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ABSTRACT The anatomical structure of the brain has been studied with the help of magnetic resonance
imaging (MRI), which has been used to analyze numerous neurological diseases and define pathological
areas. Early detection of Alzheimer’s Disease (AD) patients is critical in order to implement preventative
measures. Alzheimer’s disease (AD) is the most common chronic disease in the elderly, with a high
incidence rate. In recent years, deep learning has seen a lot of success in the medical image analysis. Brain
diseases can be more accurately categorized using segmented MRI scans due to in-depth analyses of tissue
architecture. Many, complex segmentation approaches have been presented for AD diagnosis. Since deep
learning algorithms can yield effective results over a large data collection, they have received interest for
use in segmenting the brain’s structure and classifying AD. Consequently, the deep learning techniques are
currently favored over machine learning techniques. We discuss how convolutional neural network concepts
can be used to study brain anatomy in order to detect AD. New techniques, their results on open datasets, and
the benefits of brain MRI segmentation for Alzheimer’s disease categorization are discussed. In this article,
the literature on Alzheimer’s disease is briefly reviewed, and the possibility of Deep Learning to improve
early diagnosis is discussed.

INDEX TERMS Alzheimer’s disease, brain analysis, classification techniques, deep learning techniques,
image processing techniques.

I. INTRODUCTION

Cognitive and memorization skills deteriorate over time in
the clinical syndrome of Alzheimer’s disease. It is estimated
that between 60 and 80 percent of all cases of dementia are
caused by this illness, making it a major problem for the
elderly. It takes a long time for symptoms of AD to develop
into a definitive diagnosis. Patients with moderate cognitive
impairment (MCI) are at risk for Alzheimer’s disease (AD),
but only 30%—40% of MCI patients progress to full-blown
AD [1]. The brain of an Alzheimer’s patient shows signs
of the disease long before the start of cognitive deteriora-
tion, including early enlargement of the lateral ventricles and
apparent degeneration of the hippocampus and amygdala.
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Biomarker research on Alzheimer’s disease reveals that some
parts of the brain have started to decline. Thus, it is crucial to
identify AD in its earliest stages with high precision. Because
of the excellent spatial resolution and contrast it affords in
brain tissue, magnetic resonance imaging (MRI) can be used
to study the structure of the brain. Computed tomography
(CT) and positron emission tomography (PET) are thought to
be safer for patients than magnetic resonance imaging (MRI)
[2]. Over the past few decades, MRI has become standard
equipment for diagnosing brain injuries and studying the
structure of the brain. Alzheimer’s disease (AD) and multiple
sclerosis (MS) are just two of the many brain illnesses that
MRI may detect.

Segmenting MRI scans of the brain collected at varying
intervals allows researchers to quantify alterations to brain
anatomy across time. For diseases like Alzheimer’s, a correct

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

71542

VOLUME 11, 2023


https://orcid.org/0000-0003-2242-3656
https://orcid.org/0000-0003-0041-1531

B. S. Rao, M. Aparna: Review on AD Through Analysis of MRI Images Using Deep Learning Techniques

IEEE Access

diagnosis relies on the precise identification and categoriza-
tion of diseased tissue and the healthy components around
it [3]. To make better diagnoses, a lot of data is needed.
On the other hand, it may be challenging for physicians to
manually analyse vast and complex MRI datasets in order to
extract meaningful information [4]. Evaluating a brain MRI
manually is a time-consuming process that might lead to
mistakes owing to operator variability. For this reason, it is
important to create an automated segmentation approach that
yields reliable results. Segmentation of brain MRI scans has
several clinical uses because of the impact it has on the overall
data analysis. Several conventional machine learning-based
methods can be used to examine various types of brain tis-
sue, including white-matter (WM), grey-matter (GM), and
cerebrospinal-fluid (CSF). Patients with AD benefit from
the ability to segment abnormal brain tissues with MRI.
However, sophisticated technical methods and professional
judgment are needed to obtain the image information nec-
essary for segmentation. Separating the image into groups
of similar-looking pixels is the goal of brain MRI segmen-
tation [5]. In our analysis, we focus on how deep learning can
be used to isolate these areas in brain scans. In a brain MRI
scan, it may be challenging to discern between GM, WM,
and cerebrospinal fluid (CSF) due to tissue intensities, non-
uniformity (bias), noise abnormalities, and partial volume
effects [6]. In order to overcome these problems, researchers
have created and investigated a few deep learning methods
for brain MRI segmentation. We also examine many deep
learning approaches to the early detection of Alzheimer’s
disease, kind of dementia that can impact cognition, memory,
and behaviour [7]. The purpose of this study is to provide an
overview of cutting-edge deep learning techniques for deter-
mining whether MRI scans contain healthy or diseased brain
tissue. Additionally, we investigate the deep learning-based
solutions to the problems associated with brain MRI segmen-
tation.
The primary goals of this analysis are to:
1. Summarize the current deep learning strategies for identi-
fying Alzheimer’s disease in brain MRIs.
2. Determine the challenges in using MRI segmentation of
brain structure for AD diagnosis.
3. Demonstrate how MRI brain structure segmentation can
improve AD diagnosis accuracy.
The goal of this study was to look at how CNN has pro-
gressed in recent years for use in diagnosing Alzheimer’s
disease from single and multimodal brain scan data, and to
also investigate the model’s intrinsic capabilities to extract
elements that could enhance its performance.

Il. MRI DATASET FOR BRAIN ANALYSIS

Publicly available datasets like those provided by the Open
Access Series of Imaging Studies (OASIS)Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI)and
the Internet Brain Segmentation Repository (IBSR) are rou-
tinely used for the segmentation of brain MRI images and the
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TABLE 1. Overview of OASIS, ADNI, IBSR, MICCAI datasets.

No of Sex No of
Datasets Class subjects MRI
Images
Male Female
OASIS AD 120 40 80 120
HC 320 146 174 320
AD 210 75 135 210
ADNI MCI 408 226 182 408
HC 248 86 162 248
IBSR HC 28 10 18 28
MICCAI HC 38 - - 38

diagnosis of AD [8], [9], [10]. In Table 1 we show the data set
specifications for OASIS, ADNI, MICCAI, and IBSR. After
a brief introduction to brain MRI, the article goes on to detail
the distinct features of the datasets.

