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ABSTRACT Cross-domain few-shot classification (CD-FSC) aims to develop few-shot classificationmodels
trained on seen domains but tested on unseen domains. However, the cross-domain setup poses a challenge
in the form of domain shift between the training and testing domains. Previous research has demonstrated
that the encoder can disentangle features into domain-shared and domain-specific features. However, poorly
estimated domain-specific features can lead to inadequate generalization on the unseen domain. This paper
proposes a disentanglement-and-calibration module (DAC) to address this issue. The disentanglement
component separates the features into domain-shared and domain-specific features, while the calibration
component corrects the domain-specific features. We demonstrate that the DAC module can significantly
enhance the generalization capability of several baseline methods. Furthermore, we show that MatchingNet
with the DAC module outperforms existing state-of-the-art methods by 10%-11% when trained on mini-
ImageNet, CUB-200, Cars196, Places365 and tested on Plantae dataset.

INDEX TERMS Cross-domain few-shot classification, disentanglement, domain shift, representation
learning.

I. INTRODUCTION
Few-shot classification (FSC) aims at classifying novel
classes with the support of limited labeled examples. Many
effective algorithms have been proposed to solve the FSC
problem, such as MatchingNet [1], ProtoNet [2], GNNNet
[3], TabLLm [4] and CAD [5]. However, in reality, the
assumption that both the source domain and target domain
are sampled from the same dataset [6] is often not applicable,
as there is usually a domain gap between the two datasets.
The presence of a domain gap has inspired research into
cross-domain few-shot classification (CD-FSC) [6], [7], [8],
[9], [10], [11]. CD-FSC involves training a model to extract
recognizable features from one or more domains and testing
it on an unseen domain. Domain generalization is a task
similar to CD-FSC but without the limitation of data quantity.
The differences between these tasks are vividly illustrated in
Figure 1.
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In recent years, there has been an increasing amount of
research focused on CD-FSC. One approach that has gar-
nered attention within the research community is LFT [7],
which involves inserting linear transformation layers into the
encoder. This method aligns features from different domains
by mapping them into the same space and simulating the
domain shift. However, it is unclear if it is necessary to
transfer all features to bridge the domain gap. In other words,
for cross-domain problems, it may be more appropriate to
transfer only domain-specific features.
Previous methods [8], [9], [10] have demonstrated that

features can be disentangled into domain-specific features,
which are unique to each domain, and domain-shared
features, which are independent of the domain. Domain-
shared features exhibit common characteristics, regardless of
whether the inputs are from a seen or unseen domain, while
domain-specific features represent the private components
of each domain. Both domain-shared features and domain-
specific features contain discriminative information that can
benefit image classification.
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FIGURE 1. Comparison of few-shot learning, heterogeneous domain
generalization, and cross-domain few-shot learning.

Typically, a model can accurately extract its domain-shared
component, even when an image from an unseen domain not
present during the training stage is sampled. However, the
model may fail to estimate the domain-specific component
of the image; Poor estimation of domain-specific components
can result in the poor estimation of discriminative information
and failure of generalization. Meta-FDMixUp [9] eliminates
domain-specific parts to mitigate the negative impact of poor
estimation.

In this paper, we utilize the learning-to-learn abil-
ity of meta-learning to simulate the seen-to-unseen shift
through a disentanglement-and-calibration process. Specifi-
cally, in each meta task, we disentangle the features from two
domains into domain-shared and domain-specific features
and then calibrate the domain-specific features of one domain
to better adapt to the domain shift. The key to our method
lies in the design of a module to solve the CD-FSC problem,
which we call Disentanglement-And-Calibration (DAC).

When designing the disentanglement module, we propose
three fundamental principles. Firstly, the distributions of
domain-shared features should be consistent across differ-
ent domains. Secondly, the distributions of domain-specific
features should vary significantly across different domains.
Lastly, the distributions of domain-shared and domain-
specific features should also exhibit diversity. In the case of
cross-domain disentanglement, the DADA framework [10]
introduces mutual information to quantitatively evaluate the
differences between distributions, which necessitates an addi-
tional mutual information estimation module. To simplify the
problem, we design a disentanglement module that enforces
a Gaussian distribution for the output, which facilitates the
computation of the discrepancy between different feature
groups. In terms of the calibration module, we implicitly

model the bias between predicted and actual domain-specific
features. Based on this model, we find that the Residual Block
is highly suitable for mitigating the bias.

