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ABSTRACT This paper presents a novel dynamic frequency assignment (DFA) technique for cognitive
radio cellular networks (CRCNs) using hysteretic noisy chaotic neural network (HNCNN). HNCNN is a
novel neural network that combines the advantages of stochastic chaotic simulated annealing and hysteretic
dynamics to achieve performance improvements in dynamic frequency assignment. In DFA technique,
an existing energy function is introduced, which avoids causing harmful interference to primary users (PUs)
according to the real-time interference frequency table. In a CRCN, the introduced energy function also
avoids causing mutual interferences among cells, considers the number of required frequencies for each
cell, and simultaneously minimizes the total number of assigned frequencies to improve spectrum utilization.
In the end, a typical 49-cell CRCN with 70 licensed frequencies is examined to demonstrate the validity of
the proposed technique. And the results also show that HNCNN outperforms noisy chaotic neural network
(NCNN) according to convergence speed and the rate of optimal solution.

INDEX TERMS Cognitive radio cellular networks, dynamic frequency assignment, energy function,
interference frequency table, hysteretic noisy chaotic neural network.

I. INTRODUCTION
The existing spectrum allocations policy has been shown
that the spectrum is not utilized efficiently in licensed
spectrum [1]. Cognitive radio offers a flexible spectrum
access technique paradigm, which was firstly proposed by
Mitola [2]. In cognitive radio scenario, the unlicensed users
(secondary users or cognitive users) could sense a vacant
spectrum which is unoccupied by licensed users (primary
users) [3], and are permitted to ‘‘borrow’’ the vacant spectrum
from the licensed spectrum opportunistically.

As an intelligent wireless communication system [4], cog-
nitive radio contains two key research challenges which are
spectrum sensing and dynamic spectrum access (DSA) [5],
which is called dynamic frequency assignment (DFA) in our
research. Spectrum sensing requires secondary users (SUs)
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to sense spectrum of primary users (PUs), and DFA demands
SUs to access the vacant spectrum without causing harmful
interference to PUs [6].

DFA technique is closely related to the cognitive radio
network architecture. In previous works, typical network
architecture of cognitive radio includesWireless Region Area
Network (WRAN) [1], mobile ad hoc network [7], wire-
less mesh network [8], and cognitive radio cellular network
(CRCN) [9], In [10], a spectrum-aware and energy-aware
operation scheme for cellular networks in a cognitive radio
context is proposed.

Among all the network architectures mentioned above,
cellular network is not only a perfect paradigm for mobile
communications, but also a promising wireless access tech-
nology for cognitive radio [11]. However, when a traditional
cellular network is applied to cognitive radio, the available
frequencies (unoccupied by PUs) are not fixed and con-
stantly change over time from one region to another. So the
DFA problem for a CRCN becomes more complicated than
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dynamic channel assignment (DCA) for the traditional cellu-
lar networks [12], [13].

Therefore, in a CRCN, how to dynamically assign the
required frequencies to each cell according to the unoccupied
frequencies information, and simultaneously avoid causing
harmful interference to PUs, and mutual interference among
cells. To the best of our knowledge, for the existing DSA
schemes, there is no precious work has solved the problem
successfully as yet.

In [9], Ma et al. proposed a DSA approach for CRCN,
but the DSA process must be assisted by PUs, which is
impractical in many cases. In [14], a two-phase channel and
power allocation scheme is proposed for a cognitive radio
network which consists of multiple cells, but the mutual
interference among cells is hard to control. In [15], dynamic
frequency allocation based on graph coloring and local bar-
gaining for multi-cell WRAN system is proposed, but only
the co-channel interference among cells is taken into account.
In [16], Ahmed et al. proposed a CR-enabled IoT cellular
network which composed of multiple PU base-stations, but
there is no SU cellular network framework.

This paper presents a novel DFA technique for CRCNs
using hysteretic noisy chaotic neural network (HNCNN).

In a CRCN, all cells are controlled by a central server,
namely, spectrum broker, which is responsible for assigning
available frequencies to cells. In a cell, both the base station
(BS) and the related SUs are responsible for sensing the
licensed spectrum, and then report the occupied spectrum
information to the central server. Based on the occupied
spectrum information of PUs in each cell, an interference
frequency table is introduced for the CRCN.

