characterization of the SE library for all
the supported parameters on a 32-bit RISC-V pro-
cessor, which includes a software-only version, and
a hardware-accelerated version with and without the
DMA support for data exchange.

The paper is organized as follows: Section II provides an
overview of the Microsoft SE library, the RLWE encryp-
tion, and the arithmetic operations involved in it. Section III
explains the architecture of the proposed hardware accel-
erator and the design optimizations introduced. Section IV
presents the implementation results on FPGA and a com-
parison with existing solutions, and Section V draws the
conclusions of this work.

II. HOMOMORPHIC ENCRYPTION SEAL-EMBEDDED
LIBRARY
Due to high memory consumption and computational over-
head, it is not easy or even possible to run a homomorphic
encryption library on embedded devices since they are often
resources constrained. Recently a new embedded-oriented
library called SEAL-Embedded (SE) [15] has been developed;
this library, which is a spin-off of the Microsoft SEAL, allows
users to perform encryption over complex and real numbers
following the CKKS scheme, and to implement different
configurations for both asymmetric and symmetric encryp-
tion. It is not possible to perform decryption or any kind of
homomorphic evaluation through the SE itself, therefore SE
requires the usage of the SEAL library plus an additional
adapter module, which is available together with the SE
database. The adapter is necessary to convert the SE cipher-
text into a usable format for the SEAL and also to generate
private and public keys. A possible SE application scenario
may be composed of the following parties, as reported in
Fig. 1:
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FIGURE 1. An application scenario for the SE homomorphic encryption
library.

• An external trusted party that owns an instance of the
adapter module.

• An embedded device that owns a SE instance.
• A server (it could be a non-trusted server) that owns both
the adapter module and the SEAL installed on it.

• A client, which is able to decrypt everything the server
will send using the private key previously generated by
the external trusted party with the adapter. This party can
also take the place of the former one.

Considering for example symmetric encryption, the trusted
party generates through the adapter the private key and dis-
tributes it to the client and the embedded device, which is
now able to encrypt and send data to the server. The server
convert the received ciphertext and is capable of performing
homomorphic operations over it through the SEAL. When
the computation is complete, the resulting ciphertext is sent
to the client. We remark that in such a scenario the server
knows nothing about the secret key. Referring to Fig. 1,
the trusted client could be an edge device with limited
energy and computational budget, so the hardware acceler-
ation for the most intensive HE operations can improve both
energy consumption and performance in term of encryption
latency/throughput.

A. RING LEARNING WITH ERRORS
SE encryption is based on the RLWE algorithm presented
in [16]: given RnQ a ring of integer modulo Q with degree less
than n, a distribution over R from which a key s is sampled,
the ciphertext can be computed as a couple of integer poly-
nomials (a, b) ∈ R with degree less than n as stated in (1).

b = s · a+ e (mod Q) (1)

Polynomial a ∈ RQ is uniformly random, while e is an error
perturbation sampled independently from an error distribu-
tion over R. In SE polynomial degree n is chosen as a power
of two and the selected ring is defined as R = Z[x]/(xn + 1),
where xn+1 is the 2n-th cyclotomic polynomial. All elements
are polynomials represented as n−length vectors of their
unsigned integer coefficients, whose values are in the set
{0, . . . ,Q− 1}.

B. ENCODING IN SEAL EMBEDDED
SE encrypts data following the CKKS scheme, allowing
encryption over floating point values. Since encryption and

decryption work on polynomial rings, it is necessary to con-
vert the floating point message z ∈ Cn/2 into an unsigned
integer polynomial m ∈ R without information loss. Fol-
lowing the work on [17], a polynomial in R is transformed
into a complex vector z ∈ Cn/2 when evaluated with the
canonical embedding σ : R → H and projected using the
natural projection π : H → Cn/2, where H = {zj : z−j =

z̄j, ∀j ∈ Z∗

2n} is a subring of Cn. The encoding operation is
performed evaluating the inverse of the canonical embedding
and π projection and, in order to convert real numbers into
integers, the resulting polynomial coefficients are multiplied
by a scale factor 1 and rounded to the nearest integer. Scale
factor 1 is taken high enough to prevent information loss
from the round operation.