Experimental results have conclusively demonstrated the
criticality of the position of the DAC module in the encoder.
A shallow insertion of the DAC module may impede the
disentanglement module from identifying shared informa-
tion across diverse domains, as complex texture information
may be difficult to discern. Conversely, only domain-specific
semantic information may remain if the DAC module is
placed too deep. Therefore, numerous experiments have been
conducted to determine the optimal position for the DAC
module.

Our contributions can be summarized into three key
aspects:

1) We introduce the DAC module to validate our hypothe-
sis. The disentanglement component partitions features
into Gaussian-distributed domain-shared and domain-
specific features, and the calibration component rectifies
the discrepancy between predicted and real domain-
specific features.

2) Through extensive experiments and comparison among
all possible positions, we identify the optimal location
for inserting the DAC module.

3) We perform numerous experiments to demonstrate the
efficacy of our approach. In most scenarios, our method
surpasses previous state-of-the-art methods by a signif-
icant margin.

II. RELATED WORK
A. FEW-SHOT CLASSIFICATION
Few-shot classification aims to train a classifier that can
recognize new categories with a limited number of labeled
examples during the training stage. This is demonstrated in
Figure 1(a). Numerous noteworthy achievements have been
proposed in the field of few-shot classification, with many of
them utilizing meta-learning approaches. These approaches
can be broadly categorized into three processing views. The
first processing view is based on ‘‘learning to fine-tune’’ [12],
[13], [14], [15], [16]. This approach involves learning the
optimal ways to fine-tune a classifier so that it can effectively
generalize to novel classes with minimal cost. Another per-
spective is ‘‘learning to compare,’’ which not only requires the
model to identify similarities and differences between images
but also to find the metric distance. This enables the FSC
model to better adapt to new, unseen input images. Geometric
ideas such as cosine similarity and Euclidean distance are
utilized in [1] and [17], respectively. In [18], CNNmodels are
introduced, and in [3], graph neural networks are adopted to
distinguish between images. The third perspective is ‘‘learn-
ing to augment,’’ which involves hallucinating unseen new
classes to enhance the generalization ability of models with
limited samples [19], [20].

However, according to Chen et al. [6], these methods may
experience performance degradation when the distribution of
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extracted image features differs greatly in different domains
of the task. To address this challenge, Tseng et al. [7] pro-
posed cross-domain few-shot learning, and BSCD-FSL [21]
established a new benchmark.

Existing methods based on meta-learning aim to fill the
domain shift by transferring features or using ensemble
learning. Some methods address the CD-FSC problem by
adjusting feature distributions, such as in [7], [9] and [22].
Multiple encoders are integrated to recognize novel classes
in [11] and [23].

Some methods, such as [7], [24], and [25], use only source
data. STARTUP [26] relaxes the setting by allowing the
model to access many unlabeled target data during training,
whileMeta-FDMixup [9] resorts to a setting where only a few
labeled target images are available. ATA [27] proposes the
task augmentation method which can generate the inductive
bias-adaptive challenging tasks. AFA [28] simulates distribu-
tion variations by maximizing the domain discrepancy.

B. DOMAIN GENERALIZATION
Domain generalization (DG) method endeavors to achieve
better results on unseen domains without touching any
instances from unseen domains during the training stage [29].
Zhou et al. [30] give a comprehensive literature review about
vision DG. Unlike other related problems such as domain
adaptation, DG considers scenarios where the target data
are inaccessible during model learning. Depending on the
category to be recognized whether novel or not, DG can be
divided into homogeneous DG and heterogeneous DG. Most
of the CD-FSC methods comply with heterogeneous DG,
which is shown in Figure 1(b).

There have been significant breakthroughs in domain
generalization in recent years. The majority of existing
DG approaches attempt to learn domain-invariant features
across source domains [31], [32], [33], [34], [35], [36]. The
motivation behind this is straightforward: domain-invariant
features are expected to be robust to any unseen domain
shift. Disentanglement-based methods [29], [31], [33] decou-
ple features and apply domain-invariant features to different
downstream tasks. Niu et al. [37] attempt to improve clas-
sifiers from known domains. Adversarial learning has been
introduced in [38] and [39] for data augmentation. Recent
breakthroughs in meta-learning have inspired researchers to
utilize the learning-to-learn strategy to significantly enhance
model generalization. Li et al. [40] were the first to apply
meta-learning to DG. The majority of existing meta-learning-
based DG methods [41], [42], [43], [44], [45], [46] follow
their learning paradigm.

