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ABSTRACT Subdomainmodels have been widely used to quicklymodel the fields and the torque of surface-
mounted permanent-magnet machines (SMPMMs). Nevertheless, when magnetic saturation occurs, those
models which assume the permeability of the iron parts to be infinite tend to be inaccurate. More recently,
two types of models have been developed that take the finite magnetic permeability of the machines into
account, but a comparison of those models is still lacking. This article compares two finite-permeability
subdomain models of SMPMMs. In the stator teeth and slots of the first model, boundary conditions are
used in both radial and tangential directions. In the second model, the permeability change as a function of
the angle in the stator slot and teeth is modeled using the Fourier series and the Cauchy product to solve
Maxwell’s equations. In this study, the calculation of two different SMPMMs shows that both models can
handle machines with low and high numbers of teeth. This study shows that the error of the first model
has a low sensitivity to iron permeability and parameter changes, while the accuracy of the second model
heavily depends on the iron permeability and parameters. For a higher iron permeability, the second model is
less accurate. Both models can achieve high prediction accuracy at a faster calculation speed than the finite
element model. The first model needs only a few harmonics to have high accuracy.

INDEX TERMS Surface-mounted permanent-magnet machine, finite-permeability subdomain models, flux
density, torque calculation, computation requirement.

I. INTRODUCTION
Surface-mounted permanent-magnet (PM) machines
(SMPMMs) are widely used in many industrial applications
for their simplicity of structure, high efficiency, power den-
sity, and torque density. To better design these machines for a
specific application, using an accurate and computationally
cheap mathematical motor model in the preoptimization
process is often an efficient approach [1].

The finite element model (FEM) is a helpful tool for
designing electrical machines because it can account for satu-
ration and complex structures [2]. However, the disadvantage
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of the FEM is its relatively long computation time com-
pared to the analytical models. This long computation time
is a problem when many parameters need to be optimized.
Maxwell-Fourier methods are very accurate analytical mod-
els. They have a good agreement with FEM, but most of
these methods assume that the iron parts are infinitely per-
meable [3], [4], [5], [6], [7], [8]. Hence, they neglect the
magnetic saturation effect and overestimate the magnetic flux
and the electromagnetic torque.

Only a few articles on Maxwell-Fourier methods include
the finite relative permeability of iron parts. The first intro-
duction of iron parts in the magnetic field calculation
by Maxwell-Fourier method is given in [9], which solves
the partial differential equations (PDE) of the magnetic

73470 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8521-4184
https://orcid.org/0000-0002-3965-5616
https://orcid.org/0000-0002-5554-8386


C. Sun et al.: Comparison of Two FPSMs for SMPMMs

vector potential in Cartesian coordinates. In [10], the
same method is extended to the polar coordinate system.
Roubache and Boughrara obtained the general solutions of
Maxwell’s equations by applying the principle of superpo-
sition and the interface conditions (ICs) in both θ -edge and
r-edge directions [11]. In [12] and [13], this approach has
been implemented to calculate the performance of spoke-
type permanent-magnet machines. This approach is also
applied in switched reluctance machines [14] and induction
machines [15] to consider the finite permeability of iron parts.

Some other articles use the convolution theorem to con-
sider the iron parts based on the Maxwell-Fourier methods.
This approach was first proposed in [16]. The electrical
machine is divided into an arbitrary number of homoge-
neous or non-homogeneous layers where the permeability
in the stator or rotor slotting is represented as a Fourier
series along the direction of permeability variation [17]. This
approach has been applied with the non-linear soft magnetic
material in switched reluctance machines [18], axial flux
permanent-magnet machines [19], and synchronous reluc-
tance machines [20]. In [21] and [22], the same method
has also been applied in Halbach array permanent-magnet
machines.

It is essential to understand better the performance dif-
ferences associated with analytical models for infinite iron
permeability, as it helps to choose the bestmodel for a specific
application [23]. This understanding of the differences is
equally important for finite-permeability subdomain models
(FPSMs). However, we have not found a discussion on the
comparison between these FPSMs. In this article, we use
the theories of [11] and [18] and apply them to SMPMMs.
The model based on [11] is called here model I, and the
model based on [18] is called model II. To the best of our
knowledge, the theories of these two articles have not been
fully applied to an SMPMMwith an internal rotor. In [24], the
theory of [11] has been applied in an SMPMM, but this paper
only considers the machine in no-load operating conditions.
The theory of [16] has been applied in an SMPMM with an
outer rotor in [17].