m = ⌈1 · σ−1(π−1(z))⌋R ∈ R (2)

In SE the π−1 projection takes as input a vector of
single-precision numbers and outputs a vector of n single-
precision values, made of the original values and their
conjugates, re-ordered following a precomputed set of index
map. It can be set in 4 different configurations:

• compute on-the-fly: values are computed onto the device
when needed during encoding;

• compute persistent: same as the on-the-fly, but values are
stored in RAM for the program lifetime;

• load: all indices are precomputed by the adapter, stored
in FLASH, and loaded in RAMwhen message encoding
is performed;

• load persistent: same as load, but values are stored in
RAM for the program lifetime.

The σ−1 projection is evaluated as an Inverse Fast Fourier
Transform, evaluating the polynomial at the powers of the
2n−th root of unity of xn + 1. It takes as input n real
single-precision floating point values and outputs a n double-
precision elements vector. IFFT can be set in 2 different
configurations:

• compute on-the-fly: IFFT roots are computed during the
execution of an encoding procedure

• load: all roots are calculated by the adapter, stored in
FLASH, and loaded in RAM when needed

C. ENCRYPTION IN SEAL EMBEDDED
SE supports both symmetric and asymmetric encryption. All
the operations must occur in RQ but in SEAL the modulo
is often quite large, resulting in huge memory consumption
and execution time, especially in embedded devices. For this
reason, the SE adopts the Residue Number System (RNS)
basing on [18], which allows representing modulus Q as a
product of smaller co-primes qi following (3).

Q =

M−1∏
i=0

qi = q0 × q1 × · · · × qM−1 (3)

Any operation performed modulus Q is instead divided in
M − 1 operations for each modulus qi. SE provides a set of
precomputed moduli that can be represented on 32-bit, whose
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TABLE 1. Number of co-primes assigned to each polynomial degree n.

number depends on the chosen polynomial degree. Table 1
reports the number of co-primes for each polynomial degree
supported by the SE.

With regard to the RLWE algorithm, ciphertext in SE is
evaluated as a couple of vectors of 32-bit unsigned integers,
such that:

c0 = −a · s+ m+ e

c1 = a (4)

Vector a is randomly sampled from a uniform distribution
Rq while the vector e is sampled from a centered binomial
distribution B. Vector s is the secret key. In order to optimize
performance, vectors are evaluated in NTT form before poly-
nomial operations.

D. NUMBER THEORETIC TRANSFORM
Considering the overhead caused by polynomial multipli-
cation, in SE those operations are optimized utilizing the
Number Theoretic Transform (NTT), computed following the
Harvey Butterfly operations, reported in Fig. 2. In a polyno-
mial multiplication between two (n− 1) degree polynomials,
evaluating the NTT of both allows multiplying their coeffi-
cient in a point-wise manner.

FIGURE 2. Harvey butterfly configuration.

Inputs in NTT are multiplied with twiddle factors (roots
of unity) and combined with regard to the chosen butterfly.
NTT is computed as a particular FFT algorithm and can be
very efficient when the ring dimension is equal to n = 2i

and when each polynomial coefficient is taken modulo qi,
where q = 1 (mod 2n). Both these conditions are met in SE,
and the negacyclic convolution on the inputs is performed
using a special transform whose twiddle factors are powers
of a primitive 2n − th root of unity, called the ‘‘negacyclic
NTT’’ [15]. Twiddle factors in SE are evaluated as powers of
a primitive 2n − th root of unity and ordered in bit-reversed

form in RAM or FLASH with regard to the NTT chosen
configuration, while such primitives are pre-calculated fol-
lowing (5).