Initially, each cell is assigned a frequency as the dedicated
common control channel (such as a TDMA or a CDMA
channel, or a set of sub-carriers of orthogonal frequency
divisionmultiplexing in a vacant frequency), which facilitates
the BS to control andmanage the related SUs. In each cell, the
assigned common control channel will not to be switched to
another vacant frequency unless it is occupied by PUs. When
a new SU arrives in a cell, it first searches the common control
channel and registers itself.

In order to avoid causing harmful mutual interference to
PUs, DFA should avoid all interference frequencies in the
interference frequency table. In addition, DFA should also
avoid causing mutual interference among cells. Whenever
a SU asks the BS for communicating, it will be assigned
a channel (a frequency may service more than one SU),
otherwise the SU will be blocked. Similarly, when a SU com-
pletes communication, the assigned frequency (or a channel)
is released immediately and is available for other SUs.

Similar to the DCA for traditional cellular networks, DFA
technique for CRCN is also a typical NP-hard problem with
the existing solving schemes: simulated annealing, genetic
algorithm, and neural network algorithm [17], [18]. Neu-
ral network is easy to be implemented by hardware and
runs quickly. HNCNN [19] outperforms the noisy chaotic
neural network (NCNN) [20], the transiently chaotic neural

network (TCNN) [21] and the earlier Hopfield neural network
(HNN) [22].

Whether an NP-hard problem can be successfully solved
by HNCNN depends on a valid energy function, in which
both constraints and optimizing objects are considered. The
existing energy functions of DCA scheme [17], [18] for tradi-
tional cellular networks are not suitable for CRCNs, in which
the available frequencies (unoccupied by PUs) are not fixed
and constantly change over time from one region to another.

In [23], we proposed a novel energy function to solve
the DCA problem using NCNN for large-scale cellular net-
works. In this paper, we introduce the proposed energy
function in [23] to further solve the DFA problem for CRCNs.
The introduced energy function avoids causing harmful
interference to PUs according to the real-time interference
frequency table, and considers the three mutual interference
constraints among cells including co-site constraint (CSC),
adjacent frequency constraint (AFC) and co-frequency con-
straint (CFC) [17], and the number of required frequencies
of each cell. To improve spectrum utilization, the introduced
energy function also minimizes the total number of assigned
frequencies from the available ones.

The validity of the proposed DFA technique is con-
firmed by an instance of a 49-cell CRCN with 70 licensed
frequencies.

II. ENERGY FUNCTION MODEL
A. HNCNN
Without increasing the number of adjustment parameters,
Ming Sun et al. combined the advantages of both stochas-
tic chaotic simulated annealing and hysteretic dynamics to
obtain a novel HNCNN [19], [24] on the basis of NCNN [20].
Compared with NCNN and early HNN [22], the search capa-
bility and convergence speed of HNCNN are significantly
improved. HNCNN is described as follows:

ui(t + 1) = k [ui(t) + ηi(t)] + α

 n∑
j=1

wijvj(t) + bi


− zi(t) [vi(t) − I0] + ni(t) (1)

vi =
1

1 + exp {− [ui(t) + ηi(t)] /ε}
(2)

zi(t) = (1 − β1)zi(t − 1) (3)

Am[ni(t + 1)] = (1 − β2)Am[ni(t)] (4)

ηi(t) =


0, t = 0
+ |ni(t − 1)| , t > 0, ui(t) < ui(t − 1)
− |ni(t − 1)| , t > 0, ui(t) ≥ ui(t − 1)

(5)

where ui is the input of neuron i, vi is the output of neuron
i; k is the damping factor of the nerve membrane; α is the
scaling parameter of neuron; wij is the connection weight
from neuron j to neuron i; bi is the input bias of neuron
i; zi(t) is the self-feedback connection weight of neuron i;
I0 is a positive parameter; ni(t) is the stochastic noise added

72102 VOLUME 11, 2023



C. Zhao, A. Zhang: DFA for CRCNs Using HNCNN

to neuron i, which follows the uniform distribution of [−Am,
Am], and Am is the amplitude of ni(t); β2 is the damping factor
of Am, 0<β2<1; ε is the steepness parameter of the activation
function; β1 is the damping factor of zi(t), 0<β1<1; ηi(t) is
a temporary variable, |ni(t−1)| represents the absolute value
of ni(t−1).