A. OASIS

The OASIS dataset was developed by the Alzheimer’s Dis-
ease Research Unit at Washington University and contains
significant brain MRI data from both healthy and affected
patients. [11]. Different scans were taken at different times
for each subject in the longitudinal dataset, while 440 people
aged 18-96 were represented in the cross-sectional dataset.
It is possible to assess an individual’s risk for acquiring
AD with the help of diagnostic techniques like the Clinical
Dementia Rating (CDR) and the Mini-Mental State Exam-
ination (MMSE) [12]. Subjects are classified as having no
dementia risk factors (CDR-0), very mild dementia risk fac-
tors (CDR-0.5), mild dementia risk factors (CDR- 1), and
moderate dementia risk factors (CDR-2) based on an assess-
ment of cognitive and functional abilities.

B. ADNI

Data from 843 MRI scans with 1.5 T to 3 T scanner intensity
fields are included in the ADNI dataset, making it suitable
for Alzheimer’s disease diagnosis. Most people over the age
of 65 will get AD [13]. Patients with diminished cognitive
abilities, such as memory loss and thinking, are diagnosed
with mild cognitive impairment (MCI). They are distinct from
AD but are extremely susceptible to developing AD or any
other form of dementia.

C. IBSR

Techniques for segmenting brain images are tested and
refined using the IBSR dataset. In addition to the MRI data,
this dataset also includes the results of a manually guided
expert segmentation. This dataset, which comprises of 28 real
T1-W MRIs with expert-guided manual segmentation, serves
as the “ground truth” for testing automatic segmentation
approaches [14], [15], [16], [17], [18]. In addition, there
are approximately 60 slices of coronal T1-W data (slice
gap between successive slices) measuring 3.1 mm in each
MRI volume, and 18 slices of cortical T1-W data (slice gap
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between successive slices) measuring 1.5 mm. This dataset
subject volumes feature 256 x 256 x 128pixel dimensions
and three different voxel spacings:0.84 x 0.84 x 1.5mm3,
0.94 x 0.94 x 1.5mm3 and 1.0 x 1.0 x 1.5mm3. 32 non-
cortical structures have also been manually segmented by
Massachusetts General Hospital.

D. MICCAI

In order to compile the MICCAI-2012 dataset, Neuromorphic
metrics, Inc. of Scotts Valley, California used 38 T1-w MRI
volumes in addition to 134 manually segmented structures.
It was primarily used for segmenting anatomical structures,
tissues, and tumors. [19]. In 2012, the first 80 samples were
added to this dataset, which included both real and simulated
cases. It has become increasingly difficult to train and test on
small datasets [20], [21], [22], [23]. To identify sub-cortical
structures, we entered them into the MICCAI 2012 multi-
atlas labelling challenge.

E. PRE-PROCESSING OF BRAIN MRI ANALYSIS
In the context of brain MRI segmentation, it depicts a work-
flow that has been proposed in the literature. The four primary
parts of the Architecture are the pre-processing, trained mod-
els, segmentation, and classification stages. After acquiring
an MRI, a variety of pre-processing steps must be completed
before the images are used for brain tissue segmentation.
Images of the eyes, fat, spinal cord, and skull can all be
obtained in high resolution during a brain MRI scan. Skull
removal is required for voxel classification into brain and
non-brain regions [24]. In skull stripping, only the voxels
that represent the brain are kept, or the voxels that represent
the remainder of the tissue are assigned a value of zero. The
brain’s grey and white matter, as well as subcortical structures
and the cerebellum, are all considered brain voxels, while
the scalp, matter, eyes, bones, dura, skin, muscles, and fat
are all considered non-brain voxels [25], [26], [27], [28].
Reduce the Rician noise in MRI scans that varies locally
with this technique. The significance of this is discounted for
deep learning classification applications. Data augmentation
or patch-based procedures are used to the input volumes
following pre-processing to complete data preparation. After
that, we use the input modalities and patch dimensions to
perform segmentation or classification, depending on the
goal of the analysis. The given results could be better if the
largest groups were chosen or the regions were smoothed
out [29].

lIl. REVIEW OF BRAIN SEGMENTATION AND DIAGNOSIS
Here, we present systematic literature review about structural
segmentation and classification of brain MRI data with the
aim of identifying AD. We also briefly cover CNN archi-
tecture, then proceed on to discussing how deep learning
can be used to segment brain structures, and finally classify
Alzheimer’s disease. Finally, we discuss about how MRI
segmentation improves the accuracy of AD classification.
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A. INTRODUCTION TO THE STRUCTURE OF CNNs

Deep learning, in the field of computer vision, is the pro-
cess of extracting a hierarchy of features from raw input
images using a neural network with multiple layers (typi-
cally more than five) [30]. Deep learning improves on the
accuracy of traditional machine learning algorithms by auto-
matically extracting complicated, high-level characteristics
from images and training on massive amounts of data. Due
to advancements in GPU processing power, large quantities
of imaging data may now be used for training, resulting
in improved accuracy despite cosmetic alterations when
employing deep learning methods. Deep learning is essential
to numerous fields and technologies, such as image segmen-
tation, genotype/phenotype detection, disease categorization,
object detection, and speech recognition [31], [32], [33], [34].
The terms “‘deep Boltzmann machines,” ‘““‘convolutional neu-
ral networks,” “stacked auto-encoders,” and ‘“‘deep neural
networks” all refer to popular deep learning approaches.

In image segmentation and classification, deep neural net-
works (DNNs) are frequently used. A lot of people started
paying attention to convolutional neural networks (CNNs)
after seeing their outstanding results in the 2012 ImageNet
Competition, even though CNNs have been around since
1989. On a dataset of millions of images with 1000 possi-
ble classifications, CNN reportedly produces results with a
half-error rate compared to the prior best computing method-
ologies [35]. CNN architecture is becoming increasingly
computationally complex due to the increasing number of
layers, the use of neurons with millions of weights, and
the large number of connections between the neurons. The
CNN architecture consists of several basic parts, such as con-
volution layers, pooling layers, and fully connected layers.
Multiple convolutional layers are used in this architecture,
followed by a pooling layer and then one or more fully
connected layers [36]. Forward propagation refers to the step
in which these layers transform input data into output.