1 ≡ ω2n−1 (mod q) (5)

SE gives 4 different options to compute the NTT and roots
generation:

• on-the-fly: roots are computed only when requested by
the NTT algorithm, once at a time;

• one-shot: all roots are computed before encryption
begins and stored in RAM;

• load: roots are evaluated by the adapter, stored in
FLASH and loaded in RAM during encryption;

• load fast: a high performance version of the NTT. Every
root is computed by the adapter and coupled with an
auxiliary integer in order to perform a fast integer mod-
ular multiplication. Both elements are stored in FLASH,
therefore this configuration requires double memory
space than the load version.

The NTT computation is divided into a number of log2(n)
stages depending on the input length n. Each element in the
input vector is divided into a number of groups and pairs that
increase and decrease in every stage. An example is shown in
Fig. 3, for a polynomial degree set to 8 which corresponds
to 3 stages; the first stage starts with a single group and
4 pairs, the second stage continues with 2 groups and 2 pairs
per group and finally, the third stage ends with 4 groups and
1 pair per group. Each stage of the NTT requires a number of
twiddle factors equal to the number of groups composing such
a stage; for instance, a stage with four groups requires four
roots of unity to be computed. Despite bringing performance
optimization, NTT is the encryption bottleneck due to the
high amount of operations required.

FIGURE 3. NTT execution for a hypothetical polynomial degree set to 8,
counting 3 stages. To different groups are associated different roots, for a
total of 7 roots of unity.

E. BARRETT REDUCTION
SE uses the barret reduction algorithm for the modular reduc-
tion after multiplications. This operation requires a modulus
q < 230 and a constant parameter (the library refers to as
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FIGURE 4. Hardware-Software partitioning of the symmetric encryption
algorithm for the SE.

constant ratio), which is evaluated as shown in (6).

cr =

⌊
264

q

⌋
(6)

The reduced result of a multiplication is calculated as
shown in (7).

(x · y)q = x · y−

⌊x · y · cr
264

⌋
· q (7)

III. HARDWARE ACCELERATOR FOR SEAL-EMBEDDED
SYMMETRIC ENCRYPTION
The proposed hardware accelerator aims to execute the sym-
metric encryption function reported in (4), with the message
encoding deferred to the software. The hardware-software
partitioning can be seen in Fig. 4.

Referring to (4) and Fig. 4, the hardware acquires the
vectors a, s,m + e from the software and proceeds with the
encryption, evaluating NTT(s), NTT(m+e) and performing
all the polynomial operations to obtain the ciphertext. The
architecture of the proposed hardware accelerator, that can
be seen in Fig. 5, features the following main blocks:

• Two dual port RAMs (DPRAM1 and DPRAM2 in Fig. 5):
they are used to store the polynomial coefficients up to
the maximum supported polynomial degree (i.e. n =

16384) for SE. The size of these memories range from
8KB to 128KB depending on the maximum polyno-
mial degree the hardware accelerator is able to support
(from 1024 to 16384), which can be configured at syn-
thesis time.

• A dual port RAM (shared DPRAM in Fig. 5): it is used
as shared memory between the hardware accelerator and
the main processor or DMA. Its size ranges from 4KB
to 64KB (can be configured at synthesis time depending
on the supported polynomial degree).

• An Arithmetic Logic Unit (ALU Butterfly in
Fig. 5): it performs the butterfly operations stage by
stage and the polynomial operations needed to obtain the
ciphertext.

• The Roots Generator module (Roots Generator in
Fig. 5): it computes and stores the roots of unity for each
co-prime, according to what expressed in Section II-C.

• A finite state machine (ALU NTT Fsm in Fig. 5) that
manages the RLWE algorithm and thememory accesses.

To be noted that the proposed hardware accelerator can be
configured (at synthesis time) to support all the supported
parameters of the SE library.

A. ALU BUTTERFLY MODULE
The ALU butterfly, depicted in Fig. 6, performs both
Harvey Butterfly and polynomial operations.Within the ALU
a Barrett Reduction block is instantiated, which is
designed to perform both multiplication and modular reduc-
tion as explained in Section II-E. Due to the complexity of
the combinational logic, the ALU includes four stages of
pipeline. The ALU has a dual function:

• During the NTT phase, it takes as inputs the polynomial
coefficients of the vectors s and m + e stored into the
dual port RAMs, plus the roots of unity from the Roots
RAM. The ALU then performs modular multiplications,
sums, and subtractions following the Harvey Butterfly
algorithm sending the outputs to the corresponding dual
port RAM. This procedure will be better explained in
Section III-C.