From the ICs, a linear system is obtained. The size of the
linear system’s matrix varies depending on the number of ICs
and the number of harmonics considered. The accuracy of the
two models has been compared to FEM for one matrix size
only [11], [16]. We did not find any articles that show the
accuracy of thosemodels compared to FEM for similarmatrix
size to give an in-depth perspective into the accuracy versus
speed comparison of both models to FEM. In this article,
we assess the accuracy of both two models for different
calculation speeds and compare them to FEM.

In order to study the effect of different motor structures
on the two models, two motors are chosen, one with fewer
teeth and one with a higher number of teeth. Two machines
are used to study the accuracy of predicting the magnetic
flux density and the electromagnetic torque under differ-
ent permeabilities for these two models. The influence of
key parameters, such as the pole-arc-to-pole-pitch ratio and

FIGURE 1. Structure of the SMPMMs.

slot-opening-to-slot-pitch ratio, on the average torque error
is studied. Finally, we also study the relationship between
matrix size and torque error. All results from these two
models are compared with FEM with a very fine mesh.

II. FINITE-PERMEABILITY SUBDOMAIN MODELS
In this paper, the two analytical models are based on the
following assumptions: 1) the magnetic permeability of the
stator iron parts is finite, and the B-H curve is hence linear;
2) the stator teeth have no tooth-tips; 3) the PM poles are
parallelly magnetized; 4) the end effect is negligible; 5) the
stator slots/teeth have radial sides; 6) the permeability of rotor
yoke is infinite.

A. MODEL I
In this model, the motor structure is divided into five types
of subdomains: PMs, air gaps, stator slots, stator tooth, and
stator yoke (Fig. 1). The general PDE of magnetic vector
potential is derived from Maxwell’s magnetostatic equations
applied in different regions. The general solution for each
region is obtained by using the separation of variables in PDE.
The solutions of the magnetic vector potential in the air gap,
the stator slots, the stator tooth, and the stator yoke, are given
in [11]. The solutions of the magnetic vector potential Az in
the PMs are expressed by

Az1 = C10 + C20 · ln(r)

+

∞∑
n=1

[C1n · Tn + C2n · Sn + Gn] · sin (nθ)

+

∞∑
n=1

[C3n · Tn + C4n · Sn + Fn] · cos (nθ) (1)

Tn =

(
r
r2

)n

(2)

Sn =

(
r
r1

)−n

(3)

Gn = (Pn(r) − P−n(r)) ı (4)

Fn = Pn(r) + P−n(r), (5)

where C10, C20, C1n, C2n, C3n and C4n are unknowns to be
solved. The function Pn(r) is the particular solution in the PM
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TABLE 1. SMPMMs design parameters.

FIGURE 2. Structure of machine I (4 poles/12 slots).

FIGURE 3. Structure of machine II (32 poles/36 slots).

region given by [8]

Pn (r) =


(
ınBRrn − BRϕn

) r ln (r)
2

n = ±1(
ınBRrn − BRϕn

) r
1 − n2

n ̸= ±1,
(6)

where BRrn and BRϕn are the harmonics of the remanent flux
density given in [8].

Once the magnetic vector potential of each region is estab-
lished, then the boundary conditions are applied to determine
the constants. There are two types of ICs, along r-edges
and θ -edges, respectively. In SMPMMs, the regions can be
divided into two types: 1) periodic subdomains, such as PM,
air gap, and stator yoke, and 2) non-periodic subdomains,
such as stator slots and stator teeth. Both r-edges ICs and
θ -edges ICs need to be considered in the non-periodic sub-
domain, while only θ -edges ICs need to be considered in
the periodic subdomain. The boundary condition at the inner

FIGURE 4. Air-gap magnetic flux density in the middle of the air gap of
machine II: (a) radial and (b) tangential magnetic flux density.

radius of PM r1 is [8]

1
µ1

(
∂Az1
∂r

+ BRϕn

)∣∣∣∣
r1

= 0. (7)

The boundary conditions at the outer radius r2 of the
PM are

Az1 |r2 = Az2 |r2 (8)
1
µ1

(
∂Az1
∂r

+ BRϕn

)∣∣∣∣
r2

=
1
µ0

∂Az2
∂r

∣∣∣∣
r2

, (9)

where µ0 and µ1 are vacuum and PM permeabilities,
respectively. Az2 is the magnetic vector potential of the air
gap.