Convolution, pooling, activation function, and fully linked
layers are shown in Figure 2 as the primary components of a
CNN. In order to create feature maps from the input images,
the convolutional layer convolves over the kernel. Rather than
passing along individual convolutional layer results, the final
layer receives the maximum or average of all previous results
[37]. Two of the most common activation functions are the
rectified linear unit (ReLU) and its leaky variant, the Rectified
Leaky ReLU. The ReLU performs a nonlinear transforma-
tion on data by transmitting only the positive values of the
input and clipping the negative values to zero. For input
prediction, the final CNN layer’s output is related to a loss
function (cross-entropy loss, for instance, converts scores to
a multinomial distribution over labels) [38], [39], [40], [41]
The regularization constraints are then utilized to construct
network parameters via minimizing the loss function between
the prediction labels and the ground truth labels. In addition,
backpropagation is used to change the network’s weights at
each iteration (for instance, by stochastic gradient descent)
until convergence is reached.
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FIGURE 2. Basic architecture of convolution neural network.

B. DEEP LEARNING-BASED BRAIN MRI SEGMENTATION
AND CLASSIFICATION CHALLENGES

1) DEEP LEARNING USED IN BIG DATA ANALYTICS

Finding an adequate dataset to train the model on and increase
its accuracy is a major challenge. As a result of its enor-
mous amount (high dimensional decision space and many
objectives), variety (modeling with different data sets and
sharing insights across difficulties), durability and veracity,
big data presents challenges for deep learning [42]. In order
to address this issue, the author proposes several optimization
strategies, such as global optimization, that make use of pre-
viously learned insights from the study of massive volumes of
high-dimensional, heterogeneous, noisy data. Complex opti-
mization techniques offer effective responses by developing
novel perspectives and methodology for optimization issues
that make the most of deep learning approaches to large data
challenges. The conventional machine learning methods do
better with less data [43]. While the performance of tradi-
tional machine learning methods tends to level after a certain
threshold of data, that of deep learning methods improves
with additional data. Using deep learning architectures like
deep neural networks, deep belief networks, and recurrent
neural networks, researchers have been able to match or
surpass the performance of human specialists in a wide range
of subjects.

2) SCALABILITY OF DEEP LEARNING APPROACHES

It is important to examine not only the accuracy but also
various other metrics related to computational resources

VOLUME 11, 2023

Non Demented

when assessing the scalability of deep learning. For deep
learning to succeed, scalability is essential. The traditional
enterprise-grade servers and storage systems are struggling to
keep up with the data explosion in terms of volume, velocity,
veracity, and variety [44]. A high-performance computing
(HPC) system (supercomputing, clustering, often referred to
as cloud holds enormous promise for data-intensive commer-
cial computing and can be used to scale up deep learning
techniques. data generation capability, which is useful in sit-
uations where training data is unavailable.

3) MULTI-TASK, TRANSFER LEARNING OR MULTI-MODULE
LEARNING

One of the major obstacles in deep learning is learning from
multiple domains or models at the same time. The biggest
problem with learning transfer right now is the possibility of
adverse transfer [45]. For transfer learning to be successful,
there must be substantial overlap between the training set
and the target problem. If the model’s initial training is too
dissimilar from subsequent training, it may perform inferior
than if it had never been trained [46], [47], [48]. There is a
lack of agreed-upon criteria for determining whether forms of
learning and training are sufficiently related. Table 2 demon-
strates the CNN architecture’s scalability by showcasing a
variety of classification and segmentation methodologies,
including single-modality, multi-modality, semantic, patch
and cascaded approaches.

The term single-modality is used to describe the use of
one information modality that may be adapted to many
contexts. Multi-modality approaches, like positron emission
tomography, stress pathognomonic alterations and metabolic
activity of the target tissue by integrating data from multiple
sources to determine their precise location. When approach-
ing images in a semantic way, we assign a label to every
individual pixel. Segmentation labels are applied to the input
image to decrease the loss function. This allows for the
creation of segmentation maps for images of any size [69].
This method has a much lower computational complexity
than other methods. Most current methods employ this seg-
mentation principle. The patch-wise method uses fragments
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TABLE 2. The brain structure classification and segmentation methods based on deep learning.

Sno Author Year | Strategies/Content Image Type Key-Method Data Set
1 Lian et al. [49] 2020 Brain MRI Images FCN ADNI (820)
2 Shi et al. [50] 2020 Brain MRI+PET+CSF Machine- Learning ADNI (201)
Images

3 Feng et al. [51] 2020 Brain MRI+PET CNN ADNI (354)
4 Mefraz et al. [52] 2019 Brain MRI Images Transfer Learning ADNI (52)

5 Lee et al. [53] 2019 Brain MRI Images CNN ADNI (846)

OASIS (414)
6 Aderghal et al. 2018 Hippocampus MRI+DTI Images CNN ADNI (817)
[54]
7 Jyoti et al. [55] 2018 Brain MRI Images CNN OASIS (418)
8 Wang et al. [56] 2017 Brain MRI Images CNN ADNI (824)
9 Qiao et al. [57] 2017 Brain MRI+PET Images Auto Encoder ADNI (209)
10 Andres et al. [S8] | 2016 Grey-Matter MRI+PET Images Deep-belief ADNI (820)
Network
11 Yang et al. [59] 2022 patch-wise MRI Images CNN ADNI (274)
12 Liu et al. [60] 2022 Brain MRI+PET Images CNN ADNI (354)
13 Pengcheng et al. 2020 Semantic based 3D/4D Images Fuzzy C-Mean BLSA
[61]
14 Bernal et al. [62] 2019 patch-wise 2D/3D Images FCNN IBSR/MICCAI2
012&iseg2017
15 Wachinger et al. 2018 patch-wise 3D Images CNN MICCAI 2012
[63]
16 Mehta et al. [64] 2017 Semantic-based 2D/3D Images CNN IBSR/MICCAI2
012

17 Bao et al. [65] 2016 Patch-wise 2D Images CNN IBSR/LPBA40
18 Shakeri et al. [66] | 2016 Semantic-based 2D Images FCNN IBSR data
19 Syed et al. [67] 2021 Semantic-based 2D Images CNN ADNI(275)
20 Patil et al.[68] 2022 patch-wise 2D Images CNN ADNI(418)

of larger higher-resolution images. To be more precise, the
system is trained by segmenting the input images into a
collection of local patches. Predicting the data for a sin-
gle patch can lead to more accurate local knowledge. The
model can be trained with local information using patch-wise
procedures, however this method increases computing com-
plexity [70]. First, one CNN does the initial classification,
and then another CNN uses the results of the first CNN’s
classification (as input) to provide even more accurate results.
When compared to other CNN approaches, cascaded CNN
produces comparable results. Deep learning’s segmentation
performance has been successful, but there are a few draw-
backs and limitations.