• During the Encryption phase the ALU computes the
RLWE algorithm. Inputs are now NTT (s), NTT (m + e)
and a. The encryption result, which is a n-length vector,
is taken from the (U−V ·R)q output and stored inside the
shared DPRAM, which is accessible by the processor.

B. ROOT GENERATOR MODULE
As reported in Table 1, the SE requires a number of co-primes
that depends on the selected polynomial degree, and for each
modulus corresponds a different set of roots of unity for the
NTT. For instance, in case the polynomial degree is 16384,
64KB of memory is required for each co-prime (to store the
roots of unity), which means 832 KB of data to be stored
to save the complete set of roots of unity for 13 co-primes.
To overcome this issue a dedicated module for the on-the-
fly generation of roots of unity has been implemented: at
the beginning of the NTT computation, the Root Generator
module starts the generation of the roots of unity and stores
the complete set of roots (for the corresponding co-prime)
inside the Roots RAM. After that, the NTT computation
can take place. This module needs three parameters to work
properly: modulus q, constant ratio cr , and the polynomial
degree n. Each evaluated root is stored in the Roots RAM in
a bitreversemanner from address 1 to address n−1. The bitre-
verse operation is evaluated on log2(n) bits, which means that
bitreverse(1)n=1024 = 512 but bitreverse(1)n=4096 = 2048.
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FIGURE 5. Architecture of the hardware accelerator for RLWE symmetric encryption for SE.

FIGURE 6. Architecture of the ALU butterfly.

FIGURE 7. Roots generator module.

The first root stored in RAM at the address of n/2 is exactly
the primitive root of unity already loaded as a parameter
inside the hardware accelerator; the subsequent roots are
evaluated exponentiating this first value n− 1 times by itself,
reducing the result modulo q every time. Referring to Fig. 7,

all these arithmetic operations are computed by the Barrett
Reduction module. Except for the first root ω1, each root is
ready to be stored after three clock cycles, because of the
pipeline. A full set of roots is then accessible after almost 3n
clock cycles since the start of the computation. For instance,
let us consider a polynomial degree n = 4096, one of the
moduli given by the SE, such as q = 1053818881, and the
primitive root of unity associated, computed externally from
our design and also given by the SE, in this very case equal
to ω = 503422.

The primitive roots of unity coincides with the first usable
root for the NTT and it is stored in RAM without any evalu-
ation at the address of 2048. The second root is evaluated as
the multiplication of the primitive for itself reduced by q and
stored after 3 clock cycles at the address of 1024, and so are
the remaining roots.

|ω2
|q = 517178644 stored at address 1024

|ω3
|q = 506942146 stored at address 3072

...

|ω4095
|q = 1053315459 stored at address 4095

C. MEMORY ORGANIZATION, OPERATIONS SCHEDULING,
AND DATAFLOW
The polynomials a, s, and (m + e) need to be stored inside
the hardware accelerator memory to execute the RLWE
encryption function, according to (4). Depending on the
performance of the source that will write/read data to/from
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FIGURE 8. Timeline of the RLWE encryption function per co-prime.

FIGURE 9. Dataflow and memory organization.

the accelerator (i.e., CPU or DMA), the data exchange can
bring a significant overhead in the whole encryption function.
For this reason, the shared DPRAM has been included in
the architecture; this allows to parallelize the data transfer
from the CPU to the accelerator and the NTT operation as
reported in Fig. 8. At the beginning, a configuration stage of
the hardware accelerator is needed to indicate the modulus,
the polynomial degree, and the primitive root of unity. When
configured, the accelerator starts the generation of the roots
of unity according to the configuration parameters; simulta-
neously, the polynomial s can be written inside the shared
DPRAM by the CPU or DMA. As soon as s is completely
written (and the generation of the roots of unity is ended),
the hardware accelerator executes the first stage of NTT of
s. After the first NTT stage is ended, the shared DPRAM
is no longer requested for the execution of the NTT(s); in
this way, it can be used to store the next polynomial m + e,
parallelizing the execution of the NTT and the data store. The
same process is repeated also for the last polynomial a. The
computation of the complete encryption function is divided
into four types of processes with different dataflow among
the memories, as reported in Fig. 9:

1) During the first stage of the NTT, data are read from the
shared DPRAM. After the ALU Butterfly elab-
oration, the results are written into the DPRAM1. When
this first stage is over, the current NTT will no longer
include any other operations on the shared DPRAM.
After the first stage, odd stages and even stages are
repeated until all log2(n) stages are over.

2) During the odd stages of the NTT, data are read from
the DPRAM1 and written into the DPRAM2 after the
elaboration.

3) During the even stages of the NTT, data are read from
the DPRAM2 and written into the DPRAM1.

TABLE 2. Arrival memory of the NTT (s) and NTT (m + e).

4) During the Final Encryption, data are read from the
DPRAM1 or DPRAM2 and shared DPRAM, processed
by the ALU Butterfly and sent to the shared
DPRAM, ready to be read from the CPU/DMA. During
the last NTT stage, data will be stored inside a different
DPRAMdepending on the polynomial degree currently
in use, as shown in Table 2.

An example can be done for a polynomial degree of 4096.
In this case, the arrival memory for NTT (s) and NTT (m+ e)
is the DPRAM2, respectively in address [0 : n − 1] and
[n : 2n − 1]. The random vector a is stored in the shared
DPRAM. After theFinal Encryption operation, which involves
the computation of (−a)·NTT (s)+NTT (m+e), the cyphertext
is stored in the shared DPRAM. Thanks to the pipeline, the
Final Encryption is executed in n clock cycles on average;
actually, data need 4 clock cycles to elaborated by the ALU
Butterfly and 2 clock cycles to be correctly stored in the
arrival memory after being loaded from the corresponding
memory, so 6 clock cycles are needed to fill the pipeline.
A complete NTT requires then log2(n)·n/2+6 ≈ log2(n)·n/2
clock cycles to be completed, whileFinal Encryption requires
n+6 ≈ n clock cycles.We alsomust consider the roots gener-
ation latency of Lrg = 3 clock cycles (per single root of unity),
and the I/O latency LI/O (per single polynomial coefficient to
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be written/read in/from the shared DPRAM) that cannot be
exactly predicted before the implementation of the system.
This latency depends on the AXI4 CPU/DMA interface and
on the interconnect logic. For this reason, we need to consider
three different scenarios for the evaluation of the per-prime
encryption latency (in clock cycles):

1) In case the latency of writing/reading a polynomial
in/from the accelerator (nLI/O) is greater than both
the latency of the NTT computation and the latency
of the roots generation, the per-prime encryption
latency is:

Encc.c. ≈ 2 · (n/2)︸ ︷︷ ︸
FirststageNTT

+ 4nLI/O︸ ︷︷ ︸
I/O

+ n︸︷︷︸
Enc.

≈ n ·
(
2 + 4LI/O

)
(8)

2) In case the latency of writing/reading a polyno-
mial in/from the accelerator (nLI/O) is greater than
the latency of the root generation but lower than
the NTT computation, the per-prime encryption
latency is:

Encc.c. ≈ 2 · (log2(n) · n/2)︸ ︷︷ ︸
NTT

+ n︸︷︷︸
Enc.

+ 2nLI/O︸ ︷︷ ︸
I/O

≈ n ·
(
log2(n) + 1 + 2LI/O

)
(9)

3) In case the latency of writing/reading a polyno-
mial in/from the accelerator (nLI/O) is lower than
both the latency of the NTT computation and the
latency of the root generation, the per-prime encryption
latency is:

Encc.c. ≈ 2 · (log2(n) · n/2)︸ ︷︷ ︸
NTT

+ n︸︷︷︸
Enc.