The remaining boundary conditions are given in [11].
Finally, the unknowns can be determined by solving the linear
system obtained from the ICs between various regions.

B. MODEL II
This model is valid only for homogeneous regions, so the
SMPMMs are divided into different homogeneous regions.
This model has a high level of convergence and describes the
slotted machines using the Fourier series. The stator slots and
tooth become a homogeneous region in this model, which dif-
fers from model I. Therefore, the SMPMMs are divided into
four regions: I) PM region, II) air gap region, III) stator slots
and tooth region, and IV) stator yoke region. The solution of
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FIGURE 5. Air-gap magnetic flux density in the middle of the air gap of
machine II: (a) radial and (b) tangential magnetic flux density.

each region is expressed as [18]

AIz |r =

(
r
r2

)λI

aI +

( r1
r

)λI

bI + GI (10)

AIIz |r =

(
r
r3

)λII

aII +

( r2
r

)λII

bII (11)

AIIIz |r = W III
(
r
r4

)λIII

aIII +W III
( r3
r

)λIII

bIII

+ r2F (12)

AIVz |r =

[(
r
r5

)λIV

−

( r5
r

)λIV
]
aIV, (13)

where λ andW are, respectively, the diagonal eigenvalue and
the eigenvector matrix, and r2F is the particular solution of
region III [16]. The variables a and b are the column vectors
of the constant unknown coefficients. The variable G is the
particular solution of region I. In the SMPMMs, it can be
written as

GI = [P−N (r) · · ·PN (r)]T , (14)

where N is the harmonic number of region I.
In model I, we need to consider both r-edges ICs and

θ -edges ICs to obtain a linear system. However, we only
need to consider θ -edges ICs in model II. On the interfaces
between two regions, the boundary conditions are written as

Akz |ri = Ak+1
z |ri (15)

FIGURE 6. Electromagnetic torque waveforms: (a) machine I and
(b) machine II.

H k
θ |ri = H k+1

θ |ri , (16)

where Hθ is the tangential component of the magnetic field
density, k represents the region, and ri is the ith radius, for
i = 2 to 4. The boundary conditions at the inner radius of PM
r1 is

H I
θ |r1= 0. (17)

The final linear system is solved for the unknowns a and b.
We obtain Az for all regions, which allows us to continue
calculatingmagnetic flux density and electromagnetic torque.

III. COMPARISON OF THE TWO MODELS
The two FPSMs are compared for the flux density, elec-
tromagnetic torque, and the relationship between torque
error and key parameters during the design process, such
as the pole-arc-to-pole-pitch ratio and slot-opening-to-slot-
pitch ratio, which will also be discussed further. Besides, the
influence of the matrix size of both models on the torque error
is also studied later. In order to study the relationship between
the number of stator teeth and the number of harmonics, two
machines are used, and their design parameters are shown in
Table 1, with motor structures shown in Figs 2 and 3.

In order to make both models achieve high prediction accu-
racy for both machines, model I uses nmax = 100, mmax =

kmax = 10 for machine I and nmax = 200,mmax = kmax = 20
for machine II, where nmax, mmax and kmax are the maximum
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FIGURE 7. Average torque error against pole-arc-to-pole-pitch ratio of (a)
machine I and (b) machine II, for a slot-opening-to-slot-pitch ratio of
0.5 for machine I, and 0.54 for machine II, respectively.

numbers of harmonics in the periodic subdomains and the
non-periodic subdomain, respectively [11]. Model II uses
Nmax = 100 for machine I and Nmax = 200 for machine II,
where Nmax is the maximum number of harmonics in the
homogeneous region [16]. We take FEM with fine mesh as
a reference.

A. AIR-GAP FLUX DENSITY
The radial and tangential components of flux density in air-
gap are given by

Br =
1
r

∂Az
∂θ

(18)

Bθ = −
∂Az
∂r

. (19)

The air-gap flux density waveforms predicted by the
two analytical models are compared with FEM results in
Figs 4 and 5.