IV. DIAGNOSING ALZHEIMER'S DISEASE FROM A BRAIN
MRI USING DEEP LEARNING

Brain MRI segmentation is carried out to remove noise
from the final processed images and find important char-
acteristics. Brain illnesses like Alzheimer’s disease can be
more accurately classified after careful examination of the
tissue architecture revealed by the segmented MRI. As a
form of dementia, AD is relatively common, especially
among the elderly. Patients with Alzheimer’s disease gradu-
ally lose mental capacity as the disease progresses. Patients in
advanced cases have difficulty performing day-to-day activ-
ities, which eventually leads to an inability to take care of
themselves. The human brain’s nerve cells and tissues are
affected by this disease. At first, this could influence the
parts of the brain responsible for planning, thinking, and
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memory formation, including the hippocampus. Alzheimer’s
disease is becoming more prevalent among the elderly, but
it is not necessarily associated with getting older. By 2050,
more than 90 million people will have Alzheimer’s, according
to a recent study [71]. Many studies have been conducted to
stop or delay the advancement of AD, but so far there have
not been any promising findings.

A. SEGMENTATION OF BRAIN MRI USING DEEP
LEARNING

For quantitative study of brain tissues and a complete
assessment of intracranial volume, MRI needs accurate
auto-segmentation of brain components including GM, WM,
and CSF. Segmenting brain tissue is typically accom-
plished using atlas-based methodologies or pattern recogni-
tion software.

1) ATLAS-BASED METHODS

Atlas-based methods do this by comparing the intensity levels
of two images. Although they are widely used to segment the
human brain, map and registry-based approaches often fail to
accurately segment small, highly variable regions such as the
hippocampus due to registration limitations and differences
in the underlying data of the real world.

2) PATTERN RECOGNITION
Classifying brain tissues using a set of local intensity features
is a common use of pattern recognition methods. Recent
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evidence indicates that hippocampal atrophy is a potential
biomarker for Alzheimer’s disease. The hippocampus resides
within the limbic system of brain and is encircled by various
other brain regions [72]. Patients with Alzheimer’s disease
have been demonstrated in multiple studies to have a smaller
hippocampus volume. Accordingly, MRI hippocampal seg-
mentation may find use in the clinic. The hippocampus is
notoriously difficult to segment using magnetic resonance
imaging (MRI) due to its tiny size, partial volume impact,
anatomical heterogeneity, low contrast, low signal-to-noise
ratio, and imprecise borders. along with proximity to the
amygdaloid structure. Additionally, expert analysis takes
time for manual segmentation. According to a recent study,
conventional approaches like thresholding, region growing,
and segmenting the hippocampus do not yield satisfactory
results. In Table 3 summarized some papers with key features
and methodologies.

3) CHALLENGES IN BRAIN MRI SEGMENTATION

There are numerous different physical structures in the brain,
and these differences emerge across a wide range of pheno-
types, ages, sexes, and diseases. It is challenging to generalize
a single phenotypic segmentation technique to all phenotypes
in order to produce valid performance

o Tissues with gyral folds, deep sulci, thin architec-
ture, and smooth borders are particularly challenging
to digest.This may lead to ambiguous classifications of
different types of tissues. Experts on the human species
have often found this as a challenge.

« Segmenting a brain MRI by hand is labor-intensive and
prone to human error. In addition, an in-depth under-
standing of the brain and how it works is required. Due
to this, gathering enough ground truth data to construct
a segmentation model is difficult.

« When segmenting an ordinary image, the noisy back-
ground makes it difficult to accurately label each pixel
or voxel using learned features.

o The hippocampal region offered several difficulties for
segmentation due to its small size and volume, morpho-
logical diversity, partial volume effects, low contrast,
low signal-to-noise ratio, ambiguous borders, and prox-
imity to amygdaloid structures.

4) CHALLENGES IN THE DIAGNOSIS OF AD
The main problem with AD is that it is difficult to track and
examine the patient’s pathology over an extended period. As a
result, it is difficult to follow the change in AD status. Only
152 transitions out of a total of 2731 MRIs are included in
the ADNI dataset. Since MRIs do not record the changing
AD state, the model is likely to overfit without producing
generalizable distinctions between the various stages of AD.

e Multimodal data collection for the diagnosis of AD

a) Due to heterogeneity, a prediction model built only
from multimodality data will be inaccurate, as data
from neuroimaging (i.e., MRI or PET) and genet-
ics (single nucleotide polymorphism) have different
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data distributions, feature numbers, and levels of dis-
criminative ability to AD diagnosis [90]. It has been
discovered, for example, that raw SNP data is of
limited value in the case of Alzheimer’s disease.
b) Issue with high dimensionality: Millions of voxels
often make up a neuroimage scan, while hundreds
of SNPs associated with AD might be found in a
subject’s genetic information.
e Due to the anatomical structure’s low contrast in MRI,
the automatic classification of AD is rather it is difficult.
If MRI scans contain noisy or outlier pixels as a result of
various scanning conditions, the classification accuracy
may also suffer.
Alzheimer’s disease impairs one’s ability to make rational
decisions and judgements in everyday situations. Multitask-
ing is especially difficult. Routine activities that necessitate
the completion of steps become difficult. There are many
limitations in 2D/3D MRI image analysis. To address these
issues in Alzheimer’s patients, we suggested MRI and fMRI
images (2D/3D images) for analysis. The majority of the
researchers used deep learning techniques. These techniques
are useful for recognizing the Alzheimer’s disease classifica-
tion and segmentation of MRI images. It provides the most
accurate results.