HNCNN is able to exhibit both hysteretic dynamics and
stochastic chaotic simulated annealing properties without
adding additional system parameters [19]. From the dynami-
cal model of the network, it can be seen that the hysteresis
properties of the network are generated by the controlled
noise in the manner specified in equation (5), and from equa-
tions (2) and (5) the activation function consists of two biased
sigmoid functions and produces a hysteresis loop [25].

B. ENERGY FUNCTION
In [23], we proposed a novel energy function for solvingDCA
for large-scale cellular networks, which is described as

E =
Ae
2

m∑
x=1

n∑
i=1

∑
j̸=i

vxivxjfCSC (i, j)

+
Be
2

m∑
x=1

n∑
i=1

∑
y∈Near
y̸=x

∑
j̸=i

vxivyjfAFC (i, j)

+
Ce
2

m∑
x=1

n∑
i=1

∑
y̸=x

vxivyifCFC (x, y)+
De
2

m∑
x=1

(
n∑
i=1

vxi−Rx

)2

+ Fe
m∑
x=1

n∑
i=1

vxiTxi + Ge
m∑
x=1

n∑
i=1

ivxi (6)

where x, y represent serial numbers of different cells, and i, j
represent serial numbers of different available frequencies;
m is the total number of cells in a CRCN, and n is the total
number of available frequencies; vxi represents output of the
x thi neuron, whose value is 1 (vxi =1) if frequency i is assigned
to cell x, 0 otherwise.
The first term of (6) represents CSC, where product vxivxj

indicates that frequencies i and j (j is not equal to i) are
assigned to cell x simultaneously. Only when the constraint
function fCSC(i, j) =0 is the first term equal to 0.
The CSC constraint function is defined as

fCSC (i, j) =

{
1, |i− j| < L
0, |i− j| ≥ L

(7)

where L is the interval of frequencies i and j; |i-j|, the span of
frequencies i and j.

The second term represents AFC, where product vxivyj
indicates that frequencies i and j (j is not equal to i) are
simultaneously assigned to cells x and y (y is not equal to x,
and y is the neighboring cell of cell x), respectively. Only
when the constraint function fAFC(i, j) = 0 is the second term
equal to 0. The denotation Near in the second term is the set
of neighboring cells of cell x.

The AFC constraint function is defined as

fAFC (i, j) =

{
1, |i− j| < 2
0, |i− j| ≥ 2

(8)

The third term represents CFC, where product vxivyi indi-
cates that frequency i is assigned to cells x and y (y is not
equal to x) simultaneously. Only when the constraint function
fCFC(x, y) = 0 is the third term equal to 0.

The CFC constraint function is defined as

fCFC (x, y) =

{
1, |x − y| < Dreuse
0, |x − y| ≥ Dreuse

(9)

where Dreuse is the reuse distance between two cells which
can be assigned the same frequencies [23].

The fourth term represents the frequency requirement con-
straint of each cell. When the total number of frequencies
allocated in cell x equals the number of frequencies required
by cell x, its value will reach 0, expressed as Rx . The number
of required frequencies of all cells makes up the frequency
requirement vector denoted by R, Rx is the x th element of R.

The penultimate term represents the interference constraint
between a CRCN and PUs, and its value will increase if
frequency i is forbidden for cell x (occupied by PUs), other-
wise, it is 0. Txi is the x thi element of interference frequencies
table T, product vxiTxi represents that either vxi or Txi is equal
to 0, its product equals to 0.

The last term represents the rule of frequency compaction,
and it will reach a positive constant which cannot be predicted
even if HNCNN converges to an optimal solution. ivxi is
the product of frequency serial number i and the x thi neuron
output vxi, it means that the lower serial number of frequency
i is allocated to cell x, the smaller value of (6) is obtained.
When (6) is minimized, the total number of the assigned
frequencies is the least, then the spectrum utilization is the
highest.