In order to fully demonstrate the impact of changes in
the permeability of iron on the results, calculations using a
relative permeability of 100 and 10’000 for the stator teeth
and stator yoke are performed. The matrix size of fine mesh
here is 36′916 × 36′916. From the results in Figs 4 and 5,
it can be seen that the predicted magnetic flux density of
both models, whether radial or tangential flux density, have a

FIGURE 8. Average torque error against slot-opening-to-slot-pitch ratio of
(a) machine I and (b) machine II, for a pole-arc-to-pole-pitch ratio of 1 for
machine I and 0.8 for machine II, respectively.

good agreement with the FEM results when the iron relative
permeability is 100. The relative error of radial flux density
in model I is 1.39% for machine I and 3.14% for machine II,
and the relative error of radial flux density in model II is
1.79% for machine I and 2.26% for machine II. When the
iron relative permeability is 10’000, model I still has a good
agreement with FEM. However, model II has some deviations
from FEM. Indeed, the relative error of radial flux density in
model I is 1.43% for machine I and 3.49% for machine II.
In comparison, the relative error of radial flux density in
model II is 5.02% for machine I and 14.35% for machine II.

B. ELECTROMAGNETIC TORQUE
The electromagnetic torque is calculated using Maxwell’s
stress tensor [25]:

T =
lar2

µ0

∫ 2π

0
BrBθdθ , (20)

where la is the active length.
The fine mesh matrix size was, on average, around

37′000×37′000 here. The torque waveforms predicted by the
two analytical models are compared with the FEM results in
Fig. 6. When the stator iron relative permeability is 100, the
torque pulsation of the two models matches very well with
the results of the FEM, and the relative error of torque in
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FIGURE 9. Average torque error for different divisions in model I and
model II as a function of the matrix size for machine I, with (a) µr = 100,
and (b) µr = 10′000. The pole-arc-to-pole-pitch ratio is 1, and the
slot-opening-to-slot-pitch ratio is 0.5.

model I is 0.23% for machine I and 1.64% for machine II
and the relative error of torque in model II is 0.78% for
machine I and 1.73% for machine II. However, when the
stator iron relative permeability is 10’000, model I still has
high accuracy compared with FEM. In contrast, model II has
some errors compared with FEM. The relative error of torque
in model I is 0.20% for machine I and 1.37% for machine II
while the relative error of torque in model II is 3.50% for
machine I and 3.12% for machine II.

C. RELATIONSHIP BETWEEN TORQUE ERROR AND KEY
PARAMETERS
The key parameters chosen here are pole-arc-to-pole-pitch
ratio and slot-opening-to-slot-pitch ratio, which are critical
parameters during the motor design process. The waveforms
of average torque error against two parameters predicted by
the two analytical models are shown in Figs 7 and 8, respec-
tively. We can see that model I has higher accuracy for two
different iron permeabilities and different key parameters. Its
error is below 1% for different pole-arc-to-pole-pitch ratios
and below 2% for different slot-opening-to-slot-pitch ratios
under two different iron permeabilities.

We can also see that model II is very sensitive to parameter
changes, and different key parameters can significantly affect
the error of model II. For example, the maximum error is

8%, and the lowest error is 2% for machine I for an iron
relative permeability of 10’000 (Fig. 7), while model I’s error
is always below 1%. Model I has low sensitivity to parameter
changes and thus has better stability.

D. RELATIONSHIP BETWEEN TORQUE ERROR AND
MATRIX SIZE
The resolution of these two models and of FEM involves the
calculation of a matrix. The matrix size directly affects the
calculation speed. The larger the matrix size, the larger
the computation time. For example, the computation time of
model I is 0.10 s when the matrix size is about 1′000 for
machine I for µr = 100, but the computation time is 0.32 s
for the same condition when the matrix size is about 2′000.

In order to verify the accuracy of these models, the calcu-
lated torque was compared with FEM with a very fine mesh.
The torque results of FEM modeled with different mesh pre-
cisions for machines I and II were also compared with FEM
with a fine mesh. The torque was calculated as an average
torque between different rotor positions, for which the fine
mesh matrix size was, on average, around 37′000 × 37′000
for machine I and 78′000 × 78′000 for machine II. The
results are shown in Figs 9 and 10. First, all points calculated
using FEM show more error than those calculated using the
two models for a given matrix size for machine I. On aver-
age, for a given matrix size, these two models have higher
accuracy than FEM for machine II. The figures also show
that the FEM calculation exhibits some random errors in the
torque calculation, while the two analytical models have good
stability.

Both models converge very quickly, and both can get con-
vergence errors in relatively smaller matrix sizes. Formodel I,
different combinations of mmax and kmax will result in dif-
ferent torque error distributions, and the final convergence
torque error will also be different. The convergence error of
model I is more significant than that of model II for two
machines when taking mmax = kmax = 1, and is smaller than
that of model II when taking mmax = kmax = 5. It is not
necessary to take mmax and kmax very large. It can be seen
from the figures that the error is already very small when
taking mmax = kmax = 5, and the convergence error is below
1% for machine I and below 2% for machine II.