B. BRAIN MRI SEGMENTATION IMPROVES IN
CLASSIFICATION OF ALZHEIMER'S DISEASE

Alzheimer’s disease is widely recognized as the most com-
mon form of dementia among Caucasians. Diffuse brain
atrophy, which manifests in a few different ways, is a hall-
mark of Alzheimer’s disease. a diminished cerebral cortex,
enlarged ventricles, and atrophy of the hippocampus and
other parts of the medial temporal lobes (MTL). The GM
and WM tissues have been linked to AD pathology, and it
has been found that anomalies in these tissues have a strong
correlation with cognitive decline. It is therefore required
to analyze neuropsychological and anatomical data from the
patient at various transitional stages of the disease in order
to have an overall understanding of the course of AD. MCI
patients have a high possibility of developing AD as their
medical condition. According to the results, converting from
MCI to AD carries a much higher risk than it does for healthy
individuals. The amnesic variety of MCls, also known as
aMClSs,is known for affecting most people. The highest yearly
conversion rate from aMCI to AD supports the hypothesis
that MCI represents the preclinical stage of Alzheimer’s
disease. As the disease progresses, the hippocampus, amyg-
dala, entorhinal, and Para hippocampal cortices all atrophy,
as was found in prior studies. There has been a lot of study
into using hippocampal segmentation to derive brain size or
shape. It has also been shown that cortical thickness and
GM tissue maps are strongly predictive in the diagnosis
of AD.Voxel-, deformation-, and tensor-based morphome-
try were also studied for their potential to provide light on
variations across groups (TBM). Voxel-based morphometry
(VBM) is a spatially specific and objective technique for
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TABLE 3. A summary of studies that employ deep learning methods for brain MRI labelling and segmentation.

Sno Authors Methodologies

Applications: Key features

1 Aderghal et al. [73] CNN Models

AD/HC Classification: several CNN base classifiers, each trained on its
own layer of MRI brain data, to create a single CNN ensemble

2 Claude et al. [74] CNN Models

AD/HC Classification: transfer-learning-based diffusion tensor
imaging as an extension of magnetic resonance imaging

3 Liu et al. [75] CNN Models

AD/MCI/HC Classification: Training a Convolutional Neural Network
on a variety of MRI and PET brain image modalities

4 R. H. Blank et al. [76] CNN Models

AD/MCI/HC Classification: Neuroimaging methods that use a
convolutional neural network to express latent hierarchical features
from retrieved patches.

5 Ahmed et al. [77] CNN Models

AD/HC Classification: classification ensembles based on patch features
for Alzheimer's disease detection

Mefraz et al. [52] Transfer Learning

AD/MCI/HC Classification: Predicting AD and CNN using transfer
learning with intelligent training data selection using a network trained
with the VGG architecture.

7 Andres et al. [58]

Deep belief Network Models

AD/HC Classification: Brain region labels are automatically generated
for use in developing deep learning architecture-based categorization
methods.

Jyoti et al. [55] CNN Models

AD/HC Classification: deep Convolutional Neural Network model for
correcting a dataset imbalance for AD diagnosis and stage recognition

9 Logan et al. [78] CNN Models

AD/HC Classification: fMRI data-adapted Lenet-5 architecture

10 Maryam et al. [79] CNN Models

AD/HC Classification: Using a combination of multiscale and
multimodal deep neural networks, early detection of Alzheimer's
disease is possible.

11 Tan et al. [80] CNN Models

AD/HC Classification: a multi-instance learning framework based on
landmarks for diagnosing neurological disorders

12 Prakash et al. [81] Machine Learning Models

AD/HC Classification: Multimodal data, including MRI, PET, and
cerebrospinal fluid (CSF), are employed. modelling and learning an
informative feature projection from the various modalities using a
linked metric ensemble and coupled boosting technique.

13 Payan et al. [82] CNN Models

AD/HC Classification: Pre-trained 3D convolutional neural networks
using sparse auto-encoders

14 1. Vatanabe et al. [83] CNN Models

AD/HC Classification: Scheme for data permutation in deep CNN
Alzheimer's disease MRI classification.

Feng etal. [1] CNN Models

AD/HC Classification: using a deep convolutional neural network
(CNN) cluster powered by multimodal imaging to detect Alzheimer's
disease

Shi et al. [50] Auto-encoder

AD/HC Classification: Using a stacked deep polynomial network and
a support vector machine classifier on the top layer, we can analyse
MRI and PET scans.

Siqi et al. [84] Auto-encoder

AD/HC Classification: A softmax regression layer and sparse auto-
encoders are part of the deep learning architecture used to categorise
AD.

18 Wachinger et al. [63] CNN Models

Anatomical Segmentation: use of a deep convolutional neural network
to segregate neuroanatomy from T1-W MRI scans.

19 Milletari et al. [33] Hough-CNN Models

Anatomical Segmentation: Utilizing Hough voting, we may get a
mapping from CNN features to comprehensive patch segmentations.

Syed et al. [67] CNN Models

Tissue Segmentation: ensemble learning using a late fusion approach
for several sensory modalities.

analyzing MRI scans, since it provides a voxel-scale repre-
sentation of regional gray and white matter (gm and wm)
volume. Reflecting GM irregularity patterns matched to the
clinical stage of disease, this technique has been applied to
the treatment of both AD and MCI, and it is predict the
probability of MCI progressing to AD. To evaluate the occur-
rence of microscopic tissue degradation in AD, different MRI
techniques are commonly used because difficulty in deter-
mining the presence and extent of WM atrophy. The updated
diagnostic criteria for MCI and AD emphasize the use of CSF
and structural imaging markers. Hippocampal and lateral
ventricle volumes, as well as CSF Markers (Ab42, t-tau, and
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p-tau), can be utilized to differentiate between HC and MCI.
The combination can also be helpful in identifying mod-
erate cognitive impairment and Alzheimer’s disease in the
elderly. Recently, advancements in deep learning technolo-
gies have allowed for more accurate automatic hippocampal
segmentation and classification in Alzheimer’s disease [91].
To solve the classification problem, we build a deep CNN
model to study hippocampal segmentation data and learn
the characteristics of the 3D patches we extracted. Hip-
pocampal segmentation and clinical score regression using an
MRI-based multi-tasking deep learning (MDL) approach are
shown. Using PET, researchers have shown that biomarkers
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FIGURE 3. General block diagram of AD diagnosis.

based on deep CNNs have a robust correlation with cognitive
decline in the road.