The positive constants Ae, Be, Ce, De, Fe, and Ge in (6)
are corresponding penalty parameters that can be adjusted
independently based on the convergence performance
of HNCNN.

C. MOTION EQUATION OF HNCNN
Based on (6), themotion equation of HNCNN can be deduced
as

duxi
dt

= −
∂E
∂vxi

= −Ae
∑
j̸=i

vxjfCSC (i, j)

− Be
∑

y∈Near
y̸=x

∑
j̸=i

vyjfAFC (i, j)

− Ce
∑
y̸=x

vyifCFC (x, y) − De

 n∑
j=1

vxj − Rx


− FeTxi − Gei (10)

where uxi is the internal state of the x thi neuron, and the
relationship of vxi(t) and uxi(t) is defined as that of vi and ui
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FIGURE 1. A 49-cell CRCN with 70 licensed frequencies in which nine
being occupied by PUs.

in (2).

uxi(t + 1) = kuxi(t) − Aeα
∑
j̸=i

vxj(t)fCSC (i, j)

− Beα
∑

y∈Near
y̸=x

∑
j̸=i

vyj(t)fAFC (i, j)

− Ceα
∑
y̸=x

vyi(t)fCFC (x, y)

− Deα

 n∑
j=1

vxj(t) − Rx


− αFeTxi − αGei− zxi(t) [vxi(t) − I0] + nxi(t)

(11)

where the simulated annealing function of zxi(t) is defined as
that of zi(t) in (3); damping stochastic noise nxi(t) is defined
as ni(t) in (4); the other symbols are the same as those in the
aforementioned equations.

III. APPLICATION EXAMPLES
The application examples are based on a 49-cell CRCN. The
simulation is accomplished using MATLAB.

A. VALIDITY OF THE ENERGY FUNCTION
A 49-cell CRCNwith 70 licensed frequencies is illustrated in
Fig. 1. Each cell has equal opportunities to be assigned one
or more vacant frequencies from the 70 licensed frequencies.
The cells in the CRCN are numbered from 1 to 49 (figures in
each cell), which form a parallelogram pattern.

In Fig. 1, reuse distance Dreuse in (9) is defined as the
distance between cells 1 and 16. Any two cells whose distance
is greater than or equal to Dreuse may be assigned the same
frequencies. The interval of frequencies of (7) is set as L = 3.
There are nine rings noted as O1 to O9, which represent nine

FIGURE 2. Interference frequency table of the 49-cell CRCN.

frequencies coverage regions occupied by PUs. We assume
that frequencies 2, 10, 19, 27, 35, 43, 52, 60, and 68 are
occupied by PUs in regions O1 to O9, respectively. The
corresponding interference frequency table of Fig. 1 is shown
in Fig. 2, which is calculated by the central server.

In Fig. 2, a black grid represents that a frequency is forbid-
den for a cell, whereas a blank grid represents a vacant one.

For example, in region O2, frequency 10 is occupied by
PUs in cells 3, 4, 5, 6, 9, 10, 11, 12, 13, 16, 17, 18, 19, 23,
24, and 25. In order to avoid causing harmful interference
to PUs, the three interference constraints should be taken
into account. As a result, frequencies 8, 9, 11, and 12 are
forbidden for cells 3, 4, 5, 6, 9, 10, 11, 12, 13, 16, 17, 18, 19,
23, 24, and 25 (CSC is satisfied); frequencies 9 and 11 are
forbidden for cells 2, 7, 8, 14, 15, 20, 22, 26, 29, 30, 31, and
32 (AFC is satisfied); frequency 10 is forbidden for cells 1,
2, 7, 8, 14, 15, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 36,
37, 38, and 39 (CFC is satisfied). The occupied frequency
10 and its related three interference constraints make up of
the interference frequencies of region O2, which is shown
in columns 8, 9, 10, 11, and 12. It is the same rule to other
regions.

The DFA process for CRCN should avoid the interfer-
ence frequencies in Fig. 2, i.e. the black grids. In addition,
DFA should also avoid causing mutual interference among
cells, i.e. the three interference constraints mentioned in (7),
(8), (9).

Based on the 49-cell CRCN, we use the same HNCNN
parameters as [23] to run HNCNN for a uniform frequency
requirement to verify the proposed energy function.