The error results of model I are not significantly affected
by the change of iron permeability. However, when the iron
relative permeability is 100, the convergence error of model II
is 0.48% for machine I and 1.92% for machine II while the
convergence error is 2.12% for machine I and 3.33% for
machine II when iron relative permeability is 10’000. We call
convergence error the value of the error taking a large number
of harmonics into account.

IV. DISCUSSION
Tables 2 and 3 show that the prediction accuracy of radial
flux density and electromagnetic torque for model I is very
accurate for the two machines under different iron permeabil-
ities. However, the error of model II increases when the iron
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FIGURE 10. Average torque error for different divisions in model I and
model II as a function of the matrix size for machine II, with (a) µr = 100,
and (b) µr = 10′000. The pole-arc-to-pole-pitch ratio is 0.8 and the
slot-opening-to-slot-pitch ratio is 0.54.

TABLE 2. The radial magnetic flux density error under different stator
iron relative permeabilities for machines I and II.

TABLE 3. The error of electromagnetic torque under different stator iron
relative permeabilities for machines I and II.

permeability increases. In Figs 7 and 8, we can also see that
the error when the iron relative permeability is 100 is gener-
ally smaller thanwhen the iron relative permeability is 10’000
for model II. Besides, when the iron relative permeability is
10’000, the convergence torque error of model II is bigger
than the error when the iron relative permeability is 100 (Figs
9 and 10). As a comparison, model I is always very accurate
for different iron permeabilities.

The reason for these errors is Gibbs phenomenon, which
is the oscillatory behavior of the Fourier series of a periodic
function around a jump discontinuity. In model II, the relative
permeability in stator slots and teeth developed as a Fourier
series expansion. Therefore the Gibbs phenomenon occurs at
the boundary between the slot and the tooth. It is significant
when the iron permeability is high. It contributes to the error
and slows down the convergence. Because model I does not
involve the expansion of iron permeability into the Fourier
series in the tangential direction, it is not affected by the
Gibbs phenomenon. It thus has high accuracy for any iron
permeabilities.

The prediction accuracy of machine I is higher than
machine II for these two models (Tables 2 and 3). The reason
is that the structure of machine I has fewer teeth and pole
pairs. Therefore it needs fewer harmonics. Higher harmonics
are required for the calculation of machine II. If higher accu-
racy is required, the computation time increases considerably.

Tables 2 and 3 also show that electromagnetic torque’s
prediction accuracy is better than that of radial magnetic
flux density for the two machines under different iron
permeabilities overall. Indeed, the torque calculation intrinsi-
cally averages error circumferentially, whereas the magnetic
flux densities are intrinsically local quantities. For torque
calculation, a larger number of harmonics is unnecessary for
a satisfactory error.

As mentioned in sections II-A and II-B, model I requires
more boundary condition equations than model II to obtain
the final linear system, so model I gives a more accu-
rate description of the local magnetic field distribution than
model II. It is the reason why model I is very accurate,
but it is also the reason why it is more complex. The main
advantage of model II is a good tradeoff between accuracy
and complexity.

V. CONCLUSION
A comparative analysis of two FPSMs was performed on
SMPMMs using FEM calculation with a fine mesh as a
reference. Model I has a low sensitivity to the changes in iron
permeability, while the accuracy of model II is very sensitive
to iron permeability. As the iron permeability increases, the
prediction accuracy of model II decreases, which is caused
by the Gibbs phenomenon. Model I is accurate for different
key parameters, while model II is more sensitive to parameter
changes. Therefore, model II should be used with caution
when studying magnetic saturation because it will give larger
errors. In addition, model I is a better choice when optimizing
some motor parameters as it has better stability.

Conversely, the final linear system formed by model I
is more complex than that of model II, so if simplicity is
favored, model II should be chosen. Model I is more accurate
but at the cost of a greater minimum matrix size. If the
requirement for accuracy is not high, model II can give,
in some cases, a better compromise between accuracy and
computation time.
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Both models can achieve high prediction accuracy at a
faster calculation speed than FEM. Different combinations of
harmonics will result in different torque error distributions
in model I. Taking a very high number of harmonics is
unnecessary for model I, and good results can be achieved
with a relatively low number of harmonics.
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