C. CROSS-DOMAIN DISENTANGLEMENT
Liu et al. [47] define a disentangled representation as a latent
feature that is sensitive to changes in one factor while being
unresponsive to other factors. They found that decoupling
work is highly beneficial for representation learning. Beta-
VAE [48] designs a classifier-based metric that compares

FIGURE 2. The inner structure of proposed DAC structure.

the disentangled features learned by different models. Thus,
independent hidden variable factors can be automatically
discovered, avoiding the need for prior knowledge.

Chen et al. [49] proposed InfoGAN, which uses the lower
bound of mutual information as the optimization objective.
The objective is to maximize the mutual information between
the hidden variables and a small set of observations, which
can be used to separate and identify specific features.

In [50], Hwang et al. leverage information-theoretic prin-
ciples to achieve a decoupled representation of cross-domain
images using Variational Autoencoder (VAE).

Decoupled representations have shown to outperform the
original features in cross-domain tasks, especially when the
number of available training samples is limited. Our approach
involves specialized decoupling analysis and tuning for each
unique domain. We utilize convolutional neural networks to
obtain the average value and variance value of the features
and ensure they follow a Gaussian distribution.

III. METHODOLOGY
A. PRELIMINARY
Firstly, we define Dseen

= {Dseen
1 ,Dseen

2 , . . . ,Dseen
N } as a

collection of N seen domains. Each domain is comprised of
a set of data-label pairs, denoted as Dseen

i = {Xi,Yi}, where
Xi and Yi represent the images and their corresponding labels,
respectively.

During the testing stage, the target domain is denoted as
Dunseen, which is mutually exclusive with any domain in
Dseen.Dunseen is utilized to evaluate the model’s classification
capability on novel classes.

B. DISENTANGLEMENT-AND-CALIBRATION MODULE
As mentioned in Section I, poor estimation of domain-
specific components can result in suboptimal discrimination
and limited generalization. To address this issue, we pro-
pose the Disentanglement-and-Calibration (DAC) module,
which decouples image features into domain-shared and
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FIGURE 3. In the training stage, we first pretrain the entire network model using mini-ImageNet as the source domain. In the subsequent
meta-training stage, we divide the available datasets into pseudo-seen and pseudo-unseen domains within each meta task. We then use
our training strategy to simulate the generalization process from seen to unseen domains.

domain-specific components and then calibrates the esti-
mated bias of the domain-specific components. Technolog-
ically, we utilize the reparameterization trick [51] as the
foundation for feature disentanglement. We use the notations
xsh and xsp to represent domain-shared and domain-specific
features, respectively. As illustrated in Figure 2, we employ
VAE-like modules to learn the average value µ and variation
value σ . We then use these to construct xsh and xsp as follows:

xsp = z · exp
(
σ sp

)
+ µsp

xsh = z · exp (σ sh) + µsh, (1)

where z represents the a random noise vector sampled from
a standard normal distribution. The subscripts sh and sp
represent domain-shared and domain-specific components,
respectively.

For disentanglement, we hope that the domain-shared fea-
tures of different domain images are close to each other
while the domain-specific features are pushed away from
each other. At the same time, the domain-shared and domain-
specific features of the same domain images should be

separated. Thus, the loss function Ldis for the disentangle-
ment task is:

Ldis = d(xish, x
j
sh) + max(η − d(xish, x

i
sp), 0)

+ max(η − d(xjsh, x
j
sp), 0)

+ max(η − d(xisp, x
j
sp), 0), (2)

where superscripts i and j (i ̸= j) are used to distinguish the
domain to which the features belong. d(xish, x

j
sh) measures the

discrepancy between xish and x
j
sh by:

d(xish, x
j
sh) =

√∥∥∥µi
sh − µ

j
sh

∥∥∥2
2
+

∥∥∥σ ish − σ
j
sh

∥∥∥2
2
. (3)

After passing through the disentanglement module, the
features in the encoder can be represented discretely as
either domain-shared features or domain-specific features.
As previously discussed, the inadequate learning of domain-
specific features is the cause of poor generalization, whereas
the domain-shared features can be seen as the common part
learned by each domain. Therefore, only the domain-specific
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features require calibration, which is precisely what our cali-
bration module is designed for.