A uniform assigned frequency table (i.e., each cell is
assigned an equal number of frequencies) for the 49-cell
CRCN is shown in Fig. 3, where four frequencies per cell are
assigned (Rx = 4, x = 1, 2, . . . , 48, 49). A black grid means
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FIGURE 3. Uniform frequency assignment for the 49-cell CRCN with
frequency compaction.

that a frequency is assigned to a cell, whereas a blank grid
represents a vacant one. The gray grids shown in Fig. 3 (and
the following Fig. 4 and 5) are originated from Fig. 2, which
represent the interference frequency table. That is to say, the
gray grids shown in Fig. 3, 4 and 5 are actually the same with
the black grids shown in Fig. 2.
In Fig. 3, it can be easily seen that all frequencies assigned

in a cell keep at least 3 intervals in the frequency domain
(CSC is satisfied), every two frequencies assigned in the
neighboring cells keep at least 2 intervals in the frequency
domain (AFC is satisfied), all cells assigned the same fre-
quency keep a distance greater than or equal to the reuse
distance (CFC is satisfied). By comparing Fig. 3 with Fig. 2,
the interference frequencies in Fig. 2 are all avoided in Fig. 3.
That is to say, The gray and black grids in Fig. 3 do not overlap
with each other.

Another satisfactory result in Fig. 3 is that the assigned
frequencies are converged to lower serial numbers, which is
caused by the last term of (6). As the serial number increases,
the assigned times for a frequency are gradually decreased.
For example, frequencies 66 and 70 are only assigned once,
and frequencies 67, 68, and 69 are never assigned. This
means that a frequency with a lower serial number has a
higher priority to be assigned. As a result, the total number of
the assigned frequencies becomes smaller, i.e., the spectrum
utilization is improved.

To verify the frequency compaction term in (6), we set
the last punishing parameter as Ge = 0, whereas the other
parameters remain unchanged. The corresponding assigned
frequency table without frequency compaction is shown in
Fig. 4. In this case, each cell still obtains four frequencies,
but each frequency has equal opportunities to be assigned.

FIGURE 4. Uniform frequency assignment for the 49-cell CRCN without
frequency compaction.

In a cell, all SUs are controlled by the BS, so the com-
mon control channel should be relatively fixedly assigned
to each cell. However, DFA for CRCN using HNCNN is a
centralized assignment scheme, a DFA process will prob-
ably cause plenty of frequency reassignments, which refer
to the switching of many ongoing SUs to other frequencies
in order to vacate available frequencies for incoming SUs,
i.e., to find a global optimal solution. In order to relatively
fixedly assign a frequency to a cell as the dedicated common
control channel, a feasible scheme is to select a frequency
with the lowest serial number from the assigned frequencies,
and it should not be switched as long as it is not occupied by
PUs. Furthermore, the lowest-number frequency is easy to be
found by new arrival SUs in a cell.

According to the above rules, we simply add the
lowest-number frequencies with three interference con-
straints to the interference frequency table. As a result, the
interference frequency table not only contains the frequen-
cies occupied by PUs, but also contains the frequencies
for the common control channels. After that, we implement
HNCNN for the remanent frequencies requirement (without
the lowest-number frequencies) of each cell. In Fig. 3, the
lowest-number frequencies in the 49 cells are 5, 8, 6, 15, 5, 1,
7, 14, 16, 13, 7, 16, 3, 5, 12, 5, 17, 4, 14, 8, 1, 8, 14, 6, 1, 12, 4,
7, 4, 12, 3, 17, 2, 10, 5, 1, 5, 11, 13, 6, 1, 8, 7, 2, 4, 8, 3, 11, and
2. We assume that cell 10 must be assigned five frequencies,
and the other cells are still assigned four frequencies. The
assigned frequency table is shown in Fig. 5.

In Fig. 5, except cell 10, the other cells are still assigned
four frequencies. Compared with Fig. 3, it is found that
the lowest-number frequencies in each cell are unchanged,
whereas many other frequencies are switched. The other
features of Fig. 5 are the same as those of Fig. 3.
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FIGURE 5. Frequency assignment with fixed common control channel.