The above diagram depicts a schematic representation of
the typical steps taken in a conventional approach to diag-
nosing Alzheimer’s disease. To begin, MRI slices must be
obtained. The next step is data preparation via pre-processing,
wherein extraneous information is discarded and the data
are reorganized for better readability. Data from brain MRI
scans is pre-processed, and then deep learning segmentation
employed to extract the useful features. The patient’s body
size, for example, is a crucial factor. The classifier makes use
of a deep learning architecture to create a prediction about
the output based on the input parameters, which include the
mean intensity, the standard deviation, and the location of the
center of mass.

V. EVALUATION CRITERIA FOR BRAIN MRI
SEGMENTATION

When analyzing medical images,comparing the results of
various segmentation methods can be difficult. A comparison
of segmented output against ground truth data is necessary
for validation. The amount of ground truth data available for
evaluating gathered data in humans is inadequate in a real-
world setting. As a result, following the MRI acquisition,
specialists manually produce ground truth data of patients.
Manual segmentation is error-prone, extremely subjective,
and difficult to recreate, thus this validation must be care-
fully addressed even though it is to validate the genuine
patient’s MRI data (even by the same expert). Many soft-
ware simulations and phantom-based alternative validation
approaches have been offered to get over these restrictions.
Software simulations produce fabricated image that is meant
to represent the method of actual acquisition. Also, imaging
artifacts can be regulated and analyzed apart from the various
acquisition parameters, and the ground truth is known. This
validation method is more flexible and straightforward to
implement [92], [93], [94], [95]. The simulated images can

VOLUME 11, 2023

v

Training with different
Deep-Learning
Models

'

Evaluation With
Test Set

only be approximations of the real ones because the software
simulation approach does not take into account all the aspects
that could affect genuine picture collection.To generate more
realistic phantom images it can be achieved with software
models, MRI scanners are used. Phantom images, however,
are rigid and cannot be adjusted. In addition to this con-
ducting software simulations and obtaining phantom imaging
findings takes a lot of time and money. Several measures
of similarity were employed to compare the accuracy of the
predicted brain MRI to the actual image [96], [97], [98]. In the
works that were published, researchers used a wide variety
of metrics to assess the efficacy of their methods. Most of
these metrics were derived from a comparison of automatic
segmentation results to ground truth, and they were primarily
computed using four fundamental concepts.

e TP (True Positive). An outcome for which the model
correctly predicted a positive class is a true positive.

o TN (True Negative). A true negative is an outcome for
which the negative class is correctly predicted by the
model.

o FP (False Positive). A false positive is an outcome in
which the positive class is predicted incorrectly by the
model.

« FN (False Negative). A false negative is an outcome in
which the negative class is predicted incorrectly by the
model.

A. SOME OF THE EVALUATION METRICS ARE

1) DICE COEFFICIENT

The Dice coefficient measures how well a projected segmen-
tation matches up with the corresponding ground truth at the
pixel level. Dice coefficient can be determined by dividing
the sum of pixels in both images by square root of the overlap
area plus one. The formula is given by

, 2% |1XNY|
DICC(X, Y) = W (l)
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where X is the predicted set of pixels, Y is the ground truth.
When both X and Y are empty, the Dice coefficient is said to
be 1.

2) JACCARD INDEX

When comparing the statistical similarity of two samples,
the Jaccard index (also known as the Jaccard similarity coef-
ficient) is used. Across finite sample sets, similarities are
highlighted by the formal definition of the measurement as
the size of the intersection divided by the size of the sample
set union. The Mathematical formula can be represented as:

X NY|

JX,Y) =
o0 IX|+ Y- 1XNY|

@

3) POSITIVE PREDICTED VALUE
The ratio of correctly identified (True Positive) positive sam-
ples to the total number of correctly or erroneously classified
positive samples is known as the positive predicted value,
or PPV. It is another name for ‘‘Precision.”. It is expressed
as
TP

~ TP+ FP

where TP -True Positive, FP-False Positive

PPV 3)

4) TRUE POSITIVE RATE

The recall is determined as the proportion of Positive samples
that were correctly identified as Positive to all Positive sam-
ples. The recall evaluates the model’s capacity to recognize
positive samples. It is also called as Recall.

TP

TPR = —
TP + FN

4)
5) LESION TRUE POSITIVE RATE

The LTPR is calculated by dividing the number of positive
lesions by the sum of the positive and negative lesions.

TP
LTPR = ——— 5)
TP + FN
6) LESION FALSE POSITIVE RATE
For every particular lesion, the LFPR measures the proportion
of false positives relative to the total number of false positives
and true negatives.
FP
LFPR= —— ©6)
FP+1TN
7) ABSOLUTE VOLUME DIFFERENCE (AVD)
Absolute volume difference (AVD) measures the gap in
dimensions between two areas relative to a common reference
volume.

V=Vl
AVD(G, S) = —— @)
Vg

where V; is the volume of segmentation results and V, repre-
sents the volume of ground truth.
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TABLE 4. Description of mathematical equations for evaluation metrics.

Metrics of Segmentation Mathematical Description
TP
Precision _—
TP + FP
Recall L
TP +FN
TN
Negative Predictive Rate _—
TN + FN
2TP
Dice Similarity Coefficient _—
2TP+ FP + FN
Volume Difference Rate M
TP+ FN
. . TP
Lesion True Positive Rate —_—
TP + FN
. " FP
Lesion False Positive rate —_—
FP 7:I-NTN
Specificit —_—
P Y TN + FP
2TP
F1 Score STD L b L TN
2TP+ FP + FN
TP+ TN
Accuracy -
TP+TN +FP+FN
Balanced Accuracy (Sensitivity -;— Specificity)

Average Symmetric Surface Distance: The sum of all the
distances from points on the machine segmented region’s
boundary to the ground truth’s boundary and vice versa
is called the ASSD. Table 4 provides a summary of the
formulas for determining the TP, FP, and FN rates at the
voxel and lesion levels, and the validation metrics for brain
segmentation.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