There is always an error ε = E(xsp, x̂sp) between the
model’s estimated domain-specific features x̂sp and the actual
domain-specific features xsp. It is evident that explicitly mod-
eling this error ε is challenging because the features are
located in a high-dimensional latent space. Nevertheless, it is
fortuitous that such errors can be efficiently computed and
corrected using the residual module. The operation of this
module can be described as follows:

xsp = x̂sp + ε

= x̂sp + E(xsp, x̂sp)
= x̂sp + Ê(x̂sp), (4)

where Ê represents the estimated error between xsp and x̂sp.
This formula highlights the same operational principle as that
of the residual block, thus substantiating the rationality of the
residual module.

C. NETWORK TRAINING STRATEGY
Our training strategy consists of two stages: pre-training and
meta-training, which is illustrated in Figure 3. During the
pre-training stage, the network is trained on mini-ImageNet,
where the cross-entropy loss is minimized to update the net-
work’s basic classification recognition capability.

During the meta-training stage, we randomly select two
datasets as the pseudo-seen domain and pseudo-unseen
domain within each meta task. Initially, we train the vanilla
classification task on the pseudo-seen domain. The network
is updated by minimizing the cross-entropy loss Laux to
enhance its categorization ability on the pseudo-seen domain.
Laux is defined by:

Laux = −
1
B

B∑
i=1

C∑
j=1

yi,j log ŷi,j, (5)

L = Laux + Lcls + λLdis, (6)

where λ represents a hyperparameter that balances the rel-
ative importance of the classification and disentanglement
tasks in the overall loss function L.

IV. RESULTS
A. EXPERIMENTAL SETUP
1) DATASETS
To validate the effectiveness of the proposed method,
we employ five widely used datasets in the CD-FSC
research community, namely mini-ImageNet [13], CUB-
200 [52], Cars196 [53], Places365 [54], and Plantae [55].
These datasets are sampled from the real world, exhibit-
ing significant domain gaps among them. Mini-ImageNet
dataset comprises non-overlapping categories split into three
parts: train/val/test. We utilize these parts as base/val/novel
datasets, respectively, to train/validate/test few-shot classifi-
cation models. Regarding the CUB-200 dataset, we randomly
select categories with a ratio of 2 : 1 : 1 as base/val/novel

datasets. The same operation is carried out on the remaining
datasets.

2) BASELINES AND COMPETITORS
We compare our proposed DAC method with four baseline
few-shot classification methods, namely MatchingNet [1],
ProtoNet [2], RelationNet [18], and GNNNet [3]. Since our
feature-wise transformation method aims to extract more
generalizable features using a single feature extractor, we do
not consider comparing ensemble learning methods that use
multiple encoders. Additionally, we choose two feature-wise
transformation methods, LFT [7], LRP [25], ATA [27] and
AFA [28] as competitors. We quote the performance reported
in these original papers to ensure the authority of the results.
We also conduct experiments that the competitors ignored.
For a fair comparison, we use their released code and default
parameters in these additional experiments.

3) IMPLEMENTATION DETAILS
We employ ResNet-10 as the feature extractor, which is
commonly used in CD-FSC methods for baselines and
competitors. In the pre-training stage, we train the feature
extractor, disentanglement module, and calibration module
on mini-ImageNet with a 64-category classification task. The
whole model is trained for 400 epochs with a batch size
of 16. We utilize a leave-one-out setting where we select
one unseen domain from CUB-200, Cars196, Places365, and
Plantae as the test dataset. The remaining domains and the
mini-ImageNet domain are used as seen domains for training.
In the meta-training stage, we randomly select two avail-
able datasets as primary and auxiliary domains within each
epoch. We use Adam optimizer with an initial learning rate
of 0.001 and train each stage for 400 epochs. The weight of
disentanglement loss Ldis is set to 0.001. Finally, we report
the average classification accuracy of 1,000 episodes in the
test stage. All of these basic settings are the same as those
used in the baselines and competitors.

4) TESTING STAGE
During the testing stage of our experiment, we perform meta
tasks, wherewe randomly selectC categories from the unseen
domain Dunseen, and sample K images from each category to
build the support set. Our experiment includes two settings:
5-way 1-shot and 5-way 5-shot. To test the classification
accuracy, we choose 16 images from each selected category
and feed them into the FSC models, which are equipped with
our DAC module. We repeat this process for 1,000 episodes
and report the average classification accuracy as the final
result.