+ nLI/O︸ ︷︷ ︸
I/O

+ nLrg︸︷︷︸
rootgen

≈ n ·
(
log2(n) + 1 + LI/O + Lrg

)
(10)

The term FirststageNTT in (8) indicates the number of
clock cycles required for the first stage of the NTT only;
in (8), (9), and (10) the term Enc. refers to the computation
of the Final Encryption. In addition, we considered the I/O
latency symmetric (latency of write operations from the RAM
memory to the accelerator equal to the latency of the read
operations from the accelerator to the RAMmemory), and we
neglected the 6 clock cycles given by the ALU Butterfly
pipeline and the clock cycles needed for the initial config-
uration of the accelerator. We remark that (8), (9), and (10)
consider only the amount of clock cycles per prime encryp-
tion; for full encryption, the hardware accelerator must repeat
the per-prime encryption for each co-prime, as reported in
Table 1.

IV. FPGA IMPLEMENTATION RESULTS AND
COMPARISON WITH THE STATE OF THE ART
The proposed hardware accelerator has been tested in a
simulation environment that encompasses an AXI4 Master
emulator for the generation of the AXI4 stimuli and trans-
actions. The whole design (reported in Fig. 5) has been

TABLE 3. Synthesis results on the target FPGA for different polynomial
degrees.

synthesized on the Zynq-Ultrascale+ MPSoC included in
the Xilinx ZCU106 FPGA board, and Table 3 reports the
synthesis results.

A. DEMOBOARD AND BENCHMARK CAMPAIGN
To test the functionality of the proposed hardware accelerator
on FPGA and to measure the performance improvements
on the SE thanks to the hardware acceleration a demoboard
has been implemented, which encompasses the following
components:

• The 32-bit RISC-VRI5CY [19] (also namedCV32E40P)
processor, which is a 32-bit 4-stage in-order processor.

• 1GB of DDR4 memory.
• A Central Direct Memory Access (CDMA) by Xilinx.
• An AXI4 interconnect and standard peripherals (JTAG
and UART). JTAG peripheral is used to program the
memory at the start-up of the system and the UART
allows to communicate with the host PC.

Fig. 10 reports the architecture of the RISC-V-based sys-
tem that includes the proposed hardware accelerator for
SE. The entire system runs at @100MHz while the hard-
ware accelerator runs at @150MHz (its maximum frequency
is 180 MHz, as reported in Table 3) and is configured to
support all the parameters of the SE library. Table 4 reports
the performance results of the symmetric encryption function
(per-prime) of the SE library on the proposed system, includ-
ing the SW-only results (execution of the SE on the RI5CY
processor) and SW plus the hardware acceleration with and
without the support of the Xilinx DMA. The performance
gain of the hardware accelerated version (without the DMA
support) with respect to the SW-only solution ranges from
21.5x (Poly Degree equal to 1024) to 28.2x (Poly Degree
equal to 16384). The speed gain of the hardware accelerated
version with the DMA support for data exchange with respect
to the SW-only version ranges from 1202.5x (Poly Degree
equal to 1024) to 1306.4x (Poly Degree equal to 16384).
Similar results have been obtained for the full encryption
function, as reported in Table 5.

B. COMPARISON WITH THE STATE OF THE ART
A direct comparison with the State-of-the-Art is not sim-
ple since few works in the literature have concentrated on
speeding up edge-side operations for HE. The work in [24]
utilizes an FPGA-based accelerator for the BGV HE scheme.
However, their BGV accelerator only supports small scheme
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FIGURE 10. Simplified block Design of the proposed RISC-V-based system on Xilinx Vivado 2020.2. Reset synchonizers, clock generator and
push buttons are not included for readability reasons.

TABLE 4. Benchmark of the SE (per-prime) symmetric encryption function
on the RISC-V-based system. The ‘‘SW only’’ column refers to the
execution time on the RI5CY processor, the ‘‘HW acc.’’ and ‘‘HW acc. +

DMA’’ columns refer to the execution time using the proposed hardware
accelerator without and with Xilinx DMA support, respectively.