FIGURE 6. Energy function and neuron output of HNCNN and NCNN.

If one or more lowest-number frequency is occupied
by PUs, then update the interference frequency table, and
implement DFA process once again. So the lowest-number
frequencies are reassigned.

B. EFFICIENCY OF HNCNN
In order to compare the efficiency of HNCNN and NCNN,
we describe their respective energy function and the output of
neuron in Fig. 6(a)-(d). The neuron output graph is randomly
selected from No. (24,15) neuron, i.e., v24,15(t).

It can be seen from Fig. 6(a) and (b) that when HNCNN is
in the chaotic state of hysteretic noise within about 150 iter-
ations, the energy function and neuron output curve fluctuate
greatly, which is caused by the decaying random noise.
In Fig. 6(b), the search space of HNCNN is expanded to about
0.9, which is conducive to improving the search probability

TABLE 1. Rate of the optimal solution of NCNN and HNCNN.

of the optimal solution. After about 160 iterations, the energy
function and neuron output gradually converge to a fixed
point. The average number of iterations is about 200.

In contrast, Fig. 6(c) and (d) show that within about
150 iterations, the search space of NCNN in the noise chaotic
dynamics stage is approximately 0.5. It is worth noting that
when both HNCNN and NCNN are within 150 iterations, the
search space of HNCNN is 0.4 more than that of NCNN. This
is due to the introduction of hysteretic excitation function
into noisy chaotic neural network. Hysteretic chaotic neu-
rons have certain ability to suppress noise [26]. Hysteresis
dynamics can make neurons have faster change speed, can
quickly escape from the original state of neurons, and also
has the ability to overcome the network falling into local
minima [27]. After about 200 iterations of NCNN, the energy
function and neuron output will gradually converge to a fixed
point. The last point is that the energy function curves of both
HNCNN and NCNN will converge to zero. This is because
we set the last punishing parameter to Ge=0 for ease of
observation and for statistical the rate of optimal solutions.

In order to accurately evaluate the efficiency of HNCNN
and NCNN, we implemented HNCNN and NCNN for 49
CRCN based on the interference frequency table shown in
Fig. 2, and compared their efficiency. All cells are assigned
from 1 to 5 frequencies on the average. Each case is simulated
100 times, and the results are summarized in Table 1.

In Table 1, the rates of optimal solution of HNCNN
and NCNN decrease as the average frequency requirement
increases. When the average frequency requirement is one or
two, the rates of optimal solutions are both 100%, and when
the average frequency requirement is over two, the rate of
optimal solutions of HNCNN is significantly better than that
of NCNN. A frequency requirement over 5 frequencies per
cell has not been found by either HNCNN or NCNN based
on Fig. 2.

IV. CONCLUSION
CRCN is a promising wireless access paradigm for cognitive
radio. However, the available frequencies (unoccupied by
PUs) for a CRCN are not fixed and constantly change over
time from one region to another. So the DFA problem for a
CRCN becomes more complicated than DCA for traditional
cellular networks. To find a feasible scheme of DFA for
CRCNs is a highly influential work for the future cognitive
radio.

In this paper, a novel DFA technique for CRCNs using
HNCNN is presented, in which an existing energy function is
introduced to assign the required frequencies to each cell, and
simultaneously avoid causing harmful interference to PUs
and mutual interference among cells. In addition, in order to
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relatively fixedly assign a common control channel to each
cell, an assigned frequency with the lowest serial number
is fixed until it is occupied by PUs. The simulation results
of 49-cell CRCN show that the rate of optimal solution of
HNCNN is significantly better than that of NCNN. Compared
to NCNN, HNCNN exhibits better effective convergence of
the optimal solution at higher noise levels, and has a wider
search space.

In this paper, we only consider the small-scale CRCN with
49 cells. However, similar to large-scale cellular network
(LCN) [23], a practical CRCN is also large scale with hun-
dreds or even thousands of cells. Therefore, it still remains a
problem that how to solve the DFA problem for a practical
large-scale CRCN. A feasible scheme is to decompose a
large-scale CRCN into many small-scale subnets. The DFA
process is simply implemented in each subnet independently
according to the interference information of its neighboring
subnets.
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