B. RESULTS OF GENERALIZATION FROM MULTI-SOURCE
DOMAINS
The term ‘‘multi-source domains’’ refers to the ability of a
model to access multiple datasets during the training stage.
In our experiment, we pre-trained our model on the mini-
ImageNet dataset and selected one unseen domain from the
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TABLE 1. The results of few-shot classification obtained by training with different plug-and-play modules on different datasets. The symbol ‘‘w/’’
indicates that the baseline is inserted by the following method. The best results are highlighted in bold. The symbol ∗ denotes that no related paper has
conducted this group of experiments, so we re-implemented it with their released code.

TABLE 2. Results of our pilot study on where to insert the DAC module. The best results are highlighted in bold. With the exception of ProtoNet + L2 +
5-way 5-shot, all the results suggest that inserting the DAC module after the L3 layer is the optimal choice.

CUB-200, Cars196, Places365, and Plantae datasets. The
remaining three datasets and mini-ImageNet were used as
seen domains for the meta-training stage. In addition to pure
baseline methods, we combined LFT and LRP into each
baseline method to demonstrate their performance boost.
We conducted experiments in 5-way 1-shot and 5-way 5-shot
settings, and calculated the average classification accuracy of

1,000 episodes in the test stage as the performance metric.
The quantitative results of our experiments are presented in
Table 1.

In this table, there are 32 controlled experiments, and our
model outperformed the other models in 26 of them. In most
groups, our model is the winner, and it surpasses the second-
best results by at least 1− 2%. In some specific groups, such
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TABLE 3. We take MatchingNet and GNNNet as baseline methods to demonstrate the importance of the feature disentanglement loss Ldis. In this table,
‘‘Baseline’’ refers to the original few-shot classification method. ‘‘Ours (w/o Ldis)’’ indicates the proposed DAC module is inserted but trained without the
disentanglement loss term Ldis. The results conclude that training the model with Ldis can always help the generalization ability in the unseen domain.

as MatchingNet + Plantae + 5-way 1-shot and MatchingNet
+ Plantae + 5-way 5-shot, our model leads by a remarkable
10% and 11.37%, respectively.

C. ABLATION STUDY
Firstly, we validate the importance of our proposed feature
disentanglement loss, denoted as Ldis. To accomplish this,
we select MatchingNet and GNNNet as our baseline meth-
ods and present the results of corresponding experiments
in Table 3, where the models are trained on the CUB-200
dataset (1-shot task). It is noteworthy that the performance
consistently declines when we exclude Ldis from our model.

Secondly, we argue that the placement of the DAC module
has a significant impact on the performance of the model.
If it’s inserted too shallow, it may not effectively identify com-
mon information from complex texture information across
different domains. Conversely, if it’s inserted too deep, only
semantic information specific to individual domains may
be preserved. To balance the amount of texture information
and semantic features, we conducted experiments to find the
optimal position for inserting the DAC module.

Since the first two convolutional layers in ResNet-10
are used to transfer the channel numbers of input images,
we tested the performance of the DAC module after the
4th, 6th, 8th, and 10th layers, denoted as L1, L2, L3, and
L4, respectively, in both 5-way 1-shot and 5-way 5-shot
experiments. We placed the DAC module in MatchingNet,
ProtoNet, RelationNet, andGNNNetmodels in each position.

Our results, shown in Table 2, indicate that inserting the
DACmodule after the L3 layer is the optimal position, except
for the ProtoNet model with 5-way 5-shot setting, where the
optimal position is L2.

V. CONCLUSION
This paper argues that poorly estimated domain-specific fea-
tures can lead to inadequate generalization on the unseen
domain. We propose a disentanglement-and-calibration mod-
ule (DAC) to address this issue. By exploring optimal

placement, we insert the DAC module into four classical
few-shot classification models and train them using our pro-
posed strategy. We find that methods based on calibrating
only domain-specific components can help the network learn
more generalized and discriminative information, enabling
the network to exhibit certain robustness when confronted
with unseen datasets during training. Our extensive experi-
ments demonstrate that our approach consistently improves
performance to a significant degree. In the future, we will
apply our method to Simulation-to-Reality task to overcome
the problem of domain gap between the simulator and the real
world.
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