TABLE 5. Benchmark of the SE (full encryption) symmetric encryption
function on the RISC-V-based system. The ‘‘SW only’’ column refers to the
execution time on the RI5CY processor, the ‘‘HW acc.’’ and ‘‘HW acc. +

DMA’’ columns refer to the execution time using the proposed hardware
accelerator without and with Xilinx DMA support, respectively.

parameters (N= 128, modulus of 27-bit) that are not practical
for HE computation. Although the authors claim that their
accelerator can be extended to larger polynomial degrees to
support higher security levels, support for larger parameters
is not yet available. The authors of [25] present a RISC-
V-based SoC (named RISE) to accelerate the asymmetric
encryption of the SEAL Embedded library. The work in [25]
which is very recent, shares some design choices with our
work, but the authors did not report any implementation
results on FPGA technology and hence a direct comparison
is not possible. To the best of our knowledge, no other works
targeting the acceleration of HE for constrained devices can
be found in the literature; for this reason, we evaluated generic
hardware accelerators for RLWE, and to make a fair compar-
ison we compared the performance related to the execution

of the NTT. The work in [20] presents a reconfigurable NTT
architecture (named MCNA) for polynomial multiplication
which employs different processing elements. The reported
results consider a fixed number of processing elements (eight)
and polynomial degrees equal to 1024 and 4096. As reported
in Table 6, the latency of this architecture is very low but
the resource consumption is higher than our work (about
420% more LUTs and 580% more FFs for a polynomial
degree of 4096). For this reason, the architecture in [20]
seems mainly oriented to the cloud side rather than the
edge side. The authors in [21] propose a custom coproces-
sor for the Fan-Vercauteren (FV) HE scheme, which can
accelerate homomorphic computations in cloud installations.
They followed a hardware-software codesign approach and
implemented their architecture in a Xilinx ZCU102 FPGA
Board. The results reported in Table 6 refer to the NTT
applied to 180-bit coefficients (they employ RNS to trans-
form each 180-bit coefficient into six 32-bit coefficients).
So, to make a fair comparison, the execution time for the
NTT of the work in [21] must be divided by 6. The exe-
cution time they achieved is better than our work (11x in
speed) but the resource consumption is enormous (about
1912% more LUTs and 1731% more FFs for a polynomial
degree of 4096). It should be noted that the work in [21]
presents a hardware accelerator not only for NTT but also
for the computation of expensive operations of the (FV) HE
scheme. For this reason, the resource consumption is so high.
The work in [22] describes the implementation on FPGA
of a hardware accelerator for encryption/decryption of the
Brakerski/Fan-Vercauteren (BFV) homomorphic encryption
scheme with high-performance polynomial multipliers. The
architecture is targeted for cloud applications. They com-
pute the NTT in 1.7 µs only (for the polynomial degree
of 4096 and coefficients of 32-bit), but also in this case
the resource consumption is very high with respect to our
solution. The work in [23] provides an exhaustive study of
design methods for implementing NTT. The authors propose
software, High-Level Synthesis (HLS), and manual hardware

72506 VOLUME 11, 2023



S. D. Matteo et al.: VLSI Design and FPGA Implementation of an NTT Hardware Accelerator

TABLE 6. Performance comparison of NTT.

implementations of NTT. A direct comparison can be made
with the NTT hardware implementation with 29-bit coef-
ficients and a polynomial degree of 1024. They report a
fairly modest resource consumption (966 LUTs, 7 DSPs, and
21.5 BRAMs), but they do not report the maximum synthesis
frequency.

V. CONCLUSION
This work presented the implementation of a hardware
accelerator for the symmetric encryption function of the
SEAL-Embedded library. The proposed design can be config-
ured to support polynomial degrees from 1024 to 16384 and
presents a memory architecture able to reduce the I/O latency
and a dedicated module for the generation of roots of
unity. The proposed hardware provides an x1000 encryption
speed-up compared to the sole software performance on a
RISC-V (RI5CY) processor, also the possibility to generate
at run-time the roots of unity during the encryption can save
up to 832 KB of FLASH memory.
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