The relative performance of the various architectures is
shown in Table 5. A high level of generalisation can be
attained using trained hyper-parameters and architecture lay-
ers that have been optimized for performance. The results of
the evaluated paper’s DSC and JI values for segmenting brain
structure using deep learning algorithms are summarized
in this section. Wachinger et al Dice Similarity Coefficient
(DSC) performs better on the MICCAI dataset compared
to the other contenders, as shown in Table 5. This is due
to the use of Cartesian and spectral coordinates to provide
precise location information within the brain, which signifi-
cantly increased the classifier’s ability to distinguish between
classes. [101] Dolz et al. successfully used a 3D fully con-
volution network design to map sub-cortical regions in brain
MRI, outperforming state-of-the-art DSC methods on IBSR
datasets. However, it was observed that valid comparisons of
these results could not be made due to the diverse datasets
and experimental circumstances employed in these investiga-
tions. In order to make reliable comparisons, it was essential
to have a universal architecture that faithfully represented the
underlying input image without resorting to excessive over-
fitting. Extraction of imaging characteristics, development of
classification models, and pre-determination of ROIs were
the three mainstays of MRI-based computer-aided diagnosis
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TABLE 5. Summary of the results for brain structure segmentation utilising the current methodologies using deep learning algorithms.

Unit: % (y: DSC, #: JI).

MICCAI OASIS Clinical/IBSR
S.No. Authors DSC&JI DSC &JI DSC&JI

cesf gm wm esf gm wm esf gm wm
1 Wachinger et al. [63] 90.6 90.6 90.6 - - - - - -
2 Milletari et al. [33] - - - - - - 77.0 77.0 77.0
3 Shakeri et al. [66] - - - - - - 82.4 82.4 82.4
4 Alotaibi et al. [99] - - - - - - 94.3 90.2 91.4
5 Bao et al. [65] - - - - - - 82.2 85.0 82.2
6 Patil et al.[68] 72.5 72.5 72.5 - - - - - -
7 Zhang et al. [18] - - - - - - 83.5 85.2 86.4
8 Moeskops et al. [28] 73.5 73.5 73.5 - - - - - -
9 Syed et al. [67] - - - 72.5 72.5 72.5 - - -
10 Khagi et al. [91] - - - 72.2 73.0 74.6 - - -
11 Perri et al. [100] 74.3 74.3 74.3 - - - 84.4 84.4 84.4
12 Dolz et al. [86] - - - - - - 90.0 90.0 | 90.0
13 Cheng et al. [5] - - - - - - 93.6 94.8 97.5
14 Korolev et al. [94] - - - 71.6 71.6 71.6 - - -
15 Siqi et al. [84] - - - - - - 814 82.1 81.6
16 Hosseini et al. [93] 70.5 70.5 70.5 - - - - - -
17 Shi et al. [50] - - - - - - 75.3 753 75.3
18 Pulkit et al. [89] - - - - - - 824 81.3 80.6
19 Ruoxuan et al. [104] - - - 72.5 72.5 72.2 - - -
20 Khvostikov et al. - - - - - - 84.3 82.3 82.3

[105]

approaches used in earlier the research on the identifica-
tion of AD-related brain diseases. Depending on the size of
the pre-defined regions of interest (ROIs) in MR images,
these feature extraction and classifier construction meth-
ods can be further classified as voxel-level, region-level,
or patch-level morphological pattern analysis [102]. In order
to classify Alzheimer’s disease, voxel-based approaches look
for microstructures inside individual voxels that are linked to
the disease. However, the region-based techniques use quanti-
tative information extracted from previously segmented brain
areas to build classifiers that can distinguish between patients
and healthy controls [103] The statistical statements are
summarized to encourage readers and researchers to use cur-
rent deep learning methodologies to analyze brain structure.
The fact that these studies used various datasets and experi-
mental setups means that these results cannot be accurately
compared.

To improve their ability to detect subtle changes in
the brain, patch-based techniques use MRI feature repre-
sentations on a scale in between the voxel-level and the
region-level to train classifiers that are sensitive to localised
areas of change. The below Table 6 shows an overview of
the current best practices for using MRI data to diagnose
Alzheimer’s disease (AD vs. HC) and forecasts whether
someone with MCI will worsen into severe dementia (pMCI
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vs. sMCI). Lian et al. compared studies that solely used
ADNI-1 MRI datasets with those who have tried out the
procedure on bigger cohorts, in this case 1,457 people taken
from both the ADNI-1 and ADNI-2 studies. The success rate
of the authors in forecasting pMCI conversions to sMCI is
equivalent to that of the field since they use a more stringent
evaluation technique (i.e., separate training and testing sets).
The ADNI datasets were used to train a three-stacked 3D
convolutional autoencoder network, Improved generality of
features capturing the AD biomarkers allows our results on
AD vs. HC classification to outperform state-of-the-art meth-
ods. A 3D convolutional neural network(CNN) deeper layers
use the recovered features as biomarkers for AD. The authors
of a paper with similar findings recommended combining
AlexNet with data permutation to make better use of the
spatial correlation information provided by CNN’s localized
convolution kernels and AlexNet’s more informative slice
selection during training. This approach outperformed the
competition in AD classification. An overview of the current
best practices for using MRI data to diagnose Alzheimer’s
disease (AD vs. HC) and forecast whether someone with MCI
will progress to severe dementia (pMCI vs. SMCI). The top
outcomes for each statistic are displayed in bold.

One of the recommended techniques of practice is to eval-
uate the model using a variety of datasets. Multiple public
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TABLE 6. An overview of the current best practises for using MRI data to diagnose Alzheimer’s disease (AD vs. HC) and forecast whether someone with
MCI will progress to severe dementia (pMCl vs. sMCI). The top outcomes for each statistic are displayed in bold.

AD vs HC pMCI vs sMCI
S.No. Authors Subjects ACC | SEN | SPE | AUC | ACC | SEN | SPE | AUC
1 Feng etal. [51] 398 subjects(AD,MCLHC) 0.93 0.98 0.93 0.97 - - - -
2 Lee et al. [53] 842 subjects(AD,MCLHC) 0.99 0.97 0.98 - - - - -
3 Payan et al. [82] 757 Subjects(AD,MCILHC) 0.96 - - - - - - -
4 Pulkit et al. [89] 361HC+409sMCI+217pMCI - - - - 0.76 0.74 0.78 -
5 Andres et al. [58] 69HC+70AD 0.92 0.87 0.95 0.96 - - - -
6 Lian et al. [49] 430HC+465sMCI+205pMCI 0.91 0.83 0.98 0.96 0.82 0.54 0.86 0.79
+358AD
7 Korolev et al. [94] 62HC+77sMCI+43pMCI+50 0.82 - - 0.88 0.53 - - 0.54
AD
8 Siqi ct al. [84] 207HC+180AD 0.78 0.82 0.88 0.79 R R - -
9 Ruoxuan et al. 814 subjects(AD,MCLHC) 0.91 0.85 0.91 0.93 0.74 0.68 0.74 0.75
[104]
10 Liu et al. [75] 399 subjects(AD,MCLHC) 0.94 0.91 0.94 0.96 - - - -
11 Hosseini et al. [93] 72HC+71AD 0.98 - 0.97 - - - - -
12 Shi et al. [50] 54NC+56 0.94 0.93 0.95 0.94 0.73 0.62 0.86 0.71
sMCI+43pMCI+51AD
13 L. Vermunt et al. 227HC+188AD 0.84 0.83 0.86 - - - - -
[98]
15 Khvostikov et al. S9HC+48AD 0.84 0.87 0.92 - - - - -
[105]
16 Liu et al. [60] 102HC+128sMCI+76pMCI+ 0.93 0.94 0.96 0.98 0.73 0.38 0.92 0.74
93AD
17 Pengcheng et al. 757 Subjects(AD,MCLHC) 0.87 0.90 0.91 - - - - -
[61]
18 Moeskops et al. 455 subjects(AD,MCI,HC) 0.84 0.87 0.91 0.89 0.75 0.68 0.85 0.81
[28]
19 Dubois et al. [85] 230HC+168AD 0.87 0.82 0.84 - - - - -
20 Jiong et al. [87] 789 subjects(AD,MCILHC) 0.94 0.86 0.91 0.92 0.85 0.89 0.89 0.91

datasets have been used to validate the models in several
recent publications. These methods can be applied to data col-
lected from a wide range of imaging devices, including MRI
scanners, in order to fortify the model [106]. Training deep
CNNs with low-resolution MRI is challenging because of the
time pressure associated with making accurate predictions.
Developing a method with faster convolution makes training
such networks viable. However, while FFT algorithms and
rapid matrix multiplication techniques have helped raise the
processing speed of CNNs, versions of SGD and their paral-
lelized implementations can help improve the efficiency of
deep CNN training procedures. New algorithms that need
few or no hyper-parameters are becoming available, which
should boost the performance of deep CNNs using this high
optimization strategy.The wide availability of GPU has been
an important factor in deep learning’s sudden rise. Graphics
processing units (GPUs) are capable of parallel computation
and perform with more concurrent execution threads (CPUs).
It’s common knowledge at this point that graphics processing
units (GPUs) can do deep learning workloads 10-30 times
faster than regular computers. Open-source software has
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also played a role in deep learning’s spectacular rise to
fame.

Current research has proven that deep learning offers a
viable alternative to traditional approaches to analysing brain
MRI by overcoming limitations of previous state-of-the-art
machine learning methods. Computer-aided interpretation of
brain MRIs has proven challenging for several reasons. Some
of these issues include the scans’ convoluted composition
and inconsistent appearance, unstable image capture, non-
standardized MR scales, varying imaging methodologies, and
the presence of disease. Therefore, it is preferable to use
more generic approaches based on deep learning to manage
these risks. Although there is much to be gained from using
deep learning techniques for analyzing brain MRIs, there
are still significant limitations. Comparable results are not
produced on small datasets, but on large datasets, it out-
performs ImageNet. Numerous analyses showed that when
training datasets grow, performance improvements are seen
across the board with most approaches. There has been a
rise in the need for massive datasets on which deep learning
models can be trained. Large-scale brain MRI data collection
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is complicated by concerns over patient privacy and security.
Therefore, it is essential to create a deep learning strategy
utilizing numerous brain MRI datasets. One approach to this
issue is to supplement the dataset with additional information.
To do this, deep learning algorithms require a process known
as data augmentation, which includes randomly changing
the original data through operations including translation,
flipping, deformation, and rotation. A few studies have
demonstrated the usefulness of data augmentation for reduc-
ing overfitting by adding random variation to the original
data. Further, supervised learning methods build prediction
models by analysing a large set of training instances, where
each example is labeled with information about the actual
outcome of the experiment. While the state-of-the-art has
advanced significantly, the high cost of data labelling makes
it difficult to collect robust supervisory information such as
fully ground truth labels in many applications. When large
datasets labelled with ground truth are unavailable for brain
MRI, weakly supervised deep learning methods can be used
to train on small dummy datasets. Deep weakly-supervised
learning models, which do not require a large number of
ground truth annotations, can be used to identify diseases in
brain MRIs. Brain MRI scans can be quickly and accurately
classified using these models. This is accomplished by gener-
ating pixel-wise localization scores that are used to pinpoint
specific regions of interest (ROIs). Using transfer learning,
researchers in the field of brain imaging can share successful
deep learning models that have been trained on both normal
and abnormal MRI scans of the brain. This would allow for
less laborious improvements to these models’ generalisation
across datasets.

VIi. CONCLUSION

The majority of people believe that Alzheimer’s disease
(AD) is a degenerative condition that gradually destroys
neurons in the brain. The medical industry has recently expe-
rienced great success with a Deep Learning strategy for the
categorization of AD, which does not require any manual
feature extraction techniques, in contrast to the conventional
machine learning approach. Despite the widespread use of
deep learning techniques, current research is lack of reliable
and a generalized approach for quantitatively analysing brain
MRI scans. In this study, we look at research on the use of
MRI to categorise brain anatomy and identify AD. We also
discussed about the advantages of segmenting the brain struc-
turally for AD classification. Segmentation of brain MRI
scans helps in their interpretation and categorization for dis-
eases like Alzheimer’s. Segmenting brain MRIs is difficult
because of the images low contrast, partial volume effect,
noisy backgrounds and ranging in complexity, have been
offered as potential solutions to these problems. In the last few
decades, these strategies have produced increasingly reliable
outcomes. The ability of deep learning algorithms to auto-
matically learn and make judgments has devoted interest in
their application to brain anatomical segmentation and AD
classification.
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